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In this paper, we apply wavelets to study two classes of function spaces of
harmonic functions: the weighted Besov spaces Hg:(;‘ (RT’I) and Carleson spaces

Cg,q (Rf’jl). By a reproducing formula, we prove that the elements in these
harmonic function spaces can be characterized by the Poisson integral of the
functions in the Besov-Q spaces Q‘;‘,’ q (R™).
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Besov-Morrey space

AMS Subject Classifications: 42B35; 42C40

1. Introduction

In this paper, we use wavelets to study the spaces of harmonic functions with boundary
values in Besov-Q spaces Q‘;‘,’ q(R”). It is well known that for a measurable function on
R”, the Poisson integral P; f gives a harmonic extension of f. In the literature, Poisson
integral is used to describe the relation between the harmonic function spaces on R'j_‘H and
their boundary values. Fabes et al. [1] characterized the spaces HM O (RT’I) with trace in
BM O(R"™). Precisely, they proved the following result:

u e HMO(RT’I) &= u = P; % f forsome f € BMOR"). (1.1)

See [1, Theorem 1.0].

By wavelet methods, we will establish the following relations among the Besov-Q
spaces Q%’ q(R”), the wavelet spaces WI‘;‘, q (R™), the weighted Besov spaces H,‘fj;‘ (]R'J'r“)
and the Carleson spaces Cg, q (R'j_‘”):

Theorem 2.8 Th 4.4 Theorem 3.4
0%, We 3 f(x) % fx.necs, Hyho (1.2)
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We give the definitions of Q%’ q (R™) and W;“ q (R™) in Section 2. The definitions of the

harmonic function spaces ng(’; (R’rrl) and Cy RTI) can be found in Section 3. Precisely,
in this paper, we show the following results.

THEOREM 1.1 Letl < g < p < ocoand 0 < a < min(l, %). The following five
statements are equivalent:

@) f(x) € Q% R

(i) f(x) e WS, R
(i) Pif(x) € Hyg@®E), 31 > n(1 = 9).
(iv) Pif(x) € HY 2 (R, Vi > n(l — 1),
(V) Pif(x)eCy,®.

The significance of these spaces is that for particular choices of the parameters p, g and
a, one obtains various classical function spaces, such as the Bergman spaces, the Bloch
spaces, the Besov spaces, the BMO spaces and the Q spaces. We give the following space
structure table to clarify the relation between these spaces and Qg’ q R™):

ael0,1),l<p=gqg <o0, Besov spaces [2]
a=0,p=00,qg =2, BMO space [3]

a € (0, min(1, %)), p=2n/a,q=2, Q-spaces Qy [4]
a=0,p>2,9g=2, Morrey spaces L2 [5]
a=0,p=q=1, real Bergman space [6,7]
a=0,p=q=o00, real Bloch space [6]

In the proof of Theorem 1.1, we need to overcome two difficulties:

On one hand, for a harmonic function F(x, f), its boundary value may not be obtained
via pointwise limits. In the paper, we use an alternative way to define the boundary value
of functions in ng{; (RT’I). By areproducing formula (2.3), we define the boundary value
of f(x,t) via (2.4).

On the other hand, to characterize Q‘;‘,’Z(R”) by the Poisson kernel and the heat semi-
groups, one of the main methodologies is the Fourier transform. See [8]. However for the
spaces Q‘;‘,’ q with ¢ # 2, Fourier transform does not work. For functions f € Q"" g 1o
surmount this obstacle, we use regular wavelets to estimate the Poisson kernel P;(x).

Now we give an outline of the proof of Theorem 1.1.

(1) The equivalence (i) and (ii) is well known. We list it as Theorem 2.8. See Section
2.4 and the references.[9-11]

(2) In Section 3, we prove that Hg:;‘ (R'J’FH) =C 3, q (R'fl). In fact, our result implies
that f(x,1) € Hg,’,;‘ (Rf’ﬁ'l) if and only if

dip =: |V f(x, 0|99 79%dxdr

is a (1 — g/ p)-Carleson measure. See Theorem 3.4 for the equivalence of (iii), (iv)
and (v).
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(3) Let P; be the Poi{sson kernel. In Lemma 2.5, we estimate the wavelet coefficients
of the function aix,-Pt (x — y). With the help of Lemma 2.5 and Theorem 2.8, we
can get the following inclusion relation in Section 4.1:

P (05, ®Y) < €5, REFD,

This gives (ii))=(v). In Section 4.2, we prove that f(x, 1) € Cg’q(RTI) can be
represented as the Poisson integral P; x f(x), where f is an element in W;‘, q(R”).
See Theorem 4.2 for a proof of (v)=>(ii).

Remark: In a recent paper, by a different method, Wang-Xiao [24] obtain a extension
of Campanato-Sobolev spaces Q; , via the fractional heat semigroups. We also refer the
reader to Jiang-Xiao-Yang [25] for further information on this topic.

Some notations:

e U =~ V represents that there is a constant ¢ > 0 such that ¢V < U <
whose right inequality is also written as U < V. Similarly, one writes V 2
for V > cU.

e For convenience, the positive constants C may change from one line to another and
usually depend on the dimension n, o,  and other fixed parameters. The Schwartz
class of rapidly decreasing functions and its dual will be denoted by ./(R") and
S (R™), respectively. For f € .7 (R"), fmeans the Fourier transform of f.

cV
U

2. Preliminaries
2.1. Regular Daubechies wavelets

We present some preliminaries on Daubechies’ wavelets ¢, € = 0 or 1, and refer the reader
to [6,12] and [13] for further information. Let

E, = {0, 1}"\{0}
F, ={(e,k):e € E,, ke Z"};
Ap={(e, j,k),e € Ey,j €Lk eT"},

We will use the real-valued regular Daubechies’ wavelets. Let C™ denote the smooth
function spaces with all the derivatives up to the order m, and being bounded. In this paper,
we assume there exist two sufficiently large integers m and M such that

(i) Forany € € E,, supp®€ C [-2M 2M]",
(i) @€ e Cm([—2M, 21y,
(iii) For |a| < m, [x*®€(x)dx = 0.

For (e, j, k) € Ay, let
D 1 (x) =272 02 x — k).

The set {CID; w (€ j, k) € Ay} forms a wavelet basis. For any € € {0, 1}, k € Z" and a

function f on R”, we write f je = (fs CD; «)- The following result is well known.

s
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LemMa 2.1  The Daubechies wavelets {<I>; (e, j.yen, form an orthogonal basis of

L%(R™). Consequently, for any f € L*(R™), the following wavelet decomposition holds in
the L?* convergence sense:

f= 2 fa®we

(€,),k)eN,

2.2. Poisson extension and boundary value

We first construct some functions with special compact supports in order to define boundary
limits of harmonic functions.

Lemma 2.2 Fix m € N. There exist a constant Co > 0 and two radial real-valued
functions ¢ € C*"+8(B(0, 1)) and ® € C*"+8(B(0, 1)) such that

i) () = (—A)"Dd();
() [T (@) 4 = 1,VE £0;
(i) Co [y e "4 =1.

Proof Itis easy to choose a radial real-valued function ¥ € C*"*+8(B(0, 1)) such that
x dt
/ 2"V ()e ™ — £ 0.
0 t
Let
o ~ dt
G
0

and
D(x) = (Cy) 2 W ().

Let C, = I'((n + 1)/2) /7 ®+t1D/2 and let

Cy .
P = o
_ Cyt
Pi(x)=t""P ()t_() = (24 x ) tD/2"

Let f be any measurable function on R” satisfying

/ de < 00. 2.1
R

o 1+ [x |t

The Poisson integral of f is defined by
rwn= [ P = roay,

Let AR") = {f(x) : (1 + |x|)"+13§‘f € L™, Va € N"} and denote A’(R") be the
dual space of A(R"). For any function g € . (R"), we know that P;g(x) € A(R") Vr > 0.
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Hence, for any distribution f € A’(R"), f can be extended formally to a harmonic function
P f(x) as

flx, 1) = e”(’A)%f(X) = P % f(x), 2.2)

For any t > 0, f(x, t) is a distribution. That is to say, if f does not satisfy (2.1), we can
still define the Poisson extension P; f.

Example 2.3 Let § be the Dirac function. It is well known that § is not measurable.
However, it is obvious that
Pié(x) = Pr(x).

For the harmonic function f(x, ) =: P;(x), we have
li_mt%()f(xvt) ZO’ Vx #O

But we know, as ¢t — 0, P;(x) converges to §(x) in the sense of distribution.

Example 2.3 implies that for a general harmonic function f(x, #), its boundary value
may not be defined in the sense of the pointwise limit as + — 0. In Lemma 2.2, we use
some compactly supported function to pull back the harmonic functions to some boundary
functions.

Let ¢ be the function obtained in Lemma 2.2. Write ¢;(x) = t_"q)(f) with @(E ) =
¢(t&€). From (iii) of Lemma 2.2, we can deduce that

-~ o _dt o e 7 dl
f&)==Co | (e Tf(é) = Co A ¢(t8)e f(é)T- (2.3)
By the inverse Fourier transform, we can get the following result.

Prorosition 2.4 If f € S (R"), then the following two identities hold point by point.
. o0 dt
£ =timobf )= Co [ [ s —nTa.

By Proposition 2.4, harmonic function f(x, ¢) can be pulled back to the trace function
f(x) in the sense of distribution

o0 d
flx) = Co/ f flx—y, t)¢>t(y)—tdy-
O R)‘l t

2.3. Wavelet estimates on the Poisson kernel

Let
Px) = —(n+ 1)Cyx;
i) = 1+ |x|2)(n+3)/2'
For € = (€1,...,€,) € {0, 1}" \ {0}, let 7. be the smallest index s such that €, % 0. Let

P; e(x) = 0y, P;(x). We can see that

—(n+1)Cy (142 (n+3)x?)
. — (1+‘x|2)(n+5)/2 ’
Pie(x) DO +3)Coxixe,
(oo 7 e

I = T¢;
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Let ¢/ (x) = 2270 and

X
[6®€(x) = / CDe(xl’ vy Xty Vo Xldrres - oo s xp)dy.

—00
Fori=1,2,...,n,let

1x;

Pl-,,(x) = —(n + I)Cnm

Fori =1,...,nand (e, j, k) € A,, define
I(i,t,x, €, j, k) = ai)Ci/P,(x —y)@j-,k(y)dy 2.4)
= / Pii(x — y)®S  (v)dy.
We estimate 1 (i, t, x, €, j, k) by wavelets.
LEmma 2.5

() If2/t > 1, then

2(%+2)jt
@i, t,x,€ j, k)] S — : —. (2.5)
(4it2 + 12ix —k|2) T
(i) If2/t <1, then
K5+, .
. . —————7, 12/x —k| = Co;
Gt x6 /01 S apia)s (2.6)
22+DJ 12/x —k| < Co.
Proof
(i) For2/t > 1, by the change of variable, we have
G tx.e. j. b)) S 17227 / 1Py — I D) ;4 () Idy
Rll
o 1
< (22iHnil2 / , , — | O (u)|du.
R (4712 + 20x —k —u®) 2

Because supp @€ c B(0,2M), we have |2/ x — k — u| < |2/ x — k| + 1. On the other hand,
by 2/t > 1, we can see that there exists a constant C large enough such that

CI >+ 127x —k —ul’l > CAI 2 + 127 x —k|? = 2\ul* > 4t + |2/x — k.

Then, we obtain

1
n+3 *

G, t,x, €, j, k)| < 222 _
@24 12ix —k|>) T
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Now we prove (ii). If 2/¢ < 1, applying integration by parts, we can get
IG,t,x, € j k)= /R Pi(x — )2/ 5 (y)dy
Hence, we have

16,1, x €, . )] S/R Pyx — )2 |95} (y)ldy

2(2+%)j, .
S / : : — | D (u)|du.
supp ¢ (4712 + [2/x —k —ul?) T

We distinguish two cases. If |2jx — k| = Cg, we can get
) . 1 .
2/x —k —u| > |2/x — k| — |u| > §|2/x — k| > Cq/2.

On the other hand, by 2/ < 1,4/¢% < |2/x — k|?. The above estimates imply that

2(2+%)jt 2(%+2)jt
(i, t,x, €, j, k)| <

(127x —k2+C3)"F ™ (14 2x k)T

If [2/x — k| < Cq, because |®¢(2/y — k)| < C, a direct computation gives

San t o
[1G.t.x. € j. 0l < 2f<‘+f>/ 102y — k)ldy
R (12 + [x — y|?) 2
< 2](1+%).
This completes the proof of Lemma 2.5. U

2.4. Besov-Q spaces and wavelet characterization

Besov-Q spaces R™) are studied in [11].

p.q(
Definition2.6 lLet1l < g < p < ocand 0 < o < min(l, g). The Besov-Q space
Q‘;‘,’ q (R™) is defined to be the set of all functions with

Lf &) — FO)

1 lx—ylrrae

q_
sup(f, @}, ,)(I) =:sup|[]7 1/ dxdy < 400,
1 1 I
where the supremum is taken over all cubes / with the edge length £(/)and the edges parallel
to the coordinate axes in R”.

Fora € (0,1),p = nj/a,q = 2, QZ/a, HR") = Q0 (R"). Q spaces Qy(R") were
studied extensively. For further information on Q, (R"), we refer the reader to Dafni—Xiao
[14,15], Essen et al. [4], Wu—Xie [5] and the reference therein. The space Qg’ q(R”) with
o € (0,1)and 2 < g < p < oo was introduced by Cui—Yang [9]. Yang—Yuan [11]
established the Littlewood-Paley characterization of Q%’ q(]R”) with the full indices as in
Definition 2.6.
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Let {d>8 } be a wavelet basis defined in Section 2.1. For any function f, let {fe } be
the wavelet coefﬁ01ents of f. By Lemma 2.1, formally

f= 2 fu®

(€.j. k)N,

We introduce a space which consists of { f ; ) as follows.

Definition 2.7 lLetl < g < p <ooand 0 < o < min(l, :’7). The space Wl‘f’q(R”) is
defined to be the set of all functions with the wavelet coefficients satisfying

1/q

1 . n .
sup {(£ Wi (D) =tsup 1ot T e e b < oo,
I I

(e,j.k)eNy:1jxCI

where the supremum is taken over all dyadic cubes /.

Fora € (0,1)and 2 < g < p < oo, the wavelet characterization of Q‘[")’ q(R")
is obtained by Cui—Yang [9]. By different methods, Lin—Yang [10] and Yang—Yuan [11]
improved the scope to @ € [0, 00) and 1 < g < p < oo. See also [16] and [17].

THEOREM 2.8 Letl <g <p <ooand( < a < min(l, g). Then

0% (R") = WS (R").

3. Weighted Besov spaces and Carleson measures

On the unit disc, Zhao [18] introduced a family of analytic functions on the open unit disk,
denoted by F(p, q, s). The spaces F(p, g, s) cover many known function spaces of analytic
functions: the Bloch space, Bergman spaces and weighted Dirichlet spaces. Such spaces
have been studied heavily by different authors. In the latest decades, F(p, ¢, s) have been
studied extensively. We refer the reader to [5,19-23] and the reference therein.

Forl <g <p<o00,0 <o < min(l, g) and A > n(l — %), replacing the analytic
functions by harmonic functions, we introduce a class of spaces of harmonic functions on
R For 1 < ¢ < oo, we define the gradient of f(x, ) by

e [ Af (0
V£ Gl —E(—M E

Definition 3.1 Letl <g <p < 00,0 <o < min(l, ’;’) and A > n(l— %).The weighted
Besov spaces H[‘f”;‘ (RTI) is defined as the space of all harmonic functions such that

Q=

1flgr = swp | HEDG0]" < 400,
T weryH!
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where
ng __
IV f(x, )99 =aoy p "

I — )2+ (u+ 1)
daf (x,1)

dxdt

(f, HEM) (y,u) = f
i (x, )R

q ng __
n t9=1=q2 n+i

dxdt

. / ‘ ax,-
- A
o1 @R (o — y)2 4 (u+ )22

=D (fHEDi(y 0.
i=1

The Carleson box based on a cube [ is defined by
Sy =1 x (0, 6(1)] = [(x,t) eRM ixelte (0,@(1)]].

A positive measure p is called a p-Carleson measure on R’f’l if

sup w(S))
. P

Here, sup; indicates the supremum take over all cubes in R”. Note that p = 1 gives the
classical Carleson measure.

Definition 3.2 lLetl <g < p <ooand 0 < @ < min(l, g). We define Carleson spaces

C ;’,‘ q (R’fl) as the space of all harmonic functions such that

I fllce, = st;p {(f, Cg’q)(l)}g < +o0,

where

a_

(f, CEL ) =117 /Sm IV f e 00010 dxds = Y (£, Cp )i (D).
i=1

Remark 3.3

(i) In the above definition 3.1, for 1 < p = g < oo, we can take A = 0. Then
the definition of Hy ’[9 (R’rrl) coincides with that of C¢ q(Rﬁ_H) in the definition

3.2. In particularly, Hl0 ’]0 (R’f’l) is the classic definition of Bergman spaces and

Hgg)?oo (R’fl) is the classic definition of Bloch spaces. See Section 8 of chapter 6
in [6].

(i) Fora = 0,p = ocoand g = 2, Cgoyz(R’r’l) becomes the space HMO(RiH)
introduced by Fabes et al. [1].

We characterize the space Hg”;‘ (R’j_“) by Carleson measure.
THEOREM 34 Letl <g <p <00, 0<a <min(l, g)and)» >n— %.

1 A 1
Cy R = Hyd (R,
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Proof Let I be the cube parallel to the coordinate axes with centre y and the edge length
¢(I), and let u = £(I)/2. When (x, 1) € S(I), we have (x — y)> + (u + 1)> ~ £(I)%.
Therefore,

e, S —ntr
/ IV f(x, )99~ 179 dxdr </ Vf G Dl .n+ dxdt.
S(I) @R |(x = y)2 + (u+1)2|2

Conversely, for any fixed (y, u), let I be the cube parallel to the coordinate axes with
centre y and the edge length 2u. For nonnegative integer m, we use I, to denote the cubes
with the same centre as / and the length 2" ¢(1).

9_1

117

—l—ga,, L —n+ir
IV f (e, )44y ™"
Iy u E/ . T dxdt
@R (x = y)2 4+ (u+1)?]2
- / VGl
X
wneS  |(x — V)2 + (u + )23

o0 11— 2 —pta
Vf(x, )94 l—qo,, 7
+ / IV, D) L dxdr.
0! Sy O\SUn)  |(x — ¥)2 + (u +1)?|2

When (x, 1) € S(I), we have (x — y)> + (u +1)> ~ £(D>.1If (x, 1) € SUurD\SU),
then (x — y)? + (u 4 1)? ~ 22"¢(I)?. Therefore,

q_
Iy SIP ]/ IV f(x, )99 179 xdr
S(I)

S(Im+1)

o
_nhg _ q9_
L Dl B
m=0

o0
S ) 2" <
m=0

The following result is easily deduced from Theorem 3.4.

CoRrROLLARY 3.5 Let 0 < a < min(1, g), 1 <g<p<oocandr >n— %. The
definitions of Hg,’,;‘ (RT‘I) are independent of the index A.

4. Harmonic function and Besov-Q spaces

In this section, by Theorems 2.8, 3.4 and 4.1, we extend the functions in Q;’ q (R™) to
harmonic functions on R’ﬁl. By Proposition 2.4, Theorems 3.4 and 4.2, we pull back the
harmonic functions in C g q (R’j_ﬂ) to their relative trace function in Q‘[”?’ p (R™).

4.1. Poisson extension

In this subsection, we extend the functions in Q% q (R™) to harmonic functions in Carleson
spaces. In fact,
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THEOREM 4.1 Letl <g <p <00 and 0 <o < min(l, g). Forany f € W;"q(R”),
we have

fl.t)=: Pox f(x) e CY (R

Proof By Theorem 3.4, it is enough to verify for f € W  (R"),

sup 17" / V(P f)@)I9 197179 dxdr < | f e,
1 S)

Fori =1,...,n,define
q_ f (x,1)|?
Cri= |1|Z 1/ 3 x.1) 117179 gy ds.
say | 0x;
We only need to prove that
=1,2,...,n.

sup Cri S IfIYy
I

a 51
Pq
The kernel of %}ft” is P; ;(x). Let

Jej() =3 a5, S, (x);

ey keZ -

Yl (x,1) = Piy  fe ().

‘We obtain

Af (x.1)  ~— 0fej(x,0)
8xi B ; axi '

By (2.5)and (2.6), we estimate df¢_j(x, t)/0x; as follows. If2/¢ > 1, then by integration
by parts, we have

afe,j(x’ 1) _

o, /Rn Pici(x—1y) Zz_J“E,k(IeCDE)j,k(y)dy.

keZ

Hence, by (2.5), we can get

afG,j (-xv t)
ax,‘

< fR 1P =01 3 1S 4110, (0)ldy

keZ
< €
<Y eyl

2GH2it(1 + 127x — k|)

k . . n+3 °
S G2 + [2x — k2)"E

If 277 < 1, then

Ofc i(x,t . .
—fs'j 1) = / Pi(x —y) Z ZJa;,kd)j-’Z(y)dy.
R” ’

0x;
! keZr
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Hence, we have

3fe,j(x, 1) : :
‘—fgx' < / Pi(x —y) Y 2/1as (195 (»n)ldy
! R? kez"
2(5+Dj

S D laSul

S T+ ik — k)
Fori =1,...,nand (e, j, k) € A,, let

| o
itore ok =5 [ Pite = 05,00y “.1)
1

be the function defined by (2.4). Then, we regroup the indices (¢, j, k) by I.Let I} = 81 = I
and |I;| = 27!. For T > 1, let I; be the cube which contains I; with |I;| = 2"7|I;|. We
divide the indices (e, j, k) into three cases.

Casel 2/t > 1.Forl € Z", define

S_1;= {(e, Jk 2Tk e2 i 41,20 > 1};

LyGne = Y |G txe j 0l (4.2)
(e J RS 1

Case2 2/t <1 <2/¢(I).Forl € Z", define

Sos = [(e, jk): 2k e2 i+ 1,20 <1 < 2/'@(1)};

IoGotx. D)= X |IG.1.xe ) b)llas, . “43)
(€,],k)€S0,1

Case3 27¢(I) < 1.Forl € Z", define

Se) = {(e, k) 27k € 2T 4 I, 2 () < 1];

LegGotox, )= 3 |IG,t,x,€ j,K)las . 4.4)
(€.j.k)ESe

Hence, we obtain that

‘Bf(x, 1)

ax,-

<) ILuGotx .

t>—1,leZ"

Now, we estimate the terms:

q_
Lz =11|r lf [z, t,x, D797 1799,
S(I)

We first estimate the case T = —1. At first, we assume |/| < C. We can see that
colourredwrong
q
2G4 (1 4 12x — k
|1|q/p—1f 3 e — A+ 12x kD L g1gey gy
S | e,jh0es-1 @G+ [2x — k2T

q

26D Qi1 +12/x —k
< |1je/p-! § la .| @7 + [2/x — kD) 197149% g xdr.
~ S() P i 4 2ix — k)

(e,j.k)ES 1, +12/x — k%)




Downloaded by [Qingdao University] at 19:36 09 October 2014

Applicable Analysis 13
Because 27t > 1,

2/t < 1
@2+ 20x — k)T T @2+ 2ix — k)T

This gives
2(5+Dj
Y
(e,j,k)eS_1, @I+ 2/x —k|?) 2
(241 |a§k|q 1/q

. 2 ’ (4.5)

Jj=z—logyt 2-ike2II+1,

g-1
| X 1 q
) - sl
2-ike27III+1, (4712 +12/x —k|?) 2
| &€ |q l/q

< ¥ ey Y T

j=—logyt 2-ikea—i1i4l, (4];2 +2ix — k|2)T

‘We obtain that
q
(5+2)] P
Tl B T S NEitE E L ) R
Js ) - e
S\ e.j.k0es-1, (4782 4+ |27x — k|?) 2

1205

qu/,,_l// S et
[I0 ¢ j=—logy 1

(X

|a 1727 1)°
ke2/=ir42i 1

- : ; m)f‘f"‘alxalt.
@+ 20x — k1)

We change the order of summation and integration to get

q

23+ (1 iy — k

mq/p_l/ 2 il s HL) 147174 dxdt
S ejboen, A2 +12/x — k|2 2

-1 141 jn—j(g—1)nj8
< |119/P Z 24(5+Djp=ilg=1)9j Z|a;,k|q
Jjz—logy £(I) ek

o) 1
X // . . . n+1 Z‘B_qadxdl‘
1277 (Qi2 + 120x — k|2 2

S |]|4/P—1 Z 24(5+Djp=ilqg=1)9jdn—jn—jo—j@—qa) Z |a§,k|q
Jj=—1log, (1) 8.k
S flwg,-
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If |I| > C,forx € I, |x — x7| < €(I). On the other hand, k € 2/~//1 + 271, implies that
|k —27771]| < 2JE(11) = 217’. We can see that [2/x — k| ~ 2/7J1(1 + |I]). Also for any
fixedl,{k : ke2/7/+2/1} = 20=JDn  From these estimates, we can deduce that

) 1 S
. . L‘H ~Y i +1 ’
ke2i—i1i42i 1, Ait2 +12ix —k|») 2 2t (14"

where in the last inequality, we have used the facts that 8¢(1) = 2777 and 1 < 2/t < 27¢(1).
Similar to the case of |I| < C, we still have

q

254D (1 4 2y — k

|I|q/p—1/ S ( fl n+l) g g
5 (ejbren, A2+ 12ix —k|2) 2

S AN Fllwea

P’

We now estimate the case t = 0. We consider the case |[| < C.

q
254D

q_1 J
Lour SII? f > laS,l : P 117179 gt
S | (e.jheSos (I+2/x —k|7) 2

Take § > g —qa > 0. Applying Cauchy-Schwartz’s inequality to k and j, respectively, we
can obtain

H(BHD)j

| > =

K : T
(€,j.k)€So, 1+ 12/x —k?)2

1349
> (5+D) la$ 17 !

n11)j ’

S a j 2 ntl

€,—logy L(I)<j<—log,t ki(e,j,k)eSo 1+ 127x —k|?) 2

€ |9(2i)9

< Y 206D |aj  17(271)

- i 2 ntl *

(€,7,k)€S0.1 (1 =+ |2]x — k| ) >

The above estimate gives

Z_1
Lioss S|P / D 1aSl

. ntl
SU) (¢ j0resos (14 12/x —k|?) 2

q_ . n . .
Sl Y0 2D QI S |
(€,7,k)€S0.1
S flwe,

2(5+Daqj (271) -3

4719 gy dy

where in the last inequality, we have used the fact that (e, j,k) € Sp,; implies that
27¢(1) < 1.
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We consider then the case || > C. At first, Cauchy-Schwartz’s inequality gives

q
YA+

€
> layl

; =S
(€,j, k)80, (14 2/x —k[%)™2

< '(”+1)( |a;»k|q )
SO DY

e, j<—logyt keZn (I+ |2jx —k)) 7

g—1 q
> 1
S (L + 120x — kD'E

Because (g, j, k) € So., we can see that |2/ x — k| ~ 2/=J1(1 + |I|) which implies that

R -

1
S (L4 12ix — k)T

~ QT 4 pymthHT

By the above estimate, we apply Cauchy-Schwartz’s inequality to j and get

q
2(5+D)j

€
> layl

Jk . ntl
(€. jl0ES0, (1+12/x —k[?) 2

& i —
< Y ot a5 417 @ C 4e)
e jesos (1 + [2x — kT [P+ 1y et

By (4.6), we can obtain

q
(54D
4_1 2'2 N
Liosr S MUY / > lall : — b 117179 dxay
S | e jpesy,  (L+120x — k)=
4_ la$ |4 2(5+Daj (0jp)—s
S 1/ j=i = nr1g—1 : e 10 T dxds
S ¢ jrresy, 27D (1 27 — k%)

q_ . w

S A+ pup~aethypt N pailet e
(€,7,k)€S0.1

S (U4 1DTITD) Fllwe

pa’

Thirdly, we estimate the case T > 1 where the number of (e, j, k) is finite. We consider
the case |/| < C.

q
(34D
q_1 2(5 L
Ii,r,l,l S G / Z a;’k| - e 14 1 9% g dt
S | e jpes,  (A+127x =k
TR L S TICEE S FENT
(é,j,k)eS,_,

< 9—qdt .
S27 fllws,,-
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We consider then the case || > C. Similar to the estimate (4.6), taking0 < § < ¢ —q«,
we can get

HB+D)] !

4 _q i
Ii,r,l,] S |1]» / Z |a;,k| - S 17 ! 1Ydxdt
S) (€.j.k)ESz (1 + |21x — k| ) 2

|a$ 17 2G+Daj (2ig)=?

44
st - ,,
S (e,j%isr,, (2= (1 + iy et (14 2ix — k|25

ST A U TID T Y 2w g g
(€.).k)€S
S 27T A+ DIV fllwe, s

147179 v dt

where we have used the fact that (e, j, k) € S;; & 2=Jk € 271l 4+ I, and 27¢(]) < 1.
Take a positive number § small enough. We repeat applying Cauchy-Schwartz’s inequality

qg—1
Crisy D 27°0+up "

>—1,leZ

x 2 2”‘““*(1+|1|><‘1—“<"+“|1|%”/ [IeaGot x, D997 79y
S(I)

t>—1,leZ"

<O 27 AT f e

Pa’
t>—1,leZ"

4.2. Boundary value

The boundary value of a harmonic function in Cg’ q (Rﬁ_‘”) may not be locally integrable.
But we have

THEOREM 42 Letl < g < p < o0 & 0 < a < min(l,g). For any f(x,t) €
Cg’q(R’fl), there exists a function f € W;;"q(R”) such that

S, 1) = P * f(x).
Proof For simplicity, for any e, let

4_q . ny_
(WS ey =z [I]p Y pa/@rmmipe ja,
(k)1 el

We write

L WeHD =1 S0 awer Do pe 0 = 3L W (D).

(e.j. k)N, T CT
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Fori =1, ..., n and any function f define
Xi
Ilf(x)=/ f(x]5"'7x71+l.€ay’x]+iea"‘7xn)dy'
—00

Form > n+8, define I" f (x) = I; Il.’”_1 f(x).Let ¢ be a function in Lemma 2.2, we know
Iimqb(x) is a C2"*8 function with compact support. For € = (¢1, €2, ..., €,) € E,, denote
by i the smallest index such that €;, = 1. Let 9. = 9y, and I ®“(x) = I;, ®“(x). Hence,
we have

o WS )e(D) = 11771 37 it pe jg
IjxCl
*© dt .
FO D¢ — ) dy, o,
0 Rn t

q
=15 Z 2aj (@+3)—nj
We divide the integration on (0, c0) into two parts.

Ij,kCI

(L We e < Vi S peiet)-nipnaj
IjrCl

2-J
< /0 /R 01 f (v (I ), (x — y)i"didy, (a;"d>f>,-,k>

! Y it Donip=(mtiaj
I_,"kCI

q
X

00 d q
e F 0 @) (x = )y, ()
2-i Jrn et

=:Jo+ Ji,

X

where

2 _
Jo=1117"" 37 24““*")‘”’2'"”{/0 / ) |alf(y,t)|‘<1{”“¢>(x—t y)‘
I‘lX n

IjrCl
q
x| (D) (2 x — k)|t”‘"dtdxdy}
and
7 - gitatm—njy—m+ngj | [* moy (X
p=HpT Y2 2 , 19 £ (v, 01 (02 ) ( —
Ij,kCI 2=J n RN

x (1" 1o) (2/x —k de !
€ * prawan et
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‘We can see that

{/ 101 (3. t)l‘ 1’"+l )( )“ o oc) (2fx—k))dxdy}
R"xR"
<277 /R {/R |alf(y,r>|‘ Ii"“zb) (T) dy} \(a;ﬂqf) (2jx—k)‘dx

< Ny ey /Rzn o1 £ G0l | (1719) (x y)' (07 0°) (275 — k)| dxdy.

We first estimate the term Jy. By Holder’s inequality, we can deduce that

Jo St YT et ”f / 01/ G0l |(1779) (Ty)‘

IiCl
X ‘(Bi"cbe) (2jx — k)

Notice that

u(y, 1) =t—" Z f

ljxCI

"M dxdydt.

(1o <¥)‘ |07 0°) (275 — k)| dx e L=(D).
Finally, we obtain

Jo S |]|q Z 0aj (m+e)—jlg— 1)/ /|81f(y,t)|qtquydt

2mi|[|>1

<! / 190 (v, D119y,
S(I)

For sufficient small positive real number §, we have

o0
i S ZZSTJI,‘LW

=0
where
Jio =117~ LY paitetmmnip=(mthai {/ /Rz e f(y, 1)
IjxCI
q
(07) (Z=2) || (11 0¢) (27x — &) | =2 _va

€ € * pmtn+1 xay

and

e f(y, 1)

2T4(I)
o=t 5 g | [
2 R n

1
IjxClI D

re) () | (010) (=)
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Via Holder’s inequality, a simple computation implies that

{/ |aef<y,r>|‘ ) (
R xRr

< pg=Doy-nlg=1)j / 10c f (v, t
~ R2n

Then, we can get

Jio S Vi Z 24 atm)=njp—(m
I_,"kcl

x ‘(I:H‘qf) (zfx - k)‘dxdy}q dar

o)
a_ i :
< v 2 2ajey (erl)q.//2 . /Rz 10 f(y, )|
- "

ljkal

)“ 1m+1c1>€) (2fx— ))dxdy}q

)19 | (37 ¢) (TW 1;”“@6) (2-/'x —k)‘dxdy.

() _
+Daipi f { / 10 f (v, 1)] ‘(a:"qb) (u)‘

2-J R2n t
o0 (5)

tq(m—+n)

x (11 9%) (27 — k) |7 dxdyr,

Notice that

u(y,t) =t—" Z f,1

IjxCl

8m <

We can obtain that

dx € L*(I).

) H (1m+10°) (27x = &)

o i
T ST Y quiegi—mtia f | f 19 £ (v, DI 1 dyd
2-J 1

20 |11>1

q_
<p / 10 f O,
S

D997 19 qydr < C.

By a similar method, for J; ;, we have

c BT Y auitennips

1_,',kC[

< |1|7_1 Z 249j%n— (m+1)qj{211(1)} 1

Ij,kCI

We can see that

8m¢ <

u(y,t)y=1"
IjxCI

x| () (Q) H (11 o) (275 — k)

x| (97 ¢) (x - y) H (1o (275 — k)

. _1 27¢(1)
(m+1)qj [2'{6(1)] / l { Az 8Ef(ya Z)
2t=4e() n

dt
4 (m=+n)

q
dxdy}

274(1)

/ 19 f (v, DI
2r-1g(1) Jr2n

=™ dxdydt.

o))
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The above estimate gives

. ' . I Aa0))
Jue ST YD asiepm el [prep] / ﬁlaef(y,t)lqt‘quydf
mi|[|>1 ok
g2"7(1_%)+T(q°’_mq_q)|lfI%_l/ ) |36f(y,t)|‘1ﬂ_1_‘1°‘dydt
I)

< 2nt(l 7%)+r(qot7mqfq) .
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