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Abstract

In this note we will give a survey on adaptive Fourier decompositions in

one- and multi-dimensions. The theoretical formulations of three different

types of adaptive Fourier decompositions in one-dimension, viz., Core

AFD, Cyclic AFD in conjunction with best rational approximation and

Unwending AFD are provided.
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1 Introduction

In the one-dimensional cases by functional decomposition of the Fourier type we
refer to approximations by the rational orthogonal systems, or alternatively, the
Takenaka-Malmquist (TM) systems ([21]). The real-line case and the unit circle
case are analogous. In the latter, a TM system is a collection of consecutively
parameterized rational functions

Bk(z) =

√

1− |ak|2
1− akz

k−1
∏

l=1

z − al
1− alz

, k = 1, 2, ...,

where a1, ..., ak, ... are all in the open unit disc. Such systems have been well
studied. In particular, when all the ak’s are zero, the system {Bk} reduces to
a half of the Fourier system, viz., {zk−1}∞k=1. For general parameters ak’s the
system {Bk} is a basis in all Hp, 1 ≤ p ≤ ∞, if and only if the non-separable
hyperbolic condition is satisfied, viz.,

∞
∑

k=1

(1− |ak|) = ∞. (1)
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The case where (1) is not satisfied corresponds to a remarkable decomposition
of the Hardy spaces. In the Hardy H2 space, that is what we concentrate on in
this paper, a Blaschke product φ(z) may be defined that makes use a1, ..., ak, ...
as its all zeros, including the multiples, and the Hardy space is decomposed
accordingly as

H2 = span{Bk} ⊕ φH2,

where span{Bk} is a backward-shift invariant subspace, and φH2 is a shift in-

variant subspace of the H2 space. These invariant spaces are of the Beurling-
or the Beurling-Lax type ([6]), respectively, in the unit disc or the half complex
plane contexts. A TM system consists of rational functions in the Hardy space
that can approximate functions in the same Hardy space. Given the relation

f = 2Ref+ − c0,

where f = f+ + f− is the Hardy space decomposition of f ∈ L2(∂D),

f± =
1

2
(f ± iHf),

where H is the Hilbert transformation of the unit circle, we learn that approx-
imation to the Hardy space functions implies that to the L2 functions.

All the traditional studies and applications are based on the condition (1).
The approximation effects are different for different selections of the parameters
ak’s. The existing studies did not show how to select the parameters to get
the optimal effect. Our studies devote to parameter selection according to the
give function based on an energy principle. Under such selection, however, the
condition (1) is not guaranteed. But in any case, under our selection of the
parameters the given function falls into the subspace span{Bk}.

This paper will present three algorithms: Core AFD, Unwending AFD and
Cyclic AFD. The story is traced back to representations of signals into ba-
sic pieces with non-negative analytic phase derivative, viz., those with well
defined instantaneous frequencies (IFs). To look into this direction the first
author was motivated by the work of N. Huang et al on the EMD (Imperial
Mode Decomposition) algorithm of signal decomposition. Huang in their work
claim that the basic pieces obtained from EMD, called IMFs (Intrinsic Mode
Functions), possess such desired IFs. That is to claim that, if f is an IMF,
then under the amplitude-phase representation of the associated analytic signal
f + iHf = ρeiθ, ρ ≥ 0, a.e., there holds θ′ ≥ 0. But, unfortunately, this is not
true ([?]). The non-negativity of the phase derivative is indeed a strong require-
ment. It is in particular related to conformal mappings, as well as Hardy space
properties. Realizing this we carried on a fundamental study to understand
what functions or signals f would have such property. To the authors’ knowl-
edge, the related queries might first arise in the signal analysis group in Syracuse
University led by Yuesheng Xu and Lixin Shen. The study was joined by Qiuhui
Chen and then Luo-Qing Li, and by the group in Zhongshan University and the
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group in the Chinese Academy of Science represented by, respectively, Li-Hua
Yang and Dun-Yan Yan. The study also motivated a new phase of the studies of
Bedrosian Identity. For relevant results the reader is referred to their respective
work, as well as those of others, including Hai-zhang Zhang and Li-hui Tan.

We proceeded our study as follows. We named the sort of functions in the
Hardy spaces H2 as mono-component. Precisely, they are the functions whose
analytic phase derivatives as measurable functions are non-negative. The basic
examples are the monomials zk, but there are many more. A rigorous definition
of analytic phase derivative involves non-tangential boundary limits of holomor-
phic functions in the relevant domain [12], [5], [4]. Through a combined effort a
large pool of mono-components is found. Next, one wishes to seek for apropriate
decompositions of a signal into mono-components. The Fourier decomposition
of Hardy space functions is a particular example. One faces two facts. One is
that there are infinitely many ways to decompose a Hardy space function into
mono-components. This is together with the observation that the faster is the
convergence, the more stable the decomposition is. The second is that there
exist mono-component decompositions that converge as fast as one can wish.
These facts suggest that one restricts to certain types of mono-components pro-
ceeding the decomposition, as only in that case comparison between different
signals in terms of composing mono-components make sense. The type that we
choose for mono-component decomposition started from the weighted Blaschke
products, or Bk, constituting TM systems.

Indeed, each Bk is a so called pre-mono-component. This is due to the fact
that zBk is a mono-component. Moreover, if letting a1 = 0, then every Bk is a
mono-component. A TM system has the following property: The phase deriva-
tives of Bk+1 is strictly larger than the phase derivatives of Bk. This implies
that if Bk is a mono-component, then all Bk+m,m ≥ 0, are mono-components.

Adaptive Fourier decomposition (AFD) offers fast decompositions into TM
systems in which the parameters are selected consecutively according to the
given signal. The fast decomposition is based on a maximal selection principle
(see §1) together with a generalization of backward shift operator. In [9] the
author propose an improvement of AFD, or Core AFD, called Unwending AFD.
It incorporates at each recursive step a factorization process based on Nevan-
linna’s Factorization Theorem. Not only Unwending is faster, but also it treats
the signals that are essentially of high frequencies. Unwending AFD, however,
encounters computation of Hilbert transforms. There is another variation of
AFD that uses higher order Szegö kernels, also treating signals of high frequen-
cies. In the present paper, however, we do not pursue this particular direction.
The next variation is Cyclic AFD that gives rise to a conditional solution of
the open algorithm problem in finding a rational function of a given degree best
approximating a Hardy space function.

Below we mention about higher dimensional generalizations. A similar the-
ory, but not in full, is available in the quaternionic context. In the quaternionic
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space there is Möbius transformation. The Möbius transformation itself, how-
ever, is not a quaternionic regular (monogenic) function. As result, there are no
Blaschke products. But there exists a Szegö kernel in either the unit ball or the
upper half space context. In the complex number context there exist the useful
relations

〈f,Bk〉 = 〈fk, eak
〉 = 〈f̃k, Bk〉, (2)

where for any a ∈ D, ea is the L2-normalized Szegö kernel

ea(z) =

√

1− |a|2
1− az

= n(a)z(a), (3)

where z(a) itself denotes the Szegö kernel or the reproducing kernel, and ‖z(a)‖ =
1/n(a) = 1√

1−|a|2
, f̃k is the (k − 1)-th standard remainder, realized by the re-

mainder operator :

Rk−1(f1) = f̃k = f −
k−1
∑

l=1

〈f,Bl〉Bl, f̃1 = f = f1,

and fk, called the (k−1)-th reduced remainder, is the result of applying the order
(k − 1) generalized backward shift operator induced by a1, ..., ak−1, denoted as
Bk−1 = Ba1,...,ak−1

. There hold the relations

BmBl = Bk+l and Bk−1(f1) = fk.

In particular, when k = 2,

B1(f)(z) =
f(z)− 〈f, ea〉ea(z)

z−a
1−az

,

Due to the density property of the dictionary {ea}a∈D and the construction of
the weighted Blaschke products the second equal relation in (2) is equivalent
with

Bk−1f1 = fk = Rk−1(f1)

k−1
∏

l=1

z − al
1− alz

.

We note that {Bl}kl=1 is produced by the Gram-Schmidt orthogonalization pro-
cess applied to {eal

}kl=1 (at least for the distinguished al’s case, while the non-
distinguished case is achieved by taking a limit approach):

Bk =
Rk−1(eak

)

‖Rk−1(eak
)‖ .

In a more general setting other than for complex numbers, due to the reproduc-
ing property of z(ak), the first equal relation in (2) implies

〈f, Rk−1(eak
)

‖Rk−1(eak
)‖〉 = 〈 Rk−1(f)

‖Rk−1(eak
)‖ , eak

〉 = n(ak)
Rk−1(f)(ak)

‖Rk−1(eak
)‖ , (4)
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where

‖Rk−1(eak
)‖2 = 1−

k−1
∑

l=1

|〈eak
, Bl〉|2.

The generalization to quaternions of the theory for complex numbers is based on
(4) [15]. There is an obstacle for the theory being generalized to Clifford algebra
due to the fact that for Clifford algebra-valued functions f the usually defined
inner product 〈f, f〉 is not necessarily scaler-valued. The inner product being
scalar-valued, however, is crucial in the Gram-Schmidt process. Nevertheless,
an analogous theory in the Clifford algebra setting can be established under the
idea of matching pursuit [19].

The traditional spherical harmonics expansion, viz., the Fourier-Laplace se-
ries expansion on the sphere falls into the same theoretical frame under the
Clifford algebra setting. It is a realization of reproducing kernel representation
of the Clifford Hardy H2 space. On the unit sphere Sn−1 of the Euclidean space
Rn, n > 2, for a scalar-valued or Clifford algebra-valued function of finite energy
f ∈ L2(Sn−1), there holds, in the L2 convergence sense,

f(x) =

∞
∑

k=0

fk(x), (5)

where for each k, fk is a k-spherical harmonics. One can show that for k > 0
there holds the decomposition

fk = Pk(f) + P−k−(n−2)(f), (6)

where for each l among ...,−n − 1,−n,−n + 1, 0, 1, 2, ..., the Clifford algebra-
valued function Pl(f) is the boundary limit of a monogenic function in the ball
that possesses homogeneity of degree l. The complex unit circle case corresponds
to n = 2 the k-spherical harmonics decomposition is

cos kt =
1

2
(eikt + e−ikt).

The projection functions Pl(f) are given by integral operators against the l-
multiple Szegö kernels at the zero (see [17]). In the Clifford algebra setting of
the Euclidean space things follow the same philosophy. The decomposition (5)
under (6) becomes

f(x) =
∑

k 6=−1,...,−n+2

Pk(f)(x)

that is the corresponding Fourier decomposition whose adaptive forms are given
in [15] and [19].

In the more traditional setting for multivariate functions, viz., the several
complex variables setting, a similar theory can be established via tensor type
products of the TM systems. Since there is no Laurent series in the context
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in view of the Hartogs Theorem, again, it is not dividable, and the analogue
is not in full but only a half. We adopt the square partial sums setting with
the multiple Fourier series on the cube, or, equivalently, on the torus We only
explain our results for the 2-torus.

Let a denote a finite or infinite sequence {an} of complex numbers a1, a2, ...
in the unit disc D, and Ba the finite or infinite TM system defined by the
sequence a, i.e.

Ba = {B{a1,...,an}} = {Ba

n}.
If Ba

N and Bb

M are two finite TM systems, then Ba

N

⊗Bb

M is an orthonormal
system in L2(T2). When Ba and Bb are two bases of H2(T), then Ba

⊗

Bb is
a basis of H2(T2).

Denote, for f ∈ H2(T2),

Sn(f) =
∑

1≤k,l≤n

〈f,Ba

k ⊗Bb

l 〉Ba

k ⊗Bb

l , Dn(f) = Sn(f)− Sn−1(f).

Note that Dn(f) has 2n− 1 entries.

Based on such setting a maximal selection theorem is available, and a related
adaptive decomposition can be established ([11]).

We have been explaining the theory of adaptive Fourier decomposition on
the circles, the unit spheres and the n-torus. An analogous theory is available
in the real-line and the half spaces that replace the integral Fourier transfor-
mations and offer fast series expansions in terms of the special functions in the
respective contexts. Adaptive Fourier decompositions have strong backgrounds
in both the theoretical and application aspects. Apart from the “shift analysis”
aspect it also has close relation to rational function approximation (see [10] and
§3). The AFD formulation is also related to compressed sensing and learning
theory. In the application aspect we accomplished some studies in relation to
system identification ([8], [7]), time-frequency distribution in signal analysis,
speech analysis and distortion reversing in image processing in relation to har-
monic mappings, etc.

In approximation one concerns convergence rates. In the classical settings
convergence rates are in terms of degrees and types of smoothness. In AFD we
treat general functions as boundary limits of Hardy space functions that can
be non-smooth functions. We did obtain the convergence rate O(1/n) under
conditions that do not directly address smoothness ([14]) which, therefore, does
not look nice. Some further study on this topic has been carrying out under the
frame work of statistical learning theory.

The last point to make in the introduction part is rational approximation.
Even in the one complex variable case the best rational approximation prob-
lem has not been solved, it is let alone the similar problems in the several
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complex variables and quaternionic and Clifford algebra variables contexts.
To the authors knowledge, questions on rational function approximation to
multi-variable functions in appropriate Hardy spaces have not been properly
addressed. The proposed study based on reproducing kernels in various spaces
would un-doubtably open new research and application directions.

In the following sections we will concentrate in introducing three types of
AFD in the one complex variable.

2 Core AFD

AFD adaptively uses the TM system: the parameters ak are selected according
to the signals to be decomposed. By AFD a signal is decomposed in a fast
way into a sum of mono-components or pre-mono-components. By a pre-mono-
component we mean a signal that becomes mono-component after we multiple
it by an exponential function of the form exp(iMt) with M > 0.

Suppose we are given a signal f in the Hardy H2 space, that means

f(z) = f(z) =

∞
∑

l=0

clz
l,

∞
∑

l=0

|cl|2 < ∞.

We seek for a decomposition into a TM system with selected parameters. Set
f = f1. For any complex a1 in the unit disc we have the identity

f(z) =< f1, ea1
> ea1

(z) + f2(z)
z − a1
1− a1z

, (7)

with

f2(z) =
f1(z)− < f1, ea1

> ea1
(z)

z−a1

1−a1z

.

We call the transformation from f1 to f2 the generalized backward shift via

a1, and, accordingly, f2 the generalized backward shift transform of f1 via a1
(also called reduced reminder). The terminology was motivated by the classical
backward shift operator

S(f)(z) = c1 + c2z + · · ·+ ck+1z
k + · · · = f(z)− f(0)

z
.

Recognizing that f(0) = 〈f, e0〉e0(z), the operator S corresponds to our gener-
alized backward shift operator via 0.

Due to the obvious orthogonality between the two terms on the right hand
side of (7) and the unimodular property of Möbius transform, we have

‖f‖2 = ‖〈f1, ea1
〉ea1

‖2 + ‖f2‖2.

We are to extract the maximal energy portion from the term 〈f1, ea1
〉ea1

(z).
Due to the reproducing kernel property of ea, we have

‖〈f1, ea1
〉ea1

‖2 = (1− |a1|2)|f1(a1)|2.
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Therefore, to maximize (1− |a1|2)|f1(a1)|2 is to minimize the remainder ‖f2‖2.
One can show without much difficulty that there exists a1 in the open disc D

such that
a1 = argmax{(1− |a|2)|f1(a)|2 : a ∈ D}

([14]). The existence of such maximal selection is called the Maximal Selection

Principle. Under a maximal selection of a1 we call the decomposition (7) a
maximal sifting. Having selected such a1, repeating the same process for f2,
and so on, we obtain, after the n-th step,

f(z) =
n
∑

k=1

〈fk, eak
〉Bk(z) + fn+1

n
∏

k=1

z − ak
1− akz

,

where for k = 1, ..., n,

ak = argmax{(1− |a|2)|fk(a)|2 : a ∈ D},

and, for k = 2, ..., n+ 1,

fk(z) =
fk−1(z)− < fk−1, eak−1

> eak−1
(z)

z−ak−1

1−ak−1z

.

It can be shown that
lim
n→∞

‖fn+1‖ = 0.

Thus we have

f(z) =
∞
∑

k=1

< fk, eak
> Bk(z)

([14]).

Remark 1 We note that the parameters selected under the maximal selection
principle do not necessarily satisfy the condition (??), and thus {Bk} does not
have to be a basis. In some applications, however, one may be interested only
in fast expanding of a given signal.

Remark 2 If we choose a1 = 0, then all Bk are mono-components, and AFD of-
fers a mono-component decomposition. For arbitrary selections of a1, ..., an, ...,
the Bk are pre-mono-component decomposition, and after being multiplied by
eit all the entries in the infinite sum become mono-components.

Remark 3 AFD is different from greedy algorithm or orthogonal greedy al-
gorithm in relation to the dictionary consisting of Szegö kernels. Besides a
maximal selection at each step dictionary words can be repeatedly selected in
order to guarantee effective approximation in the process.

Remark 4 The convergence rate for the n-th AFD partial sum is 1/
√
n. This

is a convergence rate for rather general functions in the Hardy space.

8



3 Best Approximation by Rational Functions of

Order Not Larger Than n

Core AFD and Unwending AFD offer fast decomposition of signals into mono-
components. There is a third one comparable with them called Cyclic AFD

that offers best approximation to Hardy space functions by rational functions
of orders less than or equal to a given integer n. Such approximation has a
better stability or uniqueness. The best rational approximation is equivalent
with simultaneous selection of n-parameters a1, ..., an, in a Blaschke form, viz.,

n
∑

k=1

< f,Bk > Bk(z).

In AFD, however, it is one by one selection of parameters but not simultaneous.
The existence of such approximation has long been proved, but a practical
algorithm of it is still an open problem until now.

Let p and q denote polynomials of one complex variable. We say that (p, q)
is an n-pair if p and q are co-prime whose degrees both are less than or equal
to n. We further require that the zeros of q are all outside the closed unit disc.
Denote the set of all n-pairs by R(n). If (p, q) ∈ R(n), then the rational function
p/q is said to be a rational function of degree less or equal n. Let f be a function
in the Hardy H2 space in the unit disc. The best n-rational approximation is
to find an n-pair (p1, q1) such that

‖f − p1/q1‖ = min{‖f − p/q‖ : (p, q) ∈ Rn}.

What we propose, called Cyclic AFD algorithm, can get a solution of the best
n-rational approximation when there is only one critical point for the problem
([10]). We call such a solution a conditional solution. Compared with the exist-
ing RARL2 algorithm, that offers also a conditional solution ([1], [2], [3]), Cyclic
AFD is more explicit, and can directly find the poles of the approximating ra-
tional function.

We will call
n
∑

k=1

ckBk(z)

an n-Blaschke form where the parameters a1, ..., an of Bn are arbitrary com-
plex numbers in D. An n-Blaschke form is said to be non-degenerate if cn 6= 0.
It is easy to see that a non-degenerate n-Blaschke form is either an n-rational
function or an (n − 1)-rational function, depending on whether 0 is one of the
parameters defining Bn. This shows a little inconsistence with n-rational func-
tions. But if we work with the parallel context the region outside the unit disc,
then the class of the n-Blaschke forms corresponds exactly with the class of the
n-rational functions. To simplify the writing we ignore the little inconsistence
and still work inside the unit disc.
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For any given natural number n the objective function for the problem is set
to be

A(f ; a1, ..., an) = ‖f‖2 −
n
∑

k=1

|〈f,Bk〉|2. (8)

We need a few more new terminology. Assume that f ∈ H2 and f is not
an m-Blaschke form for any m < n. Then a1, ..., an is said to be a coordinate-

minimum point of A(f ; z1, ..., zn) if for any permutation P whenever fixing n−1
points (z1, ..., zn−1) = (Pa1, ..., Pan−1) and performing the Maximal Selection
Principle to |〈fn, ezn〉| for the remaining complex variable zn, then the missing
point Pan is one of the optimal choices for zn.

In the AFD algorithm we proceed the procedure with the increasing k : Along
with choosing a1, ..., ak−1 in D, we produce the reduced remainders f2, ..., fk.
Then to fk we apply the Maximal Selection Principle to find an ak giving rise to
max{|〈fk, ea〉| : a ∈ D}. The Cyclic AFD Algorithm repeats such procedure at
the n-th step: Whenever a′1, ..., a

′
n−1 are fixed from previous steps we inductive-

ly obtain the reduced remainders f2, ..., fn, and then use the Maximal Selection
Principle to select an optimal a′n.

Denote by LMP a local minimum points, by CMP a coordinate-minimum
point, and CP a critical point of the objective function. Denote by LM, CM
and C the sets, of, respectively, all LMPs, CMPs and CPs. Then we have the
inclusion relations

LM ⊂ CM ⊂ C. (9)

The proposed cyclic AFD algorithm is contained in the following procedure.

Suppose that f is not an m-Blaschke form for any m < n. Let s0 =

{b(0)1 , ..., b
(0)
n } be any n-tuple of parameters inside D. Fix some n−1 parameters

of s0 and make an optimal selection of the single remaining parameter accord-
ing to the Maximum Selection Principle. Denote the obtained new n-tuple of
parameters by s1. We repeat this process and make cyclic optimal selections
over the n parameters. We thus obtain a sequence of n-tuples s0, s1, ..., sl, ...,
with decreasing objective function values dl that tend to a limit d ≥ 0, where

dl = A(f ; b
(l)
1 , ..., b(l)n ) = ‖f‖2 −

n
∑

k=1

(1− |b(l)k |2)|f (l)
k (b

(l)
k )|2. (10)

Then, (i) If s, as an n-tuple, is a limit of a subsequence of {sl}∞l=0, then s is in
D; (ii) s is a CMP of A(f ; · · · ); (iii) If the correspondence between a CMP and
the corresponding value of A(f ; · · · ) is one to one, then the sequence {sl}∞l=0
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itself converges to the CMP, being dependent of the initial n-tuple s0; (iv) If
A(f ; ...) has only one CMP, then {sl}∞l=0 converges to a limit s in D at which
A(f ; · · · ) attains its global minimum value.

For further details including examples on Cyclic AFD we refer the reader to
[10].

4 Unwending AFD

Assume that f = hg, where f, g are functions in the Hardy H2 space, h is an
inner function. Expand f and g into their individual Fourier series:

f(z) =

∞
∑

k=1

ckz
k, g(z) =

∞
∑

k=1

dkz
k.

Under such circumstance, in digital signal processing (DSP), there is the follow-
ing assertion: For any n,

∞
∑

k=n

|ck|2 ≥
∞
∑

k=n

|dk|2,

see, for instance [5]. This amounts to say that, after factorizing an inner function
factor the remaining Hardy space function converges faster. This suggests that
in the above Core AFD procedure if one combines a factorization process then
the convergence becomes faster. This is reasonable: when a signal by its nature
is of high frequency, one should “unwending” it but not try first to get maximal
portions corresponding to the lowest frequencies. When this idea is implemented
the AFD is amended as follows ([10], [13]). First we do the factorization f =
f1 = I1O1, where I1 and O1 are, respectively the inner and outer function parts
of f. The factorization is based on Nevanlinna’s factorization theorem and the
outer function has the explicit integral representation

O1(z) = e
1
2π

∫
2π

0

e
it+z

eit−z
log |f1(e

it)|dt
.

In the algorithm we need to use the boundary value of O1 to compute the above
integral in the principal integral sense and the imaginary part reduces to the
circular Hilbert transform of log |f1(eit)|. Next we do a maximum sift to O1 that
means the decomposition of O1 under the maximal selection principle:

f(z) = I1(z)[< O1, ea1
> ea1

(z) + f2(z)
z − a1
1− a1z

],

where f2 is the backward shift of O1 via a1 :

f2(z) =
O1(z)− < O1, ea1

> ea1
(z)

z−a1

1−a1z

.
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By factorizing f2 into its inner and outer parts, f2 = I1O2, we have

f(z) = I1(z)[< O1, ea1
> ea1

(z) + I2(z)O2(z)
z − a1
1− a1z

].

Next, we do a maximum sift to O2, and so on. In such way we obtain the
Unwending AFD decomposition ([9])

f(z) =

n
∑

k=1

k
∏

l=1

Il(z) < Ok, eak
> Bk(z) + fn+1(z)

n
∏

k=1

z − ak
1− akz

n
∏

l=1

Il(z)

=
∞
∑

k=1

k
∏

l=1

Il(z) < Ok, eak
> Bk(z),

where fk+1 = Ik+1Ok+1 is the backward shift of Ok via ak, k = 1, ..., n, and
Ik+1 and Ok+1 are respectively the inner and outer functions of fk+1.

Remark 5 In most cases an Unwending AFD is automatically a mono-component
decomposition due to the fact that inner functions has positive phase deriva-
tives. In general, we set a1 = 0 to guarantee that Unwending AFD gives rise to
a mono-component decomposition. Unwending AFD converges very fast, and
considerably faster than Core AFD. This is shown through the relevant exam-
ples especially on singular inner functions ([13]).

Remark 6 There are other AFD-variations that first extract factor signal-
s of high frequencies. Those include Double-sequence unwending AFD ([16]
and one using what we call high-order Szegö kernels ([18]). The algorithm of
double-sequence Unwending AFD is more complicated than that of Unwending
AFD but with a similar performance as the latter. The high-order Szegö kernel
method does the selection following the principle of greedy algorithm that does
not have a generalized backward shift feature.
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