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Numerical solutions of partial differential equations are traditional topics that have been
studied by many researchers. During the last decade, support vector machine (SVM) has
been widely used for approximation problems. The contribution of this paper is two folds.
One is to combine the reproducing kernel-SVM method with the Tikhonov regularization
method, called the SVM-Tik methods, in which the kernels Kk and Kr

k (see below) are newly
developed. In the paper they are respectively phrased as the SVM-Tik-Kk and SVM-Tik-Kr

k

methods. The second contribution is to use the two models, SVM-Tik-Kk and SVM-Tik-Kr
k ,

to solve the Dirichlet problem. The methods are meshless. They produce sparse
representations in the linear combination form of specific functions (the Kk and Kr

k

kernels). The generalization bound result in learning theory is used to give an estimation
of the approximation errors. With the illustrative examples the sparseness and robustness
properties, as well as the effectiveness of the methods are presented. The proposed
methods are compared with currently the most commonly used finite difference method
(FDM) showing promising results.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Many methods have been developed so far for solving partial differential equations. Some methods such as the finite dif-
ference method (FDM) [15] and the finite element method (FEM) [3] require the definition of a mesh (domain discretization)
where the functions are approximated locally. The construction of a mesh in two or more dimensions is a non-trivial
problem. A major disadvantage of those methods, however, is their mesh-dependent characteristics which normally require
enormous computational effort and induce numerical instability when large number of grids or elements are required.

Another approach for solving partial differential equations is to use artificial neural networks (ANNs) [4–6]. The approach
using ANNs to solve partial differential equations relies on the functional approximation capability of feedforward neural
networks and results in construction of a solution written in a differentiable and closed analytic form. This form employs
feedforward neural network as the basic approximation element, whose parameters (weights and biases) are adjusted to
minimize an appropriate error function. The solution in terms of artificial neural networks posses several attractive features.
One of the features is that the solution is infinitely differentiable and closed analytic form which can be easily used in any
subsequent calculation. Another is that they posses smaller number of parameters compared to other solution technique
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[4,5]. However, ANNs suffer from their theoretical weakness. For example, back-propagation may not converge to a optimal
global solution.

SVM, developed by Vapnik and his coworkers in 1995 [16], is based on statistical learning theory which seeks to minimize
an upper bound of the generalization error consisting of the sum of the training error and a confidence interval. This principle
is different from the commonly used empirical risk minimization (ERM) principle which only minimizes the training error.
Based on this, SVMs usually achieve higher generalization performance than ANNs which implement ERM principle. As con-
sequence, SVMs can be used wherever that ANNs can, and usually achieve better results. Another key characteristic of SVM is
that training SVM is equivalent to solving a linearly constrained quadratic programming problem so that the solution of SVM
is unique and global, unlike ANNs’ training which requires nonlinear optimization with the possibility of getting stuck into
local minima.

In this paper, we combine SVM with the Tikhonov regularization method which is called the SVM-Tik methods to solve
Dirichlet problem numerically. Two kernels Kk and Kr

k which are newly developed will be used in our algorithms, the cor-
responding algorithms are phrased as SVM-Tik-Kk and SVM-Tik-Kr

k algorithms. The solutions are sparse representations in
the linear combination form of specific functions (the Kk and Kr

k kernels).
Experiments are done for testing the proposed approach. It shows good performance in noise-free data case and in Gauss-

ian noise-corrupted data case. The comparisons are between three types of algorithms in Example 1. (1) The proposed SVM-
Tik with Kk kernel algorithm (SVM-Tik-Kk). (2) The proposed SVM-Tik with Kr

k kernel algorithm (SVM-Tik-Kr
k ). (3) The FDM.

Although the FDM can achieve better performance than the two SVM based algorithms for noise-free data, the two SVM
based algorithms behave better than the FDM in presence of Gaussian noise. With the two SVM based algorithms, sparse
representations in linear combination form of specific functions (the Kk and Kr

k kernel) are obtained. On the other hand,
in the FDM case, the solution is not expressed in any closed analytical form as in our case, additional interpolation compu-
tations are required in order to find the value of the solution at particular points in the domain. As for comparison between
the two SVM based algorithms, SVM-Tik-Kk performs better than SVM-Tik-Kr

k .

2. Preliminary

We shall propose a new approach for constructing approximate solutions for the Dirichlet problem
Du ¼ 0; in D;

u ¼ g; on @D;

�
ð2:1Þ
on an appropriate domain D in Rn with boundary @D, where Rn is the Euclidean space.
In our case, we shall first consider this problem in the Sobolev space HsðRnÞ with n P 1; s P 2; s > n=2 from the view-

point of numerical analysis. In the sequel we abbreviate HsðRnÞ as Hs. The Sobolev Hilbert space Hs comprises functions F on
Rn with the norm
kFk2
Hs ¼

Z
Rn
jF̂ðnÞj2ð1þ jnj2Þ

s
dn;
which admits a reproducing kernel
Ksðx; yÞ ¼
1
ð2pÞn

Z
Rn

1

ð1þ jnj2Þ
s eiðx�yÞ�ndn; ð2:2Þ
where F̂ is the Fourier transform of F,
F̂ðnÞ ¼ 1

ð2pÞn=2

Z
Rn

e�in�xFðxÞdx
(See [7]).
The Dirichlet principle asserts that the solution of the Eq. (2.1) is the extremal function minimizing the Dirichlet integral

under the boundary condition FðxÞ ¼ gðxÞ on @D.
We want to obtain some good representations of the extremal functions when they exist.
In [7] by applying the theory of Tikhonov regularization and the reproducing kernel based methods of Saitoh et al. in

[2,8,10–13] the authors first formulated the problem as follows:
For a fixed k > 0 and a given g 2 L2ð@DÞ find a solution for
inf
F2Hs

kkFk2
Hs þ kDFk2

L2ðRnÞ þ kF � gk2
L2ð@DÞ

n o
: ð2:3Þ
The authors are considering the approximation by the Sobolev functions over the whole space.
The strategy is to first represent for each k > 0 the extremal function F ¼ F�s;k;gðxÞ in (2.3); and, secondly, to obtain the solu-

tion u of the problem (2.1) by taking the limit k! 0 on the corresponding extremal functions [7]. The theory of Tikhonov
regularization guarantees that such limit exists.
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Theorem 2.1 [10]. Let Hk be a Hilbert space admitting the reproducing kernel Kðp; qÞ on a set E. Let L : HK ! H be a bounded
linear operator on HK into H. For k > 0 introduce the inner product in HK and call it HKk

as
hf 1; f 2iHKk
¼ khf 1; f 2iHK

þ hLf1; Lf2iH;
then HKk
is a Hilbert space with the reproducing kernel Kkðp; qÞ on E satisfying the equation
Kð�; qÞ ¼ ðkI þ L�LÞKkð�; qÞ;
where L� is the adjoint of L : HK ! H.
According to Theorem 2.1, the reproducing kernel Hilbert space (RKHS) HKk

that we will be working on has the norm
kkFk2
Hs þ kDFk2

L2ðRnÞ

� �1
2
; ð2:4Þ
that is a modification of the classical Sobolev space. The reproducing kernel of the space is
Kkðx; yÞ ¼
1
ð2pÞn

Z
Rn

eip�ðx�yÞ

kðjpj2 þ 1Þ
s
þ jpj4

dp; ð2:5Þ
([8]).
The extremal function of (2.3) is represented by g as
F�s;k;gðxÞ ¼ ðg; LKs;k;Dð�; xÞÞL2ð@DÞ; ð2:6Þ
(see, [2,8,7]), where Ks;k;Dð�; xÞ is determined through the relation
Kkðx; yÞ ¼ ðkI þ L�LÞKs;k;Dðx; yÞ: ð2:7Þ
However, as stated in [7], the Eq. (2.7) cannot be solved effectively. The first problem is that we are unable to apply the
Neumann expansion to the equation due to the requirement kL�Lk < k. If k! 0, then this requirement cannot be met. The sec-
ond reason is that when the operator L is compact, in order to solve the Eq. (2.7) by applying the spectral theory, one has to
look for singular values and singular functions of the operator L�L. But, for a general domain D, the singular values and singular
functions are abstract in a sense. Therefore, in [7], the authors propose a new approach. They modify (2.3) as follows:

For any fixed points fxjgN
j¼1 of the boundary @D, any given values fAjgN

j¼1 and any fixed fkjgN
j¼1; kj > 0, find
inf
F2Hs

kkFk2
Hs þ kDFk2

L2ðRnÞ þ
XN

j¼1

kjjFðxjÞ � Ajj2
( )

: ð2:8Þ
Then the problem (2.8) is solved through combining the generalized inverses, Tikhonov’s regularization and the theory of
reproducing kernels. Their algorithm requires to compute N reproducing kernels through iterations. The effectiveness of
their algorithm is heavily dependent of the power of the computer in use.

The contribution of this work is to adapt the Tikhonov regularization principle into the SVM formulation, then we solve
the newly formulated problem in reproducing kernel spaces following the recent work of Saitoh.

The algorithm used in [7] can fit into a more general frame work. Consider the following functional in learning theory:
For any fixed Cj > 0, find
min
F2Hs

kkFk2
Hs þ kDFk2

L2ðRnÞ þ
XN

j¼1

CjVðFðxjÞ;AjÞ
( )

; ð2:9Þ
for F in Hs, where Vð�; �Þ is a so-called loss function. The functional (2.8) can be regarded as the particular case
VðFðxjÞ;AjÞ ¼ jFðxjÞ � Ajj2. Our philosophy and treatment are suggested by learning theory. We, in particular, take
VðFðxjÞ;AjÞ ¼ jFðxjÞ � Ajje ¼maxfjFðxjÞ � Ajj � e;0g ð2:10Þ
which is called Vapnik’s e-insensitive loss function [16]. Such loss functions are often adopted in learning theory and solved via
SVMs. Different loss functions can derive quite different types of solutions. The e-insensitive loss function can provide sparse
solutions and deal with noise-corrupted data. Such a procedure produces sparse solutions, which can dramatically reduce
the computational burden of the solution in its application stage.

The Gaussian kernel is widely used with good performance. We will consider the solution in the RKHS induced by Gauss-
ian kernel, called Gaussian-RKHS. The terminology Gaussian-RKHS denoted by HKr , is to be compared with the Sobolev RKHS
formulation given in (2.9) that can be called Sobolev-RKHS. In some literature [9], the Gaussian-RKHS is regarded as an infi-
nite-order Sobolev space. In the Gaussian-RKHS setting, we are to find the solution for
min
F2HKr

kkFk2
HKr þ kDFk2

L2ðRnÞ þ
XN

j¼1

CjVðFðxjÞ;AjÞ
( )

; ð2:11Þ
in HKr , and finally, by letting k! 0, to get solution u for (2.1).
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3. SVM based approach

In this section, we will use SVM based methods to solve the problem. We will focus on developing the algorithms that find
solutions in HsðRnÞ, the extension of the algorithms to Gaussian RKHS HKr ðRnÞ being straightforward.

3.1. Solution in HsðRnÞ

For any fixed points fxjgN
j¼1 on the boundary @D and for any given values fAjgN

j¼1, for certain constants Cj > 0, we want to
find the solution of
min
F2Hs

kkFk2
Hs þ kDFk2

L2ðRnÞ þ
XN

j¼1

CjjFðxjÞ � Ajje

( )
; ð3:13Þ
where jFðxjÞ � Ajje is defined in (2.10). By recalling the definition of the Hilbert space HKk
, with a multiple on the constants Cj,

the above is equivalent to solving
min
F2Hs

1
2
kFk2

HKk
þ
XN

j¼1

CjjFðxjÞ � Ajje

( )
: ð3:14Þ
We like the factor 1
2 there as it induces a better looking solution in the end.

Remark 3.1. The form (3.14) makes it easy to use the SVM method. Although SVM usually deals with identical Cj, the
algorithm, allows different values of Cj to be used to more general cases.

To deal with the function j � je, by introducing some new variables, called slack variables, considering that
FðxjÞ ¼ hFð�Þ;Kkð�; xjÞi, we replace the problem (3.14) by the following equivalent one (by equivalent’’ we mean that they
have the same solutions, see [16]):
min
F2Hs ;n;n�

1
2
kFk2

HKk
þ
XN

j¼1

Cjðnj þ n�j Þ
( )

; ð3:15Þ
where
nj ¼maxfhFð�Þ;Kkð�; xjÞi � Aj � e;0g; and n�j ¼maxfAj � hFð�Þ;Kkð�; xjÞi � e;0g;
and
nð�Þ ¼ ½nð�Þ1 ; . . . ; nð�ÞN � ðn
ð�Þ
j stands for nj and n�j Þ:
It is easy to verify that
nj þ n�j ¼ maxfjhFð�Þ;Kkð�; xjÞi � Ajj � e;0g ¼ jFðxjÞ � Ajje;
and
hFð�Þ;Kkð�; xjÞi � Aj 6 eþ nj; j ¼ 1; . . . ;N;

Aj � hFð�Þ;Kkð�; xjÞi 6 eþ n�j ; j ¼ 1; . . . ;N;

nj; n
�
j P 0; ð3:16Þ
for j ¼ 1; . . . ;N.
This problem can be solved through the dualization method utilizing Lagrange multipliers [16].
First, we introduce the constraints into the primal functional by means of Lagrange multipliers, obtaining the following

Lagrange function:
L¼ 1
2
kFk2

HKk
þ
XN

j¼1

Cjðnj þ n�j Þ þ
XN

j¼1

aj hFð�Þ;Kkð�;xjÞi �Aj � e� nj

� �
þ
XN

j¼1

a�j �hFð�Þ;Kkð�;xjÞi þAj � e� n�j

h i
�
XN

j¼1

ðbjnj þ b�j n
�
j Þ:

ð3:17Þ
It can be seen that a Lagrange multiplier (or dual variable) has been introduced for each constraint of the primal problem.

Lagrange multipliers are constrained to be að�Þj ; bð�Þj P 0.
Denote að�Þ as ½að�Þ1 ; . . . ;að�ÞN � and bð�Þ as ½bð�Þ1 ; . . . ; bð�ÞN �. The primal problem (3.15) is equivalent to minF;n;n�maxað�Þ ;bð�ÞL. Its dual

problem is maxað�Þ ;bð�Þ minF;n;n�L. According to [1], if the primal problem is convex, a point is optimal of primal problem and
dual problem if and only if it satisfies the Karush–Kuhn–Tucker (KKT) conditions.
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The problem (3.15) is convex. The corresponding KKT conditions consist of the equations:
@FL ¼ F �
XN

j¼1

ða�j � ajÞKkðxjÞ ¼ 0; ð3:18Þ

@
nð�Þ

j
L ¼ Cj � að�Þj � bð�Þj ¼ 0; ð3:19Þ
and
aj½hFð�Þ;Kkð�; xjÞi � Aj � e� nj� ¼ 0;

a�j ½�hFð�Þ;Kkð�; xjÞi þ Aj � e� n�j � ¼ 0;

bjnj ¼ 0;

b�j n
�
j ¼ 0;
for j ¼ 1; . . . ;N.
Under those conditions, the primal problem (3.15) can be solved through solving its dual problem:
max
a;a�

1
2

XN

i;j¼1

ða�i � aiÞða�j � ajÞKkðxi; xjÞ þ e
XN

j¼1

ða�j þ ajÞ �
XN

j¼1

Ajða�j � ajÞ;
subject to the constraints
0 6 a�j ;aj 6 Cj; j ¼ 1; . . . ;N:
The solution can be written as
FðxÞ ¼
XN

j¼1

ða�j � ajÞKkðxj; xÞ: ð3:20Þ
As in the usual SVM framework, by setting appropriate e > 0, we obtain that only a subset of the Lagrange multipliers will
be nonzero. This, therefore, leads to a sparse solution. The input data points xi for which ai or a�i are different from zero are
called support vectors. Hence, our solution can be written as
FðxÞ ¼
X
j2J

ða�j � ajÞKkðxj; xÞ; ð3:21Þ
where J is the index set of the support vectors with jJj 6 N.
By taking a small k, we will be able to obtain the approximate solution of the problem:
Du � 0;
and
uðxjÞ � Aj; j ¼ 1; . . . ;N:
Letting k tend to zero, we obtain, mathematically, the solution u of the problem:
Du ¼ 0 ð3:22Þ
and
uðxjÞ ¼ Aj j ¼ 1;2;3; . . . ;N; ð3:23Þ
for any finite points fxjgN
j¼1 and for any values fAjgN

j¼1.

Remark 3.2. The parameters Cj are adjustable in order to get better solutions for the problem. A number of methods were
proposed to set the parameter values, such as genetic algorithm (GA), particle swarm optimization (PSO), cross-validation. In
our algorithm, we will adopt genetic algorithm to set the parameter values.
3.2. Solution in Gaussian-RKHS

The Gaussian-RKHS, which is defined as [9]
HKrðRnÞ ¼ ff 2 L2ðRnÞ : kfk2
HKr ¼

R
Rn e

r2 jnj2
4 jf̂ ðnÞj2dn

ð2pÞnðr
ffiffiffiffi
p
p
Þn
<1g:
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The reproducing kernel is Gaussian kernel
Krðx; yÞ ¼ e�
kx�yk2

r2 ;
where x; y 2 Rn, and r > 0.
Our problem is formulated as follows.
For any fixed points fxjgN

j¼1 of the boundary @D, any given values fAjgN
j¼1 and any fixed fkjgN

j¼1; kj > 0, find
min
F2HKr

kkFk2
L2ðRnÞ þ kDFk2

L2ðRnÞ þ
XN

j¼1

CjjFðxjÞ � Ajje

( )
: ð3:24Þ
According to Theorem 2.1, the reproducing kernel of Hilbert space HKr
k

with the norm
kkFkHKr þ kDFk2
L2ðRnÞ

� �1
2 ð3:25Þ
is
Kr
k ðx; yÞ ¼ ðkI þ M�MÞ�1Krðx; yÞ ¼

Z
Rn

ð2pÞn=2r2e
�r2 jnj2

2 þinðxþyÞ

kþ jnj4
dn: ð3:26Þ
The next steps are the same as in the HsðRnÞ case.

4. Generalization ability analysis

In learning from a set of examples, the key property of a learning algorithm is generalization, namely the ability of an
algorithm to perform accurately on new examples after having trained on a set of training data. The training examples come
from some generally unknown probability distribution, while the learner has to extract from them something more general
that allows him to produce useful predictions in new cases. According to the result in [14], we can obtain a generalization
bound for our algorithm.

A generalization result in [14] is as follows. We fix a target accuracy h > 0 and 0 < c 6 h. Consider a real-valued (hypoth-
esis) function class F with domain X. For a function F 2 F and a training point ðxi;AiÞ 2 X � R, we define
nððxi;AiÞ; F; h; cÞ ¼ ni ¼maxf0; jFðxiÞ � Aij � ðh� cÞg:
This quantity is the amount by which jFðxiÞ � Aij exceeds h� c on the point ðxi;AiÞ or 0 if g is within h� c of the targeted
value. This is, in fact, the e insensitive loss function given by (2.10) with e ¼ h� c.

For a training set S ¼ ððx1; y1Þ; . . . ; ðxl; ylÞÞ, define the vector valued
n ¼ nðS; F; h; cÞ ¼ ðn1; . . . ; nlÞ:
Note that ni > c means the error of g on ðxi;AiÞ is larger than h.

Proposition 4.1. [14] Let F be the set of real-valued linear functionals on a real-Hilbert space X that, in accordance with the Riesz
representation theorem, is identical with the space X itself. Fix h 2 R; h > 0, and a probability distribution P on the space X � R. If
we restrict the inputs to the ball Bð0;RÞ ¼ fx 2 X : kxk 6 Rg, then there is a constant c such that with probability at least 1� d over
randomly drawn training sets S of size l and for all c;0 < c 6 h, the probability that a function F 2 F has error larger than h on a
randomly chosen input is bounded by
�ðl; d; cÞ ¼ c
l
kFk2

2R2 þ knk2
1 logð1=cÞ

c2 log2lþ log
1
d

 !
: ð4:27Þ
In other words, with the notation
errPðF; hÞ ¼ P fðx;AÞ 2 X � R : jFðxÞ � AjP hgð Þ;
there holds
Pl fS : errPðF; hÞÞ 6 �ðl; d; cÞð gÞP 1� d; ð4:28Þ
where Pl is the product probability induced by P over ðX � RÞl .
Our algorithms are equivalent to first map the fixed points fxjgN

j¼1 to the space HKk
(or space Hr

Kk
) by xj ! Kkðxj; �Þ (or

xj ! Kr
k ðxj; �Þ), then find solution in F (is fhF;Kkðx; �Þi : F 2 HKk

gorfhF;Kr
k ðx; �Þi : F 2 HKr

k
g). Therefore, based on Proposition

4.1, we can obtain the generalization ability of our algorithms, that is, the probability that the solution has error larger than
a fixed target accuracy h on a randomly chosen input is bounded by (4.27).
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5. Numerical experiments

In this section, we evaluate the performance of the two SVM based algorithms, SVM-Tik-Kk algorithm, SVM-Tik-Kr
k algo-

rithm, and they are compared with standard numerical method in Example 1. Specifically, the following algorithms are
considered:

(1) SVM-Tik-Kr
k .

(2) SVM-Tik-Kk.
(3) Five-point difference method.

5.1. Training and test data

In the following examples, we consider n ¼ 2 and s ¼ 2, we take N ¼ 80 or N ¼ 160 points on the boundary of a L-shaped
domain X with 0.025 span (80 points on the boundary) or 0.0125 span (160 points on the boundary) without noise and with
different signal-to-noise (SNR) Gaussian noise. The L-shaped domain is a subset of ½�0:25;0:25� � ½�0:25;0:25� with interior

corner at ð0;0Þ and gðx; yÞ ¼ xy in Example 1 and gðx; yÞ ¼ lnð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ 0:01Þ2 þ ðyþ 0:01Þ2

q
Þ in Example 2, where ðx; yÞ 2 @X.

Let u be the original function, f be our approximated function. Two measurements are used to estimate the performance

of our results. One is mean squared error (MSE) = 1
N

PN
i¼1ðuðpiÞ � f ðpiÞÞ

2, the other is squared correlation coefficient (SCC),
defined by
N
PN

i¼1f ðpiÞuðpiÞ �
PN

i¼1f ðpiÞ
PN

i¼1uðpiÞ
� �2

N
PN

i¼1uðpiÞ
2 � ð

PN
i¼1uðpiÞÞ

2� �
ðN
PN

i¼1f ðpiÞ
2 � ð

PN
i¼1f ðpiÞÞ

2
Þ
:

The following area is the L-shaped domain we consider.

For the five-point difference method, the grid is constructed based on the boundary points, the time and space interval are
equal to 0.0125 (160 points on the boundary) or 0.025 (80 points on the boundary). The performance of the five-point dif-
ference method is measured by approximated values of grid points.

5.2. Tuning the free parameters

Two free parameters have to be tuned in SVM algorithms, which are the insensitivity zone e and the penalty parameter C.
These free parameters need to be a priori fixed. In this paper, the optimal free parameters are searched using genetic
algorithm.

Example 1. Fig. 1 shows the performance of the five-point difference method, SVM-Tik-Kk and SVM-Tik-Kr
k given 160 noise-

free data on the boundary. Fig. 2 shows the performance of five-point difference method, SVM-Tik-Kk and SVM-Tik-Kr
k

algorithms in the presence of additive, Gaussian noise with SNR = 30. Tables 3 and 4 show the performance of the proposed
algorithms and five-point difference method, in the presence of additive, Gaussian noise, as a function of SNR. The five-point
difference method can achieve better performance than SVM-Tik-Kk and SVM-Tik-Kr

k for noise free case. However, with the
decrease of SNR, the five-point difference method is not as robust as SVM based algorithms to noise.
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Fig. 1. The exact graph of uðx; yÞ ¼ xy (top left). Given 160 noise-free points on the boundary. The approximated graph by five-point difference method (top
right). The approximated graph by SVM-Tik-Kk (left bottom) for k ¼ 10�5. The approximated graph by SVM-Tik-Kr

k (right bottom) for k ¼ 10�5.
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5.3. Number of support vectors

Sparseness in SVM-Tik-Kk and SVM-Tik-Kr
k have been studied as a function of both SNR and sample length (in the pres-

ence of Gaussian noise SNR = 20), as shown in Tables 1 and 2. The sparseness is defined as
sparseness ¼ number of support vectorsjJj
N

� 100%:
The SVM methods clearly tend to yield less sparse solutions (in average) with decreasing SNR and with increasing
samples.

5.4. Execution time

The execution time of the three algorithms has been studied as a function of SNR which is shown in Table 5. In order to
work out the kernels and appropriate parameters, the proposed methods require more computing time. However, as com-
pensation, we obtain differentiable closed forms for the approximation. The finite difference method is a discrete method
that can only obtain discrete data approximation.

Example 2. Tables 8 and 9 show the performance of the proposed algorithms, in the presence of additive, Gaussian noise, as
a function of SNR. We can see that SVM-Tik-Kk and SVM-Tik-Kr

k can achieve a good performance.
Sparseness in SVM based regression has been studied as a function of both SNR and sample length (in the presence of

Gaussian noise SNR = 20), as shown in Tables 6 and 7. The SVM methods clearly tend to yield less sparse solutions (in
average) with decreasing SNR and with increasing samples. The execution time of the two algorithms has been studied as a
function of SNR which is shown in Table 10. The computing time are reasonable to compute the kernels and appropriate
parameters.
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Fig. 2. The exact graph of uðx; yÞ ¼ xy (top left). Given 160 Gaussian noise (SNR = 30) corrupted points on the boundary. The approximated graph by five-
point difference method (top right). The approximated graph by SVM-Tik-Kk (left bottom) for k ¼ 10�5. The approximated graph by SVM-Tik-Kr

k (right
bottom) for k ¼ 10�5.

Table 1
Sparseness with SNR (Gaussian noise).

Method Noise

No noise (%) 40 dB (%) 30 dB (%) 20 dB (%)

SVM-Tik-Kk 6.88 1.87 3.75 23.13
SVM-Tik-Kr

k 6.25 2.5 21.88 33.38

Table 2
Sparseness with number of samples.

Method Number of samples

80 160

SVM-Tik-Kk 20% 23.13%
SVM-Tik-Kr

k 20.62% 25%

Table 3
MSE with SNR (Gaussian noise).

Method Noise

No noise 40 dB 30 dB 20 dB

SVM-Tik-Kk 2.1444e�007 2.1075e�006 1.6271e�005 1.8360e�004
SVM-Tik-Kr

k 3.4562e�005 4.2987e�005 3.3182e�005 8.5398e�004
Five-point difference method 7.0266e�034 5.3191e�006 3.6362e�005 4.0248e�004
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Table 4
SCC with SNR (Gaussian noise).

Method Noise

No noise 40 dB 30 dB 20 dB

SVM-Tik-Kk 0.9998 0.9983 0.9957 0.9348
SVM-Tik-Kr

k 0.9992 0.9994 0.9945 0.9934
Five-point difference method 1 0.9957 0.9578 0.5758

Table 5
Computation time (seconds) with SNR (Gaussian noise).

Method Noise

No noise 40 dB 30 dB 20 dB

SVM-Tik-Kk 35.6 53.4 56.8 83.4
SVM-Tik-Kr

k 29.7 58.4 65.3 86.8
Five-point difference method 0.58 0.51 0.54 0.53

Table 6
Sparseness with SNR (Gaussian noise).

Method Noise

No noise (%) 40 dB (%) 30 dB (%) 20 dB (%)

SVM-Tik-Kk 25 36.25 37.38 44.38
SVM-Tik-Kr

k 25 36.25 37.5 46.88

Table 7
Sparseness with number of samples.

Method Number of samples

80 160

SVM-Tik-Kk 21.88% 44.38%
SVM-Tik-Kr

k 25% 46.88%

Table 8
MSE with SNR (Gaussian noise).

Method Noise

No noise 40 dB 30 dB 20 dB

SVM-Tik-Kk 1.477e�004 1.584e�004 3.187e�004 3.706e�003
SVM-Tik-Kr

k 3.985e�004 2.349e�004 4.546e�004 5.721e�003

Table 9
SCC with SNR (Gaussian noise).

Method Noise

No noise 40 dB 30 dB 20 dB

SVM-Tik-Kk 0.9971 0.9968 0.9936 0.9906
SVM-Tik-Kr

k 0.9937 0.9936 0.9923 0.9902

Table 10
Computation time (seconds) with SNR (Gaussian noise).

Method Noise

No noise 40 dB 30 dB 20 dB

SVM-Tik-Kk 21.73 56.34 109.88 115.24
SVM-Tik-Kr

k 34.76 55.87 112.67 113.89
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6. Conclusion

A new approach based on the SVM framework and the Tikhonov regularization numerically solving the Dirichlet problem
is presented. With the proposed approach, in each Dirichlet problem, sparse representations in linear combinations of spe-
cific functions are obtained to approximate the desired precise solution. The solutions of the proposed algorithms are robust
to noise. The proposed algorithms are compared with the existing popular algorithm to solve Dirichlet problem. The pro-
posed approach of combining SVM and Tikhonov regularization gives promising results.

The proposed approach can be easily adopted to deal with domains in higher dimensions (three or more). As dimension
increases, the number of training points becomes large. This turns to be crucial for the methods being based on particular
functions on local such as splines around each grid point. In such case the required number of parameters becomes exces-
sively large and, therefore, both memory and computation time become extremely large. In the case of the SVM based
method, the number of training parameters remains almost the same as the dimension increases. The other great advantage
is that proposed approach can be used to irregular domains.

Acknowledgements

The work was partially supported by Research Grant of University of Macau MYRG116(Y1-L3)-FST13-QT, Macao Science
and Technology Fund FDCT/098/2012/A3. The authors would like to thank sincerely Prof. Saburou Saitoh and Dr. Guanghui
Hu for their precious helps. The authors thank the reviewers for their comments, which helped improve the paper
significantly.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/
j.amc.2014.07.089.

References

[1] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.
[2] M. Asaduzzaman, T. Matsuura, S. Saitoh, Constructions of approximate solutions for linear differential equations by reproducing kernels and inverse

problems, in: 4th ISAAC Toronto Congress Proceedings, World Scientific, 2005, pp. 335–343.
[3] T.J.R. Hughes, The Finite Element Method, Prentice Hall, New Jersey, 1987.
[4] I.E. Lagaris, A. Likas, D.I. Fotiadis, Artificial neural networks for solving ordinary and partial differential equations, IEEE Trans. Neural Networks 9 (1998)

987–1000.
[5] I.E. Lagaris, A. Likas, D.I. Fotiadis, Neural-network methods for boundary value problems with irregular boundaries, IEEE Trans. Neural Networks 11

(2000) 1041–1049.
[6] J.Y. Li, S.W. Luo, Y.J. Qi, Y.P. Huang, Numerical solution of elliptic partial differential equation using radial basis function neural networks, Neural

Networks 16 (2003) 729–734.
[7] T. Matsuura, S. Saitoh, Dirichlet principle using computers, Appl. Anal. 84 (2005) 989–1003.
[8] T. Matsuura, S. Saitoh, D.D. Trong, Numerical solutions of the Poisson equation, Appl. Anal. 83 (2004) 1037–1051.
[9] Ha Quang Minh, Some properties of gaussian reproducing kernel Hilbert spaces and their implications for function approximation and learning theory,

Constr. Approx. 32 (2) (2010) 307–338.
[10] S. Saitoh, Integral transforms, reproducing Kernels and their applications, in: Chapman & Hall/CRC Research Notes in Mathematics Series 369, CRC

Press, 1997.
[11] S. Saitoh, Approximate real inversion formulas of the Gaussian convolution, Appl. Anal. 83 (2004) 727–733.
[12] S. Saitoh, Applications of reproducing kernels to best approximations, Tikhonov regularizations and inverse problems, in: 4th ISAAC Toronto Congress

Proceedings, World Scientific, 2005, pp. 439–445.
[13] S. Saitoh, Best approximation, Tikhonov regularization and reproducing kernels, Kodai Math. J. 28 (2005) 359–367.
[14] J. Shawe-Taylor, N. Cristianini, On the Generalization of Soft Margin Algorithms, IEEE Trans. Inf. Theory 48 (2002) 2721–2735.
[15] G.D. Smith, Numerical Solution of Partial Differential Equations: Finite Difference Methods, Clarendon Press, Oxford, 1978.
[16] V. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag, New York, 1995.

http://dx.doi.org/10.1016/j.amc.2014.07.089
http://dx.doi.org/10.1016/j.amc.2014.07.089
http://refhub.elsevier.com/S0096-3003(14)01056-X/h0005
http://refhub.elsevier.com/S0096-3003(14)01056-X/h0005
http://refhub.elsevier.com/S0096-3003(14)01056-X/h0010
http://refhub.elsevier.com/S0096-3003(14)01056-X/h0010
http://refhub.elsevier.com/S0096-3003(14)01056-X/h0010
http://refhub.elsevier.com/S0096-3003(14)01056-X/h0015
http://refhub.elsevier.com/S0096-3003(14)01056-X/h0015
http://refhub.elsevier.com/S0096-3003(14)01056-X/h0020
http://refhub.elsevier.com/S0096-3003(14)01056-X/h0020
http://refhub.elsevier.com/S0096-3003(14)01056-X/h0025
http://refhub.elsevier.com/S0096-3003(14)01056-X/h0025
http://refhub.elsevier.com/S0096-3003(14)01056-X/h0030
http://refhub.elsevier.com/S0096-3003(14)01056-X/h0030
http://refhub.elsevier.com/S0096-3003(14)01056-X/h0035
http://refhub.elsevier.com/S0096-3003(14)01056-X/h0040
http://refhub.elsevier.com/S0096-3003(14)01056-X/h0045
http://refhub.elsevier.com/S0096-3003(14)01056-X/h0045
http://refhub.elsevier.com/S0096-3003(14)01056-X/h0050
http://refhub.elsevier.com/S0096-3003(14)01056-X/h0050
http://refhub.elsevier.com/S0096-3003(14)01056-X/h0050
http://refhub.elsevier.com/S0096-3003(14)01056-X/h0055
http://refhub.elsevier.com/S0096-3003(14)01056-X/h0060
http://refhub.elsevier.com/S0096-3003(14)01056-X/h0060
http://refhub.elsevier.com/S0096-3003(14)01056-X/h0060
http://refhub.elsevier.com/S0096-3003(14)01056-X/h0065
http://refhub.elsevier.com/S0096-3003(14)01056-X/h0070
http://refhub.elsevier.com/S0096-3003(14)01056-X/h0075
http://refhub.elsevier.com/S0096-3003(14)01056-X/h0075
http://refhub.elsevier.com/S0096-3003(14)01056-X/h0080
http://refhub.elsevier.com/S0096-3003(14)01056-X/h0080

	Support vector machine adapted Tikhonov regularization method to solve Dirichlet problem
	1 Introduction
	2 Preliminary
	3 SVM based approach
	3.1 Solution in ? 
	3.2 Solution in Gaussian-RKHS

	4 Generalization ability analysis
	5 Numerical experiments
	5.1 Training and test data
	5.2 Tuning the free parameters
	5.3 Number of support vectors
	5.4 Execution time

	6 Conclusion
	Acknowledgements
	Appendix A Supplementary data
	References


