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1. Introduction

The most widely used approximation for Lo-functions on the unit sphere in R™ is the approximation by
spherical harmonics. Specifically, a spherical harmonic of degree k is a k-homogeneous polynomial S (z)
which is harmonic, i.e. AySk(z) =0, A, = ZTZI 8§j being the Laplacian, and every f € Lo(S™ 1) admits
an orthogonal decomposition in spherical harmonics of the form f(w) = > po, Sk(w), w = % e Sm-1,

Clifford analysis forms a refinement of harmonic analysis. It starts with the construction of a Clifford al-

gebra with generators ey, ..., e,, and relations e? = —1, eje, = —egej, j # k and leads to the Dirac operator
Op = D252, €j0y; for which 97 = —Ay; solutions of 9, f = 0 are called monogenic functions. Spherical mono-

genics of degree k are then defined as k-homogeneous polynomials Py (x) which are monogenic: 9, Py (z) =0
and the series > po Pi(w) € La(S™ ') form the closed subspace of monogenic signals M Ly(S™~!). For
any scalar function f € Ly(S™ ') there exists a monogenic signal Y-, Px(w) = g for which [g]o = f, [ . Jo
denoting the scalar part. The monogenic function theory has a lot of interesting properties; we refer to the
extended literature containing the books [2,4,5.7] etc.
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One disadvantage is however the fact that the product of monogenic functions is no longer monogenic.
This leads us to the idea of constructing an embedding of holomorphic functions of several complex variables
into the unit ball in Euclidean space. In R?, it works as follows: consider Clifford generators e1, es with
defining relations e? = e2 = —1 and ejea = —egeq. Then the “holomorphic correspondence” is the map

from the holomorphic functions in two complex variables (21, 22) = > ..

P.q . .
p.q=0 #1722 Cp,q Into the corresponding

series in R3:
oo

9(21,22) — Y (w0 + 2)P (21 — e16922)'Chp g
P,q=0

with = z1e1 + x2e2. This embedding leads to a closed subspace of La(S5?) called the space of holomorphic
signals on S2.

In general, holomorphic signals are of special interest, because they are closed under the operations of
addition, subtraction, multiplication and division. Moreover, when defined, the composition of two holomor-
phic signals is also still a holomorphic signal. Moreover, every holomorphic signal admits an amplitude-phase
representation such that the amplitude of the product of holomorphic signals is the product of the ampli-
tudes of the holomorphic signals, and the phase of the product of holomorphic signals is the sum of the
phases of the holomorphic signals. By using the above defined holomorphic correspondence, functions on
the unit sphere are transformed into holomorphic signals so that techniques and advantages of holomorphic
signals become available.

The first task in this paper (see Section 3) is to construct the Gram—Schmidt orthonormal basis that
corresponds to the holomorphic polynomials (2o + )P (z1 — e1eax2)?. In Section 4 we also study convergence
properties for these holomorphic bases and for ¢ fixed the series converges for all g + z with 23 + |z|> < 1.
In case both p and g are variable, we are still able to prove convergence for \/z3 + |z|? < V2 —1.

Although beyond the scope of this paper, we would like to remark that the holomorphic corre-

spondence can be generalized to a mapping from functions in m complex variables g(z1,...,2m) =
o0 91 .. qm : L : : . m+1
> o am=0 21 28 Cy, g to functions in Euclidean space R of the form
o0
921, zm) — > (w0 +2)" (21— €12y)” - (Tmo1 — m—16mTm) " Cyy g,

q1,---,qm =0

whereby x = 37" | wje;, ay = DL, wiey, 1y = )it g xje; etc.

This then leads to the holomorphic signals on S™ and several problems related to it, including orthonormal
bases on S™, convergence properties and the study of the pull-back of the Lo-inner product on S™ to the
space of holomorphic functions on for instance the polydisk By X - -+ X B,,. In particular, the direct image of
a holomorphic function in the polydisk surely leads to a converging series in the unit ball. This and various
other problems form the basis for extended future research.

2. Preliminaries

We will work in the algebra H of quaternions. Let e;, es be two imaginary units of H, satisfying the
multiplication rules e% = e% = —1 and ejes = —ese;. The conjugation in H is determined by e1 = —e; and
€z = —eg. For any © = xg + 161 + 2262 € R? we also write z = To + x, where £ = x1e1 + x265.

Let S? be the unit sphere in R3. The space L(S?) consists of all functions defined on S?, taking values
in H, and being square integrable on S? with respect to the surface area element d.S. The inner product on

Ly(S?) is defined by

1 _

(fo9) =1 | @

£es?

g(g)ds7 fagELQ(Sa)v
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which leads to an induced norm given by

£l == VAF. f), f € La(5?).

It is known that the set of polynomials is dense in Ly(S?). Moreover, we observe that
Lo (SQ) = span{xggb(xl —e1e922)%: a,b,c € N},

where the span denotes the right H-linear span.
Since 2zg =  + Z, 2z = x — Z, and on the unit sphere Z = 2!, we have

Ly (52) = m{x“fb(arl —e1e22)%: a,b,c € N}

= span{a”(z1 — e1e222)%: p € Z, q € N}.

In this paper we will restrict ourselves to half of the above generating set, we consider namely the set of
holomorphic polynomials

HP = {xp(xl —ejexw2)?: p,g € N}.

The closed formula for the orthonormalization of HP will be given. These kind of holomorphic polynomials
are in fact closely related to the spherical monogenics. To see this, let us first recall some definitions.

A quaternion-valued function f, defined in an open set 2 C R?, is called left monogenic in 2 if it is in
2 a null solution of D, i.e. Df = 0, where the differential operator D := 9., + 0, = (0/0x0) + €1(0/dz1) +
e2(0/0x2) is the so-called Cauchy—Riemann operator. A left monogenic polynomial of degree k is called
a left inner spherical monogenic of degree k. The collection of all such monogenic polynomials is denoted
by Mk.

A useful tool to construct a monogenic function from a given smooth function R* > 2 >z — f(z) € H
is the Cauchy—Kowalevski (CK) extension (see [2,10]), given by

CK(f)(z) = e 0% p ).
Since for any p,q € N
6&( P (29 — 61621‘2)q) = —2pz® (21 — e1eaxy)l,
0y (2% (21 — e1€222)7) = —2(p + ¢+ 1)2*P(z1 — e1e222)",
we arrive at
P
CK(xp(xl —ejeawa)! ZCg,]m” ]azo 1 — e162T9)?

M

(Ap q(-TOa |£|) + QBp,q (an |£|))(5L'1 - €1€2x2)q7

where C} ;, A, 4 and B, are real-valued, and x — Ay (20, |z|) + By ¢(v0,|z|) is an axial monogenic

function (see [3,11]) when ¢ = 0. From Proposition 3.1 (see the next section) we can obtain that

Bi, = {CK(2P(z1 — e1e222)?): p,q €N, p+q =k}
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is an orthogonal basis of M, with respect to the inner product on Ly(S5?). Indeed, let us take two different
functions by and by from By:

b1 = CK(@pl ((El — 6162$2)q1)7 b2 = CK(@Z)Z (fEl — 6162152)(12)
with ¢1 # ¢2 (p1+q1 = p2+4q2 = k). Each b, u = 1,2, is a linear combination of m%gpu I (x1—e1ea72)% with

Pu+qu = k, which can be rewritten as a linear combination of z{x’ (z1 — e1eaw2)? with i+j = p, = k—q,.
By direct verification (see also the proof of Proposition 3.1), it easily follows that

(zg @l (21 — ereaws) ™, wF 2 (21 — ereaws) ) = 0

whenever ¢ # ¢o, which proves the orthogonality of the basis (.

This construction should be compared with the results in [1,4].

The study of the projection operator from Lo(S?) to spanHP and the related approximation problems
will be our next research objectives.

3. Orthonormalization of HP
For any p,q € N, let
apq(x) = 2P (21 — e1e222)? = (w0 + 2)" (21 — e1e222)7.

The aim of this section is to orthogonalize this sequence.
We start with the following lemma, a result which can also be found in [6], p. 372, 3.631, formula 8.

Lemma 3.1. For m € N and v > —1, we have

s

/cos (mB)(sin0) df = T
0

27w cos () (v + 1)
-2+ pra+g+3)

Proof. We first prove the result for m odd. As

™ T

/cos ((2m +1)8)(sin6)7 df = /cos((2m + 1) (7 —t)) (sin(r — t))A/ dt
0 0

s

=— / cos ((2m + 1)t)(sint)” dt,
0
we obtain that

s

/cos ((2m + 1)0) (sin ) df = 0.
0

We now prove by induction the case m even, i.e. for all v > —1

/cos (2mh)(sin6)? df =
0

27 7w(=1)" (v +1)
Irl—m+3Hrd+m+73)
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When m = 0, we have that (see e.g. [9], p. 8, last formula with 5 = 0)

s s

/ cos (2m0) (sin 0)" O / (sin0)7 df =

0 0

277l (y + 1)
(r1+3))>

Assume that the identity holds for m = k, we now prove it for m = k + 1. Applying partial integration, we
find

™

1
/ cos (2k0)(sin 0)7 T2 dh = 5 / (sin #)YF2 dsin (2k6)
0 0

™

2
— 7% /sin(%a) cos O(sin 0)7 11 db,

from which it follows that

s s

4k
72/sin (2k6) cos O(sin )71 do = — /cos (20)(sin 0)72 6.
Y
0 0

Hence, when m = k + 1, we obtain consecutively

/ cos (2md)(sin 0)” do
0

(cos (2k0) cos (26) — sin (2k6) sin (26)) (sin 6)” d6

O\n

(cos (2k0) (1 — 2(sin #)*) — 2sin (2k6) sin 6 cos 0) (sin )" df

I
Ot~

= /COS (2k0)(sin0)” do — 2/008 (2k0)(sin 0)7 2 dh — 2 / sin (2k0) cos O(sin 6)7 ! df
0 0 0
[ . ak [ o
/COS (2k0)(sin 6)Y do + o i 2 /cos (2k0)(sin )™= db
0 0

27— (v+1) ( 4k 2) 277 2x(=1)k 0 (y + 3)
S r(1-k+DIr+k+7) v+2 r2-k+3Hr2+k+1%)
_ 27 (-)RU(y + 1)

CD(—k+DIr2+k+1)

where in the second last line we have used the induction hypothesis. O

The above result leads to the following proposition.
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Proposition 3.1. For p1,ps,q1,q2 € N:

(115 Opargn) € R,

and when q1 # g2, or p1 — p2 is odd (i.e. p1 and ps have different parity), we have

<ap1 2419 O‘p27Q2> =0.

Proof. Assume p; > po. Using spherical coordinates, set xg = cosf, r; = sinfcosf and xo = sinfsin 3
with 0 <0< m, 0< 6 <2m, we get dS =sinfdbdg, and

apl »q1 (x)apzﬂlfz (:L’)

= (21 + erea2)? (g — )P (zo + 2)P2 (21 — e1e222)®

= (sin )% (cos (q13) + erez sin (¢18)) (cos ((p1 — p2)0) — é—| sin ((p1 — pg)@))

- (cos (g28) — e1eg sin (g2/3))

= (sin6)"*% cos ((p1 — p2)8) (cos ((¢1 — ¢2)B) + ereasin ((q1 — ¢2)53))

x

— (sin€)"+% sin ((p1 — p2)0) (cos (¢18) + erezsin (q13)) ;

. (Cos (g28) — e1easin (qgﬁ))
= (sin0)? %9 cos ((p1 — p2)0) (cos ((¢1 — q2)B) + erezsin ((q1 — ¢2)3))
— (sin @)™+ sin ((p1 — p2)6) (e1 cos ((q1 + g2 + 1)B) + easin ((¢1 + g2 + 1)B)).

We thus obtain

1 ™

<ap1,quapz,qz> = 55111,112 /COS ((pl _p2)9) (Sin 0)2111—0—1 do
0

B 27207271 (2qy + 2) cos(AoP2 S22)
I3 -5k g3+ 252 4+ q))

6111,!127 (1)

where in the last line we have used the previous lemma. 0O

So, the orthogonalization of HP = {cy 4 p,q¢ € N} is equivalent to the separate orthogonalization of
{as,q: s € N} and {9541, s € N} for each fixed g € N.
Since by (1) it follows that

(—1)1~%22720-21 (24 4 2)
F'Z—si+sa+q)l'(2+s1—s2+9¢

(Q2s, ¢ Q255 ,q) = ) = (25, +1,0> ¥255+1,0) (2)

and

272027 (2q + 2)
HOZQS,(IH2 = (F<§ +q))2 = Ha25+1>q||23
2

we just need to consider the orthogonalization of {ags 4 s € N} with ¢ being fixed (see also Remark 3.1).
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For convenience, we now change notations. Let a1 (z) = (z1 — e1e222)?, aa(x) = 2%(z1 — ereqw2)?, . ..,
an(z) = 22" 72(21 — e1e2m2)?, . ... Hence we put ags 4() = ast1(z), s =0,1,2,.... Then according to the

Gram—Schmidt orthogonalization process, the sequence {ay, 152 ; can be orthogonalized by setting
51 = ar,

n—1
- _ <am6i> ) (3)
Bn 1= an ; <6i76i> Bi, m=2.

Thus {B,} = {Hg—:\l} becomes an orthonormal polynomial system.

Remark 3.1. The orthogonalization of {a2sy1,4: s € N} with ¢ fixed, is then given by {xf,}, since (zf, zg) =
(f,g) as Tx = 1 for x € S2.

By (2) and straightforward calculations, one obtains

5120417

(N . A R
TG g2

(g, B1)  2q+1

(B1,61)  2q+3

2q+1

9-20-27(2¢ + 3)
(rG+aq)?
(az,B2) — 2(2¢+1)

B2 = oz +

182]1* =

(B2, B2) (2¢+5)°

B 2(2¢+1) 2q+1
B3 = a3 + 2%+ 5 2 2q+50417
2-20-171(2¢ + 4)
18s]|* =

(I3 +4q)?
(g, B2) _ 3(2¢—1)(2¢+1)
(B2, B2) (2¢ +5)(2¢+7) "
(0, 8) _

( )

agq,B3)  3(2¢+1)
B3, B3 2047
etc.

In fact, we have the following result.

Theorem 3.1. Let {3,,}22, be defined through (3), then for any n € N, we have

anaﬁ(n_l)&an—w(”_l)( Qo+ D2 +3)

pog (o (2¢+1)(2¢ +3) -+ (2 + 2k — 1) .
k (2q+2n71)(2q+2nf3)...(2q+2n72k+1) n—k
~1 20+ 1)(2¢ + 3 92 + 1

L (m Cat@a+8) . r1
n—2)(2q¢+2n—1)(2¢+2n—-3) ' 2q+2n—1



666 N. De Schepper et al. / J. Math. Anal. Appl. 416 (2014) 659671

:”z—:l(n—1>r(§+k+q)F(%—k+”+Q)

Qp—k
—\ k IrG+qI'(3+n+q)
_i(n—l) FA+k+ql(5 - ktntq)
k=) TE+orG+n+q "

where in the last line we have exzecuted the substitution k' = n — k and used (n k) = (2:}), and
(n—1)1272727 (2 +n + 1)

T )

Moreover, for any i,j € N with i > j, it holds that

(00, 8) _ (_pyics (i—l) (24 +1)(2g — 1)+ (2q — 2+ 2j + 3)
(Bj: B;) (2 +2i—1)(2+2i—3)---(2¢+2j + 1)
i1 F(3+Q)F(1+j+Q)

= (=1 (i—j)F( +z+q)F(——z+]+Q)

To prove these results, we need the following lemmas.

Lemma 3.2. For all non-negative integers s < j, we have

j% AL

This lemma has a close connection with the Stirling numbers of the second kind (see e.g. [8]), and it is
well-known (see e.g. [6], p. 4, 0.154, formula 3).

Lemma 3.3. For any positive integer 7, we have

;(1)k<k_l>F(2+k+q>F<2k+]+q>F(§—i+k+q)F(%ii—k+q)
_(_1)JF(2C]+J+1)F(%+q)p(%+q)
- I'(2q +2)

t—1D@GE—=2)---(i—7+1). (4)
Proof. We observe that

I'G—i+j+q I'A+i+gq)
FG—i+k+qI'G+i—k+q)

= (g—i+(j—1)+q><%—i+(j—2)+q>--~<g—i+k+q>
~(%—S—(i—l)—l—q)(%—l—(i—Z)—&—q)~-~<g+i—kz+q>

is a polynomial in ¢ of degree (j — k) + (k — 1) = j — 1, and so is the case of the right hand side of (4).
Thus, it suffices to show that: (a) The left hand side of (4) has roots i = 1,2,...,7 — 1. (b) The coefficients
of /=1 in both sides are equal, namely,




N. De Schepper et al. / J. Math. Anal. Appl. 416 (2014) 659-671 667

ol [ U (SRR LA e L

When ¢ is a positive integer and less than j, we can see that

FG+k+r'(3—k+j+9q)
I'G—i+k+qI'(3+i—k+q)

(%+(k—1)+q)(%+(k—2)+q)-~-(;—z’+k+q)

~(%—k+(j—1)+q><%—k+(j—2)+q)---(g+i—k’+q)

is a polynomial in k of degree (i — 1) 4+ (j —¢ — 1) = j — 2. Hence (a) follows immediately by Lemma 3.2.

Now we prove (5) by induction. The case j = 1 is clear. Suppose that (5) is true for some certain j, then
for the next integer j + 1, we get

S (7 (b kra)r(d-re e o)

k=1

Zi[(i:i) +(i:;)]FGJrkJrq)F(%—k+(j+1)+q>
:i(i_i) (%—k:—l—j+q>F(%+k+q)F<%—k+j+q>
+i(i:i)(;—kk—kq)F(;nﬁc—kq)F(;—k—i—j+q>

k=1
. /i1 1 1 ,
(1+j+2q);<k_1)F(2+k+q>F<2 k—i—j—f—q)
I'2q+j+1)I'G+ a5 +4q)
I'(2q+2)
L2+ (G+)+HI'G+9)(5 +4q)
I'(2q+2) ’

=(14j+29)

where in the second last line we have used the induction hypothesis. O

Proof of Theorem 3.1. For n =1,2,..., let

- R AVACEN ri—k
ﬁnzz<n 1) (2+1+q) (f +n+q)%

2k72(

where aj, = x x1 — e1eaxw2)? as before. Then from (2) and (4), we obtain

Zji (j - 1) FA+k+ql(3—k+j+q)  (—1)—Fr2-20-21(2g + 2)
k—1

ol k=1 FrG+ol(3+j+q TG-itk+gIl(G+i—k+q)

27203 + ) (29 + 5+ 1)
rGG+i+talG+i+al(G—i+j+aq)

=D =2) (i -+ 1) (6)



668 N. De Schepper et al. / J. Math. Anal. Appl. 416 (2014) 659671

which implies that (a;, 5;) = 0 for @ < j. Since f; is a linear combination of a, ..., a;, we conclude that
(Bi, B;) = 0 for ¢ < j, and hence it is true for all ¢ # j, since (3;, ;) = (5, 5i). We also note that

(= DR 2r (20 +j +1)
(I(5+7+a)?

18511% = {Bj, By) = (e, B) =

b

where we have used (6).
Therefore, for ¢ > j, we have

(i, Bi) _ g i—1 rG+alz+j+aq
O R VI e e ses:

Moreover, it is clear that

n

- Bi Bi - - <anaﬂz anaﬂz
o ‘Z<O‘"’ IIBz|>|IﬁiII —E BirBi) B”Z BirBi) "

Consequently,

—1
TLX: Qln, 61 6
=1 BZ? ﬁl v
which means that {8, }22 is exactly the outcome of the Gram—Schmidt orthogonalization process of (3). O

4. Pointwise convergence of the series

For any positive integer n and q € N, we let

n 1 1
~INTG+k+T( —k+n+
(" > (3 ) I'(5 n q)ka_Q(ml—elegxz)q,

5%(1(:”):'8”(”5):’; k-1)" TA+or(t+n+q)

then from the previous section we know that

HC8

U U (1o} (st

consists an orthogonal system on the unit sphere $? in R3.
We have the following result.

Proposition 4.1. Suppose {\,,} € I* (i.e. 0" [An]? < 00), then for each g € N,

ﬂn ,q
/\n
Z |, q||

is convergent in the open unit ball {z: |x| < 1}.
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Proof. Changing the order of summation, we obtain

T — ejeaxa)?

. o0 " -1 2q+1p(%+k+ )F(%—k—kn—k ) 2%k—2
Yo =2 () : 7

669

oyt ||5n,q|| - \/EF(% +q)\/(n7 DIr(2¢g+n+1)
i A + 2 <; T (nk—+k;l! = F(2(;l;nl)4!— 1) A”) w72 (z) — ereqny),
where C; = \/_fj(“ . Observe that
if(%—k-ﬁ-n—i—q) (n—1)! _ if(§+n+q)\/ (k-1
T (n—k) rqg+n+1)™" " |= n! I'(2q+n+k+1) """
. g:o I(; 4;: +9) - :!n - Do,
since % is decreasing in k. Using Cauchy—Schwarz inequality, we find

X I'(:—k+n+9) (n—1)!  (I'(5+n+4q)) )
D ] r<zq+n+1>“'< PO e PO

n=k

m

_ ) (I'(A +n+q)
- n%gnooz n'F(2q+n+2 Zp\"l
. AL +m+q)
lim
m—oo (14 2¢)?m!I"(2¢ +m + 2)

)
> Pl
n=1

where we have made use of the following identity

i stn+a)’ AL(G+m+09)?
~ 2q+n+2) (1+2q)2m!F(2q+m+2)’

(L(3+m+q))*

m = 1. Moreover, we note that

which can be proved by induction on m, and lim,, .

I'A+k+q)

B ~ kTS (k= 00),

so the series is always convergent in |z| < 1. O

Considering also the summation over g, we obtain the following convergence result.
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Proposition 4.2. Let C' = EZio oo | Angl? < oo, then

D) BEIIC
1Bl

qg=0n=1

is convergent when |z| < v/2 — 1.

Proof. Again changing the order of summation, we get

o Bn, n—1 2q+1F(l+k+q)F(l,k+n+q) .
Z Z e ”Bq qH Z (Z (k — 1) 1 ; 2 ))‘n,q 2K 72 (21 — ereqx0)l.
q=0n=1 m = —k

VLA +9)/(n—1)IM2g+n+1

So, similar to the above proof, we find

Bnq
An
ZZ " Br.g ||

qg=0n=1

& 2q+1F s+k+gq 2
VoS ( g i — creaal

g Fa)(k—1)11+2g

C 1 S(T(5+E+q), oo .
:2\/;§)F(3+q);< T >(2|”“°1‘61€2f”2|)- (7)

Applying Maclaurin series, we have that

R L R
— I'(e+z)

=g+ 5+ E) |2

7,; r(g+3) (k=1)

Hence, (7) becomes

Qm 2 —5—a _ q \/? _ e 20z \*
2\/;;(1 2[?) (2|lz1 — ereaza|)? <2 71_(1 |z[?) Z<1—|x|2 )

which converges if |z| < 1 and |2 <1, hence if 2] <v2—-1. O
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