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Abstract In this paper, for K -quasiconformal mappings of a bounded domain into the
complex plane, we build a sharp lower bound of Burkholder’s functional. As an appli-
cation, we give two explicit and sharp lower bounds of Burkholder’s integrals for two
subclasses of K -quasiconformal mappings, respectively. As the second application,
we obtain a sharp upper bound of the L p-integral of

√
J f for certain K -quasiconformal

mappings.
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1 Introduction

Let � and �′ be two bounded simply connected domains of the complex plane C

and χ� the characteristic function of �. Let Ẇ 1,p(C, C), 1 < p < ∞, be the
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homogenous Sobolev space of complex-valued locally integrable functions in the
plane whose distributional first derivatives are in L p(C). Let f = u + iv. We denote
the formal partial derivatives of f by

∂̄ f = fz = 1

2
( fx + i fy) = 1

2
(ux − vy + i(uy + vx )),

∂ f = fz̄ = 1

2
( fx − i fy) = 1

2
(ux + vy + i(vx − uy)),

and write

D f =
[

ux uy

vx vy

]
, |D f | = | fz | + | fz̄ |, J f = | fz |2 − | fz̄ |2.

Let K ≥ 1 and k = K−1
K+1 . A K-quasiconformal mapping is an orientation preserving

homeomorphism f of � onto �′ that belongs to the Sobolev space W 1,2
loc (�,�′) and

satisfies the distortion inequality

|∂̄ f | ≤ k|∂ f |, a.e. on �,

Particularly, if |∂̄ f |/|∂ f | = k a.e. on �, then we say that f has a constant-modulus
Beltrami coefficient.

A homeomorphism of C onto itself is called a principal solution of the Beltrami
equation

fz̄ = μχ� fz, ||μ||∞ ≤ 1,

if f belongs to W 1,2
loc (C) and satisfies the asymptotical normalization condition at the

infinity as

f (z) = z + b1

z
+ b2

z2 + · · · , z → ∞.

The existence of principal solutions can be determined by properties of Beurling-
Ahlfors operator, which is defined on L p(C), 1 < p < ∞, by

T f (z) = − 1

π
pv
∫∫

C

f (ζ )

(z − ζ )2 dm(ζ ),

where pv means the Cauchy principal value and m is the Lebesgue measure of C.
This operator and its multidimensional and weighted analogues are fundamental tools
in several areas including quasiconformal mappings, partial differential equations,
calculus of variations and differential geometry (see [1–3,6,11,13,14,16,19] and the
references therein for more details).

Set p∗ = max{p,
p

p−1 }, 1 < p < ∞. Define Burkholder’s functional (p16 in [9])
by
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Bp(D f ) = (|∂ f | − (p∗ − 1)|∂̄ f |)(|∂ f | + |∂̄ f |)p−1

= 2 − p∗

2
|D f |p + p∗

2
|D f |p−2 J f . (1.1)

Bañuelos and Wang conjectured [7]: For every function f ∈ Ẇ 1,p(C, C), it is true
that Burkholder’s integral

∫∫
C

Bp(D f )dm satisfies

∫∫

C

Bp(D f )dm ≤ 0. (1.2)

By Burkholder’s inequality (p. 16–17 in [9])

|∂ f |p − (p∗ − 1)p|∂̄ f |p ≤ p(1 − 1

p∗ )p−1Bp(D f ), (1.3)

Bañuelos-Wang conjecture implies the fact that for complex-valued functions f ∈
Ẇ 1,p(C, C), it is true that

∫∫

C

|∂ f |pdm ≤ (p∗ − 1)p
∫∫

C

|∂̄ f |pdm. (1.4)

In 1965, Lehto [17] showed that ||T||L p(C) ≥ p∗ −1 for p ∈ (1,+∞). Consequently,
The validity of Bañuelos-Wang conjecture will imply Iwaniec’s conjecture [15], that
is, ||T||L p(C) = p∗ − 1.

Due to the rank-one convexity of Burkholder’s functional, Bañuelos-Wang conjec-
ture is closely connected with the long standing Morrey conjecture [18] (see Sect. 5
in [5] or [20] for a precise statement of their relations).

There is a fundamental inequality for the Jacobian J f and the gradient |D f | given
in Chapter 19 in [3].

Theorem A There exists a number M = Mp ≥ 1 such that if 1 < p < ∞, then

∫

C

|D f |p−2 J f dm ≤ M − 1

M + 1

∫

C

|D f |pdm

or equivalently,

∫

C

(|∂ f | − M |∂̄ f |)(|∂ f | + |∂̄ f |)p−1dm ≤ 0,

for every function f ∈ Ẇ 1,p(C, C). Here,

M = ||T||p
L p(C)

> ||T||L p(C) ≥ p∗ − 1

if p ∈ (1, 2) ∪ (2,∞).

123



X. Chen, T. Qian

Since the value M in Theorem A cannot be p∗ − 1 if p ∈ (1, 2) ∪ (2,∞), The-
orem A does not give the proof of Bañuelos-Wang conjecture. However, there are
some particular subclasses of Ẇ 1,p(C, C) validating this. For example, Baernstein
and Montgomery-Smith [5] proved the following

Theorem B If f ∈ Ẇ 1,p(C, C), 1 < p < ∞, is harmonic on C ∪ ∞\{|z| = 1}, then
the inequality (1.2) holds.

Let D be the unit disk of C, and D
c denote the exterior of D. Set

ϕ(z) =
{

z, z ∈ D,

1/z̄, z ∈ D
c.

(1.5)

Recently, the authors [10] obtained

Theorem C Suppose g is a locally univalent logharmonic mapping of the unit disk
D in W 1,2

loc (D). Let f = g ◦ ϕ. If f ∈ Ẇ 1,p(C, C), then Bañuelos-Wang conjecture is
valid for f .

Meanwhile, the estimates of Burkholder’s integral confined to a bounded domain
also arise interest. For instance, an upper bound of Burkholder’s integral for certain
classes of K -quasiconformal mappings was recently obtained by Astala et al. [4] as
follows

Theorem D Let f : � → � be a K -quasiconformal mapping of a bounded open set
� ⊂ C onto itself, extending continuously up to the boundary, where it coincides with
the identity mapping I d(z) ≡ z. Then

∫∫

�

Bp(D f )dm ≤
∫∫

�

Bp(I d)dm = |�|, for 2 ≤ p ≤ 1 + k

k
, K = 1 + k

1 − k
.

Furthermore, the equality occurs for a class of piecewise radial mappings.

Theorem D Let f : C → C be the principal solution of a Beltrami equation,

fz̄ = μ fz, |μ| ≤ kχD, 0 ≤ k < 1.

Then, for all exponents 2 ≤ p ≤ 1+k
k , we have

∫∫

D

Bp(D f )dm ≤ |D|.

Equality occurs for some fair general piecewise radial mappings.

What about the lower bound of Burkholder’s integral for the classes of K -
quasiconformal mappings given in Theorem D and Theorem E? The Burkholder
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inequality implies a lower bound of Burkholder’s integral given by a linear com-
bination of the L p-integrals of ∂ f and ∂̄ f . For a K -quasiconformal mapping with a
Beltrami coefficient μ, Burkholder’s functional (1.2) can be expressed by

Bp(D f ) = (1 − p∗|μ|
1 + |μ| )|D f |p, p ∈ (1,+∞),

which implies that the inequality

1 + k − pk

1 + k
|D f |p ≤ Bp(D f ) ≤ |D f |p, p ∈ (2,+∞) (1.6)

holds if 1 + k − pk ≥ 0, k = K−1
K+1 [4]. Consequently, the left inequality of (1.6) also

gives a lower bound of Burkholder’s integral
∫∫

�
Bp(D f )dm by the L p-integral of

|D f | and the dilatation k.
In this paper, we continue to study the lower estimate of Burkholder’s functional for

K -quasiconformal mappings and use it to give explicit lower bounds of Burkholder’s
integral for certain classes of K -quasiconformal mappings.

Burkholder’s functional Bp(D f ) is equal to the Jacobian J f if p = 2, and the lower
estimate of (1.6) for Bp(D f ) takes equality for all K -quasiconformal mappings with
constant-modulus Beltrami coefficients if p ∈ [2, 1+k

k ). However, the lower estimate
of (1.6) for Bp(D f ) is not the Jacobian J f for all K -quasiconformal mappings when
p = 2, while, the lower estimate of Burkholder’s inequality does not take equality
for K -quasiconformal mappings with constant-modulus Beltrami coefficients when
p ∈ (2, 1+k

k ). Hence, for K -quasiconformal mappings, it is natural to ask whether there
exists a lower estimate of Bp(D f ) such that it is the Jacobian J f when p = 2 and
simultaneously takes equality for quasiconformal mappings with constant-modulus
Beltrami coefficients when p ∈ (2, 1+k

k ).
Firstly, we get such a lower estimate of Burkholder’s functional Bp(D f ) for K -

quasiconformal mappings as follows

Theorem 1.1 If f is a K -quasiconformal mapping of a domain � ⊂ C into C, then
for every p ∈ [2, 1 + 1/k),

(1 − (p − 1)k)(1 + k)p−1

√
1 − k2 p

√
J f

p ≤ Bp(D f ) ≤ √
J f

p
. (1.7)

The left equality and the right equality of (1.7) hold at the same time if and only if f
is a conformal mapping or p = 2. Further, for every p ∈ [2, 1 + 1/k),

(1 − (p − 1)k)(1 + k)p−1

√
1 − k2 p

∫∫

�

√
J f

p
dm ≤

∫∫

�

Bp(D f )dm ≤
∫∫

�

√
J f

p
dm.

(1.8)

The left equality and the right equality of (1.8) hold simultaneously if and only if f is
a conformal mapping or p = 2.
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Moreover, the left equalities in (1.7) and (1.8) hold for all K -quasiconformal map-
pings with constant-modulus Beltrami coefficients when p belongs to [2, 1 + 1/k).

We note that both the lower bound and the upper bound of (1.7) are better than the
corresponding ones of (1.6) (see Remark 3.1).

Secondly, we apply this result to get explicit lower bounds of Burkholder’s integral
for the class of K -quasiconformal mappings of � onto itself with the identity boundary
mapping, and the class of principal solutions with Beltrami coefficients μχD, ||μ||∞ ≤
k < 1 (see Theorem 4.1 and Theorem 1, respectively).

Finally, combining Theorem B with Theorem 4.1, we obtain a sharp upper bound
of L p-integral of

√
J f for K -quasiconformal mappings with the identity boundary

mapping (see Theorem 5.1). As its corollary, we get the same upper bound of the
L p-integral of |D f | as the one at Corollary 4.1 in [4].

The rest of this paper is organized as follows. In Sect. 2, we give preliminary
lemmas used in the following sections. In Sect. 3, a proof of Theorem 1.1 is given. In
Sect. 4, we obtain two explicit and sharp lower bounds of Burkholder’s integral. The
sharp L p-integral of

√
J f for K -quasiconformal mappings with the identity boundary

mapping is given in Sect. 5. At last, we utilize Beurling-Ahlfors operator to construct
explicit principal solutions with given Beltrami coefficients, and then compare the
lower bounds of the Burkholder integrals we obtain (see Remark 6.1).

2 Preliminary lemmas

We first formulate a classical result of Gronwall [12] and Bieberbach [8], which is
known as the area formula. One can see a proof at Theorem 2.10.1 in [3].

Lemma A Suppose that f ∈ W 1,2
loc (C) is analytic outside the disk D(0, r) = {z||z| <

r} and has the expansion

z + b1

z
+ b2

z2 + · · · , z → ∞.

Then

∫∫

D(0,r)

J f dxdy = π

(

r2 −
∞∑

n=1

n|bn|r−2n

)

.

In particular, if f is orientation-preserving almost everywhere, then

∞∑

n=1

n|bn|2r−2n ≤ r2.

For a function f ∈ L p(C) with p ≥ 2, Cauchy’s operator is defined by

C f (z) = − 1

π

∫∫

C

(
f (ζ )

ζ − z
− κ

C\D

ζ

)
dm(ζ ). (2.1)
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If p > 2, then C f is Hölder continuous with exponent 1 − 2/p (see Theorem 4.3.13
of [3]), while, if p = 2, then C f belongs to the space VMO(C) (see Theorem 4.3.9
of [3]).

We need the following two lemmas when we construct explicit principal solutions
with given Beltrami coefficients.

Lemma B If f ∈ L p(C), p ≥ 2, then the relations

∂C f = T f, ∂̄C f = f. (2.2)

hold in the distributional sense.

See p. 52–53 in [1] and p. 112 in [3] for a proof of Lemma B.

Lemma C Let μ = z̄n zm, where n and m are integers, and let ϕ be given by (1.5).
Then the following relations hold. If n ≥ m, then

C(μχD)(z) = zm ϕ(z̄)n+1

n + 1
(2.3)

and

T(μχD)(z) =
⎧
⎨

⎩

m
n+1 zm−1 z̄n+1, m �= 0, z ∈ D,

0, m = 0, z ∈ D,

− n−m+1
(n+1)zn−m+2 , z ∈ D

c.

(2.4)

If n = m − 1, then

C(μχD)(z) = −1 − |z|2n+2

n + 1
χD (2.5)

and

T(μχD)(z) = zn z̄n+1χD. (2.6)

If n ≤ m − 2, then

C(μχD)(z) = − zm−(n+1)

n + 1
(1 − |z|2n+2)χD (2.7)

and

T(μχD)(z) = −m − (n + 1)

n + 1
zm−(n+2) + m

n + 1
zm−1 z̄n+1χD. (2.8)

One can see Lemma 3.1 in [10] for a proof of Lemma C.
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Lemma 2.1 Let K = 1+k
1−k , where 0 ≤ k < 1. If f is a K -quasiconformal mapping

of a domain � ⊂ C into C then the inequality

| fz̄ | ≤ k√
1 − k2

J 1/2
f (2.9)

holds almost everywhere in �. The equality holds if and only if f is a quasiconformal
mapping with a constant-modulus Beltrami coefficient.

Proof By the definition of a K -quasiconformal mapping, we have the inequality

| fz̄ |2 ≤ k2(J f + | fz̄ |2) (2.10)

holds almost everywhere in �. Hence

| fz̄ |2 ≤ k2

1 − k2 J f .

If the equality of the above inequality holds, then | fz̄ |/| fz | = k. The proof of
Lemma 2.1 is complete. ��

3 Proof of theorem 1.1

Proof If p ∈ [2, 1 + 1/k), then we have

1 + k − pk ≥ 0. (3.1)

Let f be a K -quasiconformal mapping of � into C. Then by the inequality (2.10)
and (3.1), we obtain

√
J f + | fz̄ |2 − (p − 1)| fz̄ | ≥ (1 + k − pk)

√
J f + | fz̄ |2 ≥ 0. (3.2)

Rewrite Burkholder’s functional

Bp(D f ) = (

√
J f + | fz̄ |2 − (p − 1)| fz̄ |)(

√
J f + | fz̄ |2 + | fz̄ |)p−1.

Let s = √
J f and | fz̄ | = t . Then Bp(D f ) can be expressed by

fs(t) = (
√

s2 + t2 − (p − 1)t)(
√

s2 + t2 + t)p−1.

By the fact that
√

s2 + t2 − (p − 1)t > 0 when p > 2 and t > 0, we obtain

d ln( fs(t))

dt
= f ′

s (t)

fs(t)
= − p(p − 2)t

(
√

s2 + t2 − (p − 1)t)
√

s2 + t2
< 0.
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So we have that fs(t) decreases in t if p > 2 and t > 0. By (2.9) of Lemma 2.1, we
obtain

Bp(D f ) ≥ (1 − (p − 1)k)(1 + k)p−1

√
1 − k2 p

√
J f

p
,

and then

∫∫

�

Bp(D f )dm ≥ (1 − (p − 1)k)(1 + k)p−1

√
1 − k2 p

∫∫

�

√
J f

p
dxdy.

On the other hand, we get from the fact | fz̄ | ≥ 0 that

Bp(D f ) ≤ √
J f

p
,

and then
∫∫

�

Bp(D f )dm ≤
∫∫

�

√
J f

p
dxdy.

Let σ(p, k) = (1−(p−1)k)(1+k)p−1√
1−k2 p . Then it follows

∂ ln(σ (p, k))

∂k
= − (p − 2)pk

(1 − k2)(1 − (p − 1)k)
< 0, for every p ∈ (2, 1 + 1/k).

Hence, when p ∈ (2, 1+1/k), we have that σ(p, k) < σ(p, 0) = 1 for any k ∈ (0, 1),
while, σ(2, k) ≡ 1 for any k ∈ (0, 1). Thus, the left equality and the right equality in
(1.7) and (1.8) hold simultaneously if and only if p = 2 or k = 0.

If f is a K -quasiconformal mapping with a constant-modulus Beltrami coefficient,
then

Bp(D f ) = (1 + k − pk)(1 + k)p−1| fz |p,

and

(1 − (p − 1)k)(1 + k)p−1

√
1 − k2 p

√
J f

p = (1 + k − pk)(1 + k)p−1| fz |p.

Hence, the left equalities of (1.7) and (1.8) hold for all K -quasiconformal mappings
with a constant-modulus Beltrami coefficient when p ∈ [2, 1 + 1/k).

So the proof of Theorem 1.1 is complete. ��
Remark 3.1 Let μ = fz̄/ fz satisfy ||μ||∞ ≤ k, 0 ≤ k < 1. it is clear that

√
J f

p ≤ |D f |p.
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For every p ∈ [2, 1 + 1/k), we also have

(1−(p−1)k)(1+k)p−1√
1−k2 p

√
J f

p − 1+k−pk
1+k |D f |p

= (1+k−pk)|D f |p

1+k

((
1−|μ|
1+|μ|

)p/2 (
1+k
1−k

)p/2 − 1

)
≥ 0.

Hence, both the upper and the lower bounds of (1.7) are better than the corresponding
ones of (1.6).

4 Explicit estimates of Burkholder’s integral

The upper and lower estimates of Burkholder’s integral in Theorem 1.1 depend on the
L p-integral of

√
J f . Next, combining Theorem D or Theorem E with Theorem 1.1,

we will give explicit estimates of the lower and upper bounds of Burkholder’s integral
for certain classes of K -quasiconformal mappings.

Theorem 4.1 If f is a K -quasiconformal mapping of � onto itself with the identity
boundary mapping, then for every p ∈ [2, 1 + 1/k),

(1 − (p − 1)k)(1 + k)p−1

√
1 − k2 p |�| ≤

∫∫

�

Bp(D f )dm ≤ |�|. (4.1)

Proof By Hölder’s inequality, we get

∫∫

�

√
J f

p
dxdy ≥

(∫∫
�

J f dxdy

�

)p/2

|�|. (4.2)

By Theorem 1.1 and the inequality (4.2), it follows from the assumption that f has
the identity boundary mapping that

∫∫

�

Bp(D f )dm ≥ (1 − (p − 1)k)(1 + k)p−1

√
1 − k2 p

(∫∫
�

J f dxdy

�

)p/2

|�|

= (1 − (p − 1)k)(1 + k)p−1

√
1 − k2 p |�|.

The right inequality of (4.1) has been proved at Theorem 1.3 in [4]. ��
Example 4.1 Let ε be a real and f (z) = zeiε ln(1/|z|) a spiral mapping of the unit disk
D onto itself. Then for every Lebesgue measurable subset � ⊂ D, the left equality of
(4.1) holds.
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Proof By a direct calculation, it follows that

fz = (1 − iε/2)eiε ln(1/|z|), fz̄ = −i(ε/2)(z/z̄)eiε ln(1/|z|), |μ| = k = |ε|√
4 + ε2

.

Hence,

∫∫

�

Bp(D f )dm =
∫∫

�

⎛

⎝

√

1 + ε2

4
− (p − 1)

|ε|
2

⎞

⎠

⎛

⎝

√

1 + ε2

4
+ |ε|

2

⎞

⎠

p−1

dm

= (1 − (p − 1)k)(1 + k)p−1
√

1 + ε2

4

p
|�|.

By the relation
√

1 − k2 = 2√
4+ε2 , we obtain

∫∫

�

Bp(D f )dm = (1 − (p − 1)k)(1 + k)p−1

√
1 − k2 p |�|.

The proof of Example 4.1 is complete. ��
Remark 4.1 Example 4.1 shows that the lower bound in Theorem 4.1 is sharp. The
upper bound in Theorem 4.1 can be reached by a class of expanding piecewise radial
mappings (see Sect. 5 in [4] for its proof).

Theorem 4.2 If f : C → C is a principle solution of the Beltrami equation fz̄ =
μ f χD fz with ||μ f χD||∞ ≤ k < 1 and the normalization

f (z) = z + b1
1

z
+ b2

1

z2 + · · · , z ∈ C\D̄,

then for every p ∈ [2, 1 + 1/k), there holds

(1 − (p − 1)k)(1 + k)p−1

√
1 − k2 p

(

1 −
∞∑

n=1

n|bn|2
)p/2

π ≤
∫∫

D

Bp(D f )dm ≤ π. (4.3)

Proof By Hölder’s inequality, we get

∫∫

D

√
J f

p
dxdy ≥

(∫∫
�

J f dxdy

D

)p/2

|D|. (4.4)

Hence, combing the left inequality of (1.8) with (4.4), we obtain

∫∫

D

Bp(D f )dm ≥ (1 − (p − 1)k)(1 + k)p−1

√
1 − k2 p

(∫∫
D

J f dxdy

D

)p/2

|D|.
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By the assumption that f is a principal solution with the normalization

f (z) = z + b1
1

z
+ b2

1

z2 + · · · , z ∈ C\D̄,

we obtain from Lemma A that

∫∫

D

Bp(D f )dm ≥ (1 − (p − 1)k)(1 + k)p−1

√
1 − k2 p

(∫∫
D

J f dxdy

π

)p/2

π

= (1 − (p − 1)k)(1 + k)p−1

√
1 − k2 p

(

1 −
∞∑

n=1

n|bn|2
)p/2

π.

A proof of the right inequality of (4.3) is given by Theorem 3.5 in [4].

Example 4.2 Let μ = kχD, 0 ≤ k < 1. Then the principal solution f of μ takes the
left equality of (4.3) in Theorem 4.2.

Proof Using Lemma B and Lemma C, we can express the principal solution with the
Beltrami coefficient kχD as

f (z) =
{

z + kz̄, |z| ≤ 1,

z + k 1
z , |z| > 1.

Hence, by direct verification, there holds

∫∫

D

Bp(D f )dm = (1 − (p − 1)k)(1 + k)p−1π,

and

(1 − (p − 1)k)(1 + k)p−1

√
1 − k2 p

(

1 −
∞∑

n=1

n|bn|2
)p/2

π = (1 − (p − 1)k)(1 + k)p−1π.

The claim of Example 4.2 follows. ��
Remark 4.2 Example 4.2 shows that the lower bound of Burkholder’s integral among
the class of principal solutions is sharp. Sharp examples for the upper bound of Burk-
holder’s integral among the class of principal solutions are given by the class of
expanding piecewise radial mappings (see Sect. 5 in [4] for its proof).

5 Upper bounds of the L p-integrals of
√

J f and |D f |

As an application of Theorem 1.1, we next give an upper bound of the L p-integrals
of
√

J f and |D f |.

123



K -quasiconformal mappings and its applications

Theorem 5.1 If f is a K -quasiconformal mapping of � onto itself with the identity
boundary mapping, or a principal solution with a Beltrami equation

fz̄ = μ fz, |μ| ≤ kχD, 0 < k < 1,

then for every p ∈ [2, 1 + 1/k),

∫∫

�

√
J f

p
dxdy ≤

√
1 − k2 p

(1 − (p − 1)k)(1 + k)p−1 |�|, (5.1)

and the estimate is sharp.

Proof By Theorem 1.1, for every p ∈ [2, 1 + 1/k), we may write

∫∫

�

√
J f

p
dxdy ≤

√
1 − k2 p

(1 − (p − 1)k)(1 + k)p−1

∫∫

�

Bp(D f )dm.

By Theorem D, or alternatively, Theorem E, we have

∫∫

�

√
J f

p
dxdy ≤

√
1 − k2 p

(1 − (p − 1)k)(1 + k)p−1 |�|.

Let f = z|z|1/K−1. Then f is a K -quasiconformal mapping of the unit disk D onto
itself. Let z = reiθ , then

√
J f

p =
(

1

K

)p/2

r p(1/K−1).

Thus,

∫∫

�

√
J f

p
dxdy = 2π

1∫

0

(
1

K

)p/2

r p(1/K−1)+1dr =
√

1 − k2 p

(1 − (p − 1)k)(1 + k)p−1 π.

The proof of Theorem 5.1 is complete. ��
Theorem 5.1 implies the following corollary (see also Corollary 4.1 in [4]).

Corollary 5.1 If f is a K -quasiconformal mapping of � onto itself with the identity
boundary mapping, or a principal solution with a Beltrami equation

fz̄ = μ fz, |μ| ≤ kχD, 0 < k < 1,
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then for every p ∈ [2, 1 + 1/k),

∫∫

�

|D f |pdxdy ≤ 1 + k

1 − (p − 1)k
|�|. (5.2)

The estimate is sharp.

Proof By the equality

√
J f

p = (| fz | + | fz̄ |)p
( | fz | − | fz̄ |

| fz | + | fz̄ |
) p

2

,

we get from (5.1) that

(
1 − k

1 + k

) p
2
∫∫

�

|D f |pdxdy ≤
∫∫

�

√
J f

p
dxdy ≤

√
1 − k2 p

(1 − (p − 1)k)(1 + k)p−1 |�|.

Hence,

∫∫

�

|D f |pdxdy ≤
(

1 + k

1 − k

) p
2
∫∫

�

√
J f

p
dxdy ≤ 1 + k

1 − (p − 1)k
|�|. (5.3)

The claim of Corollary 5.1 follows. ��

6 Auxiliary examples

In this section, we will use Beurling-Ahlfors operator and Cauchy’s operator to give
some concrete examples that fullfill the assumptions of Theorem 4.2 and Theorem 4.1,
respectively.

Example 6.1 Let μ = k z̄n

zn χD with 0 ≤ k < 1 and n ∈ N
+, and let f : C → C be the

principal solution of the Beltrami equation fz̄ = μ fz . Then we have

∫∫

D

Bp(D f )dm ≥ (1 + k − pk)(1 + k)p−1

√
1 − k2

np
n+1

π

for any p ∈ [2, 1 + 1/k), where the equality takes if p = 2 + 2/n.

Proof Set

Tl = TμχDTμχD . . . TμχD︸ ︷︷ ︸
l

, l ∈ N
+.
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Set T0 = I d. By Lemma C, it follows from induction that

CμχDTl−1 =

⎧
⎪⎨

⎪⎩

(−1)l−1 n(2n+1)(3n+2)...((l−1)n+(l−2))

l!(n+1)l

(
k( z̄

z )
n+1
)l

z, |z| ≤ 1,

(−1)l−1 n(2n+1)(3n+2)...((l−1)n+(l−2))

l!(n+1)l

(
k( 1

z2 )n+1
)l

z, |z| > 1.

After calculating the sum of the series

z +
∞∑

l=1

CμχDTl−1,

we obtain that the principal solution f of the Beltrami equation fz̄ = k( z̄
z )

nχD fz can
be expressed explicitly as

f (z) =
{

z(1 + k( z̄
z )

n+1)1/(n+1), |z| ≤ 1,

z(1 + k( 1
z2 )n+1)1/(n+1), |z| > 1.

Moreover, when |z| < 1,

fz = 1

(1 + k( z̄
z )

n+1)
n

n+1
, fz̄ = k

z̄n

zn(1 + k( z̄
z ))

n+1)
n

n+1
.

From the above two equalities it follows

∫∫

D

Bp(D f )dm = (1 + k)p−1(1 − (p − 1)k)

1∫

0

⎡

⎣
2π∫

0

1

|1 + k( z̄
z )

n+1| np
n+1

dθ

⎤

⎦ rdr.

Using Hölder’s inequality and the identity

1

2π

2π∫

0

1

1 + 2k cos θ + k2 dθ = 1

1 − k2 ,

we have

∫∫

D

Bp(D f )dm ≥ (1 + k)p−1(1 − (p − 1)k)

1∫

0

2π

(
1√

1 − k2

) np
n+1

rdr

= (1 + k − pk)(1 + k)p−1

√
1 − k2

np
n+1

π,

and the equality holds if p = 2 + 2
n . ��

Example 6.2 Let f (z) = z + k z̄n+1

n+1 , 0 ≤ k < 1, and n is a nonnegative integer. Then
f is a K -quasiconformal mapping of the unit disk D into C and satisfies
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(1 − (p − 1)k)(1 + k)p−1
√

1 − k2

n+1

p

√
1 − k2 p π

≤
∫∫

D

Bp(D f )dm ≤ π, for 2 ≤ p <
1 + k

k
.

Moreover, the equality of the left inequality holds when n = 0 and p = 2, while the
equality of the right inequality holds when k = 0.

Proof Assume that f (z) = z + k z̄n+1

n+1 , 0 ≤ k < 1. Then f can be extended to a
principal solution g with Beltrami coefficient μ = kz̄n by the formula

g(z) =
{

f (z), |z| ≤ 1,

z + k
(n+1)zn+1 , |z| > 1.

Hence, from Theorem 4.1 we have

(1 − (p − 1)k)(1 + k)p−1
√

1 − k2

n+1

p

√
1 − k2 p π

≤
∫∫

D

Bp(D f )dm ≤ π, for 2 ≤ p <
1 + k

k
,

where the left equality holds when n = 0. ��
Example 6.3 Let f (z) = z|z|K−1. Then f is a K -quasiconformal mapping of the unit
disk D onto itself and satisfies

∫∫

D

Bp(D f )dm = (1 − (p − 1)k)(1 + k)p−1

(1 + kp − k)(1 − k)p−1 π.

Proof There follows

| fz | = K + 1

2
|z|K−1, | fz̄ | = K − 1

2
|z|K−1.

Hence,

∫∫

D

Bp(D f )dm = 2π
(1 − (p − 1)k)(1 + k)p−1

(1 − k)p

1∫

0

r
2kp
1−k +1dr

= (1 − (p − 1)k)(1 + k)p−1

(1 − k)p−1(1 + kp − k)
π.

��
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Remark 6.1 In order to compare the lower bounds of Burkholder’s integral, we set

A = (1 + k − pk)(1 + k)p−1π, Bn = (1+k−pk)(1+k)p−1

√
1−k2

np
n+1

π,

B ′
n = (1−(p−1)k)(1+k)p−1

√
1− k2

n+1

p

√
1−k2 p π, C = (1−(p−1)k)(1+k)p−1√

1−k2 p π,

D = (1−(p−1)k)(1+k)p−1

(1+kp−k)(1−k)p−1 π.

Then for p ∈ (2, 1+k
k ) and 0 < k < 1 we obtain

A ≤ Bn ≤ C, and limn→∞ Bn = C;
A ≤ B ′

n ≤ C, and limn→∞ B ′
n = C;

B0 = B ′
0 = A, and C < D < π.

The above relations show that for K -quasiconformal mappings with the identity map-
ping, their lower bounds of Burkholder’s integral may vary from C to π , while, for
principal solutions with given Beltrami coefficients , their lower bounds of Burk-
holder’s integral may vary from A to C .
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