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Abstract : In the Clifford algebra setting of Euclidean spaces monogenic signals are naturally

defined as the boundary limit functions of the associated monogenic functions in the related domain. In

an earlier paper we defined a scalar-valued phase derivative as a candidate of instantaneous frequency of a

multivariate signal. In this paper we obtain fundamental relations between such defined phase derivative

and the Fourier frequency. The results generalize the latest results of quadrature phase derivative in

one dimension to multi-dimensional cases in the Clifford algebra setting. We also prove two uncertainty

principles in higher dimensions of which one is for scalar-valued signals and the other is for vector-valued

signals with the axial form.
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1 Introduction

Signals in the natural world are often real-valued. A signal can have a single variable or

multi-variables. For one dimensional real-valued signals, it is often of advantage to define an

associated complex signal of which the original real-valued signal is the real part. In Cohen’s

book [Co], for instance, it is shown that one of the motivations of defining a complex signal is

to define the phase and then the instantaneous frequency as the phase derivative. Frequency is

a crucial concept. Various kinds of frequencies are important references in order to understand

signals. The classical notion of frequency is the so called Fourier frequency defined through

Fourier transformation. Another popular, yet controversial, notion of frequency is related to
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a particular type of complex signals, viz., analytic signals introduced by Gabor [Ga]. For a

real-valued square integrable signal f in the whole time range, the function 1
2(f + iHf) is called

the analytic signal associated with f, where H is the Hilbert transformation on the line. It is, in

fact, the boundary value of the Cauchy integral of f analytic in the upper-half complex plane.

Writing the analytic signal in the polar coordinate representation

f+ =
1

2
(f + iHf) = A(t)[cos θ(t) + i sin θ(t)] = A(t)eiθ(t),

then A(t) = 1
2

√
f2 + (Hf)2 is called the instantaneous amplitude, and θ(t) = arctgHf

f the

instantaneous phase. The derivative of the phase, θ′(t), is usually defined to be instantaneous

frequency. Clearly, θ′(t) = Re
{
[1
i
d
dt
f+(t)][f+(t)]−1

}
.

To study and characterize signals it is often useful to establish fundamental quantitative

relations. For example, the total energy of a signal is defined to be the integral of the energy

density function |f(t)|2 over that entire time domain, viz.,
∫∞
−∞ |f(t)|2dt. In order to describe

where the density is concentrated and whether the density is concentrated around the average,

the average time and the standard deviation are defined to be ([Co])

< t >=

∫ ∞

−∞
t|f(t)|2dt

and

T 2 = σ2t =

∫ ∞

−∞
(t− < t >)2|f(t)|2dt.

If f is of unit energy, then

σ2t =< t2 > − < t >2 .

Similarly, for a signal of unit energy, if |f̂(ω)|2 represents the Fourier frequency density, then

the average frequency and the Fourier bandwidth are defined by

< ω >=
1

2π

∫ ∞

−∞
ω|f̂(ω)|2dω

and

σ2ω = B2 =
1

2π

∫ ∞

−∞
(ω− < ω >)2|f̂(ω)|2dω

= < ω2 > − < ω >2 .

In time-frequency analysis, there are instructive formulas revealing relations between the

Fourier frequency and the phase derivative frequency involving mean and bandwidth of frequen-

cy, and two forms of covariance, etc. In virtue of such formulas, for instance, Fourier frequency

can be avoided to compute the average Fourier frequency and the Fourier bandwidth. The

following results can be found in [Co]:

< ω >=

∫ ∞

−∞

dθ(t)

dt
|f(t)|2dt (1.1)
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and

σ2ω =

∫ ∞

−∞
(
dA(t)

dt
)2dt+

∫ ∞

−∞
(
dθ(t)

dt
− < ω >)2A2(t)dt.

Similarly, we have

< t >= −
∫ ∞

−∞

dψ(ω)

dω
|f̂(ω)|2dω

and

T 2 = σ2t = −
∫ ∞

−∞
(
dB(ω)

dω
)2dω +

∫ ∞

−∞
(
dψ(ω)

dω
+ < t >)2B2(ω)dω.

For a real-valued signal, since f̂(−ω) = f̂(ω), we have that < ω > is always zero. In such

case < ω > does not show where the Fourier frequency density concentrates. One, instead, uses

< ω >+ to study the mean of Fourier frequency ([Co]), that is

< ω >+=

∫ ∞

0
ω|f̂(ω)|2dω = 2

∫ ∞

−∞
ω|f̂+(ω)|2dω.

The uncertainty principle, on the other hand, reveals certain relations between the band-

widths of time and frequency. It can also be represented by the phase derivative through a

related covariance.

The work [DQY] extends the above mentioned results to non-smooth signals via Hardy space

decomposition.

For a real-valued square integrable signal f in the higher dimensional Euclidean space Rm,

one defines the associated Clifford monogenic signal, analogous to complex analytic signals, to

be the boundary value of the Cauchy integral of f . By virtue of the notion of monogenic signal

one can define various types of signal phases ([Fe], [FS]), but until [YQS], phase derivative as

frequency and related theoretical aspects in higher dimensional spaces had not been studied.

Various types of vector-valued phases are handy to be defined, but with less characteristic

properties in relation to applications. The work [YQS] has two contributions. One is the well

defined notion of the scalar-valued phase; and the other is analysis of the scalar-valued phase

derivative as frequency.

In this paper, with the scalar-valued phase notion we extend the fundamental results of [DQY]

to higher dimensions. We include an uncertainty principal for real-valued signals in higher

dimensions. For Clifford-valued signals of the axial-form we obtain an uncertainty principle

involving the defined scalar-valued phase derivative with an improved lower bound.

Our writing plan is as follows. Section 2 contains the basic knowledge of Clifford analysis

required by this study. In Section 3 we study the mean of Fourier frequency in terms of the

scalar-valued phase derivative. In the final section we prove the two types of uncertainty principle

in higher dimensions.
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2 Preliminary

The basic knowledge and notation in relation to Clifford algebra cited in this section are referred

to [BDS] and [DSS]. The formulation in relation to the scalar-valued phase derivative is taken

from [YQS].

Let e1, ..., em be basic elements satisfying eiej + ejei = −2δij , where δij = 1 if i = j; and

δij = 0 otherwise, i, j = 1, 2, · · · ,m. Let

Rm
1 = {x0 + x : x ∈ Rm},

where

Rm = {x = x1e1 + · · ·+ xmem : xj ∈ R, j = 1, 2, · · · ,m}

be identical with the usual Euclidean space Rm.

An element in Rm is called a vector. The real (complex) Clifford algebra generated by

e1, e2, · · · , em, denoted by Rm (Cm), is an associative algebra over the real (complex) field R

(C). A general element of Rm, therefore, is of the form x =
∑

S xSeS, where eS = ei1ei2 · · · eil ,
and S runs over all the ordered subsets of {1, 2, · · · ,m}, namely

S = {i1, i2, · · · , il}, 1 ≤ i1 < i2 < · · · < il ≤ m, 1 ≤ l ≤ m.

For a Clifford number x, we use Sc[x] to denote the scalar part of x and Nsc[x] the non-scalar

part of x. The multiplication of two vectors x =
∑m

j=1 xjej and y =
∑m

j=1 yjej is given by

xy = x · y + x ∧ y

with

x · y = −
m∑

j=1

xjyj =
1

2
(xy + yx) = − < x, y >

and

x ∧ y =
∑

i<j

eij(xiyj − xjyi) =
1

2
(xy − yx),

being a scalar and a bi-vector, respectively. In particular, we have x2 = − < x, x >= −|x|2 =

−∑m
j=1 x

2
j .

We define, respectively, the conjugation and the reversion of eS , to be eS = eil · · · ei1, ej = −ej

and ẽS = eil · · · ei1. As example, the Clifford conjugate of a vector x is x = −x; and the Clifford

reversion of a vector x is x̃ = x. They extend linearly to the whole real Clifford algebra. For

the complex Clifford algebra x =
∑

S xSeS , we define x =
∑

S xSeS . It is easy to verify that

0 6= x ∈ Rm
1 implies

x−1 =
x

|x|2 .
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The natural inner product between x and y in Cm, denoted by < x, y >, is defined to be the

complex number
∑

S xSyS, where x =
∑

S xSeS and y =
∑

S ySeS. The norm associated with

this inner product is

|x| =< x, x >
1
2= (

∑

S

|xS |2)
1
2 .

We will study functions defined in Rm taking values in Cm. Such functions are of the form

f(x) =
∑

S fS(x)eS , where fS are complex-valued functions. The definitions of several types of

Clifford monogenic functions in Rm are based on the Dirac operator D = ∂
∂x1

e1 + · · ·+ ∂
∂xm

em.

First we specify the “left” and “right” roles of the operators D by, respectively,

Df =
m∑

i=1

∑

S

∂fS

∂xi
eieS

and

fD =
m∑

i=1

∑

S

∂fS

∂xi
eSei.

If Df = 0 in a domain (open and connected) Ω, then we say that f is left-monogenic in Ω;

and, if fD = 0 in Ω, we say that f is right-monogenic in Ω. If f is both left- and right-monogenic,

then we say that f is monogenic.

We recall that

E(x) =
x

|x|m

is the Cauchy kernel in Rm. It is easy to see that E(x) is a monogenic function in Rm \ {0}.

If f ∈ L1(Rm;Cm), we define the Fourier transform of f by

f̂(ξ) =

∫

Rm
e−i<x,ξ>f(x)dx

and, formally, the inverse Fourier transform of f̂ by

f(x) =
1

(2π)m

∫

Rm
ei<x,ξ>f̂(ξ)dξ.

For square-integrable functions the Plancherel Theorem holds
∫

Rm
|f(x)|2dx =

1

(2π)m

∫

Rm
|f̂(ξ)|2dξ.

Themonogenic signal associated with f(x) is defined to be the non-tangential boundary value

of the Cauchy integral of f as a monogenic function in the upper-half space. The boundary value

reads 1
2 [f(x) +H[f ](x)], where

H[f ] = −
m∑

j=1

Rj(f)(x)ej ,

Rj(f)(x) = lim
ε→0+

∫

|x−ξ|>ε

xj − ξj

|x− ξ|m+1
f(ξ)dξ

5



is the jth-Riesz transform of f ([SW]). Clearly, if f(x) is real-valued, then H[f ](x) is vector-

valued. We will restrict ourselves to real-valued functions f.

Write f+(x) = 1
2 [f(x) +H[f ](x)] in the polar form A(f)e

[
H[f ]
|H[f ]|

θ(x)]
. Then in [YQS], A(f) =

1
2

√
f2 + |H[f ]|2 is called the amplitude, θ(x) = arctan |H[f ]|

f
the phase, defined between 0 and

π
2 ,

H[f ]
|H[f ]|θ(x) the phase vector, and e

[
H[f ]
|H[f ]|

θ(x)]
the phase direction. We also define the directional

phase derivative to be Sc
{
[Dθ(x)] H[f ]

|H[f ]|

}
, and the phase derivative or instantaneous frequency

to be

Sc
{
[Df+(x)][f+(x)]−1

}
.

Remark 2.1 One of the reasons of the promotion of the scalar valued phase derivative is as

follows. In terms of such defined phase derivative we can prove a counterpart result to (1) in

higher dimensions ([YQS]). Formulas like (1.1) exhibit significant relations between the phase

derivative and the Fourier frequency, providing reasons to define the phase derivative as instan-

taneous frequency (IF). Furthermore, some nice properties of the proposed scalar valued phase

derivative are proved, including positivity of the phase derivative of the Cauchy kernel([YQS]).

Remark 2.2 In the one dimensional case, the above defined directional phase derivative and

the phase derivative coincide. While in higher dimensions, they are different. Their relation is

given by the equation ([YQS])

Sc
{
[Df+(x)][f+(x)]−1

}

= Sc

{
[De

H[f ]
|H[f ]|

θ(x)
][e

H[f ]
|H[f ]|

θ(x)
]−1

}

= Sc

{
[D

H[f ]

|H[f ]| ] sin θ(x) cos θ(x)
}
+ Sc

{
[Dθ(x)]

H[f ]

|H[f ]|

}
.

Example 2.1 For the Poisson kernel f(x) = s
|s+x|m+1 , s > 0, we have f+ = 1

2
s+x

|s+x|m+1 , which

is proportional to the Cauchy kernel in Rm
1 . Through calculation, the instantaneous frequency

of the Poisson kernel signal is ms
|s+x|2 , clearly positive.

In ([LMcQ]) it is shown that

f±(x) =
1

2
[f(x)±H[f ](x)]

=
1

(2π)m

∫

Rm
ei<x,ξ> 1

2
(1± i

ξ

|ξ| )f̂(ξ)dξ

= lim
x0→0±

1

(2π)m

∫

Rm
e±(x0 + x, ξ)f̂(ξ)dξ,

where

e±(x0 + x, ξ) = e∓x0|ξ|ei<x,ξ> 1

2
(1± i

ξ

|ξ| )

are left monogenic in Rm
1 , being Fourier transforms of the Cauchy kernels in, respectively, the

upper and the lower spaces. It indicates that 1
2 [f(x)±H[f ](x)] ∈ H±

2 (Rm) are the boundary
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value functions of some left-monogenic functions in the upper and lower half space of Rm
1 .

Clearly, f = f+ + f−. We also have Ĥ[f ](ξ) = i
ξ

|ξ| f̂(ξ).

Let χ±(ξ) = 1
2(1 ± i

ξ

|ξ|). The functions χ± enjoy the usual projection properties χ2
± =

χ±, χ+ + χ− = 1, χ+χ− = χ−χ+ = 0. Moreover, χ± = χ± and |ξ|χ±(ξ) = ±iξχ±(ξ).

In this paper, we let ‖f‖L2 = 1.

3 Mean and Variance of Fourier Frequency in Terms of Mono-

genic Phase Derivatives

Definition 3.1 Let f(x) be a square-integrable signal and |f̂(ξ)|2 the density of the Fourier

frequency, then we can define the mean of the Fourier frequency by

< ξ >=
1

(2π)m

∫

Rm
iξ|f̂(ξ)|2dξ,

and the Fourier bandwidth by

B2 = σ2ξ =
1

(2π)m

∫

Rm
(iξ− < ξ >)2|f̂(ξ)|2dξ

= < ξ2 > − < ξ >2,

where < ξ2 >= 1
(2π)m

∫
Rm −ξ2|f̂(ξ)|2dξ.

Definition 3.2 Assume f, Df ∈ L2(Rm) with the decomposition f = f+ + f−, f̂± = χ±f̂ .

We define

< ξ >±=
1

(2π)m

∫

Rm
±|ξ||f̂±(ξ)|2dξ.

Lemma 3.1 [YQS] Assume f, Df ∈ L2(Rm) with the decomposition f = f+ + f−, f̂± = χ±f̂ .

Then

< ξ >±=

∫

Rm
Sc

{
[Df±(x)][f±(x)]−1

}
|f±(x)|2dx.

Next, we will study relations involving the mean of the Fourier frequency, the Fourier bandwidth

and the phase derivative.

Theorem 3.1 Assume f,Df ∈ L2(Rm) with the decomposition f = f+ + f−, f̂± = χ±f̂ . Then

the mean Fourier frequency < ξ > is identical with

< ξ >=

∫

Rm
Sc

{
[Df+(x)][f+(x)]−1

}
|f+(x)|2dx+

∫

Rm
Sc

{
[Df−(x)][f−(x)]−1

}
|f−(x)|2dx.
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Proof Since f, Df ∈ L2(Rm), clearly, f̂(ξ), ξf̂(ξ) ∈ L2(Rm). Hölder inequality implies

ξ|f̂(ξ)|2 ∈ L1(Rm), hence < ξ > is well defined. Applying the properties of χ±, we have

< ξ > =
1

(2π)m

∫

Rm
iξ|f̂(ξ)|2dξ

=
1

(2π)m

∫

Rm
iξχ+(ξ)|f̂(ξ)|2dξ +

1

(2π)m

∫

Rm
iξχ−(ξ)|f̂(ξ)|2dξ

=
1

(2π)m

∫

Rm
|ξ|χ+(ξ)|f̂(ξ)|2dξ −

1

(2π)m

∫

Rm
|ξ|χ−(ξ)|f̂(ξ)|2dξ

=
1

(2π)m

∫

Rm
|ξ|χ+(ξ)f̂(ξ)χ+(ξ)f̂(ξ)dξ −

1

(2π)m

∫

Rm
|ξ|χ−(ξ)f̂(ξ)χ−(ξ)f̂(ξ)dξ

=
1

(2π)m

∫

Rm
|ξ||f̂+(ξ)|2dξ + 1

(2π)m

∫

Rm
(−|ξ|)|f̂−(ξ)|2dξ

= < ξ >+ + < ξ >− .

Applying Lemma 3.1, we complete the proof.

Remark 3.1 If f(x) is real-valued, then f± = f ±H[f ] and f̂± = (1± i
ξ

|ξ|)f̂ . So |f̂+| = |f̂−|.
By Theorem 3.1, we have < ξ >= 0. Hence, as in the classical case, we will adopt < ξ >+ when

we study mean of Fourier frequency.

Example 3.1 For the Poisson kernel f(x) = s
|s+x|m+1 , we have f̂(ξ) = π

m+1
2

Γ(m+1
2

)
e−s|ξ| and

H[f ](x) = x̄

|s+x|m+1 . So f± = 1
2

s±x

|s+x|m+1 , being proportional to the Cauchy kernel in Rm
1 .

Through direct computation, we have |f±|2 = 1
4

1
|s+x|2m and Df±(x)[f±(x)]−1 = ±ms−x

|s+x|2 .

Using the definition of < ξ >, we have < ξ >= 1
(2π)m

∫
Rm iξ πm+1

Γ2(m+1
2

)
e−2s|ξ|dξ = 0.

On the other hand,

< ξ >+ + < ξ >− =
1

4

∫

Rm

ms

|s+ x|2m+2
dx+

1

4

∫

Rm

−ms
|s+ x|2m+2

dx

= 0.

The following theorem gives a similar result for < ξ2 >.

Theorem 3.2 Assume f,Df ∈ L2(Rm) with the decomposition f = f+ + f−, f̂± = χ±f̂ . Then

< ξ2 > =

∫

Rm
|Df+(x)|2dx+

∫

Rm
|Df−(x)|2dx

=

∫

Rm
|Df+(x) +Df−(x)|2dx

=

∫

Rm
|Df(x)|2dx

=

∫

Rm

∣∣∣[Df+(x)][f+(x)]−1
∣∣∣
2
|f+(x)|2dx+

∫

Rm

∣∣∣[Df−(x)][f−(x)]−1
∣∣∣
2
|f−(x)|2dx.

Proof Since f,Df ∈ L2(Rm), clearly, ξf̂(ξ) ∈ L2(Rm), |ξ|2|f̂(ξ)|2 ∈ L1(Rm), hence < ξ2 >

is well defined.

< ξ2 > =
1

(2π)m

∫

Rm
−ξ2|f̂(ξ)|2dξ
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=
1

(2π)m

∫

Rm
|ξ|2|f̂(ξ)|2dξ

=
1

(2π)m

∫

Rm
|ξ|2χ+(ξ)f̂(ξ)χ+(ξ)f̂(ξ)dξ +

1

(2π)m

∫

Rm
|ξ|2χ−(ξ)f̂(ξ)χ−(ξ)f̂(ξ)dξ

=
1

(2π)m

∫

Rm
|ξ|2|f̂+(ξ)|2dξ + 1

(2π)m

∫

Rm
|ξ|2|f̂−(ξ)|2dξ

= < ξ2 >+ + < ξ2 >− .

Applying the properties of χ± and Plancherel theorem, we have

< ξ2 >± =
1

(2π)m

∫

Rm
|ξ|2|f̂±(ξ)|2dξ

=
1

(2π)m

∫

Rm
|ξ|f̂±(ξ)|ξ|f̂±(ξ)dξ

=
1

(2π)m

∫

Rm
|ξ|χ±(ξ)f̂(ξ)|ξ|χ±(ξ)f̂(ξ)dξ

=
1

(2π)m

∫

Rm
iξχ±(ξ)f̂(ξ)iξχ±(ξ)f̂(ξ)dξ

=
1

(2π)m

∫

Rm
D̂f±(ξ)D̂f±(ξ)dξ

=

∫

Rm
Df±(x)Df±(x)dx

=

∫

Rm
|Df±(x)|2dx =

∫

Rm

∣∣∣[Df±(x)][f±(x)]−1
∣∣∣
2
|f±(x)|2dx.

Therefore,

< ξ2 > =

∫

Rm
|Df+(x)|2dx+

∫

Rm
|Df−(x)|2dx

=

∫

Rm
|Df+(x) +Df−(x)|2dx

=

∫

Rm
|Df(x)|2dx.

Example 3.2 For the Poisson kernel as in Example 1, using the definition of < ξ2 >, we have

< ξ2 > =
1

(2π)m

∫

Rm
|ξ|2|f̂(ξ)|2dξ

=
1

(2π)m

∫

Rm
|ξ|2 πm+1

Γ2(m+1
2 )

e−2s|ξ|dξ

=
ωm−1

sm+2

πΓ(m+ 2)

22m+2Γ2(m+1
2 )

.

On the other hand,

< ξ2 >+ + < ξ2 >− =

∫

Rm
|Df+(x)|2dx+

∫

Rm
|Df−(x)|2dx

=

∫

Rm
|[Df+(x)][f+(x)]−1|2|f+(x)|2dx

+

∫

Rm
|[Df−(x)][f−(x)]−1|2|f−(x)|2dx

9



=
1

2

∫

Rm

m2s2 + |x|2
|s+ x|2m+4

dx

=
1

4

ωm−1

sm+2
[
m2Γ(m2 )Γ(

m
2 + 2) + Γ2(m2 + 1)

Γ(m+ 2)
]

=
ωm−1

sm+2

πΓ(m+ 2)

22m+2Γ2(m+1
2 )

= < ξ2 > .

Theorem 3.3 Assume f, Df ∈ L2(Rm). With the decomposition f = f++ f−, f̂± = χ±f̂ , we

have

B2 =

∫

Rm
{Sc[(Df+(x))(f+(x))−1]− < ξ >}2|f+(x)|2dx

+

∫

Rm
{Sc[(Df−(x))(f−(x))−1]− < ξ >}2|f−(x)|2dx

+

∫

Rm

∣∣∣Nsc[(Df+(x))(f+(x))−1]
∣∣∣
2
|f+(x)|2dx

+

∫

Rm

∣∣∣Nsc[(Df−(x))(f−(x))−1]
∣∣∣
2
|f−(x)|2dx.

Proof Applying Theorem 3.1 and 3.2, we have

B2 = < ξ2 > − < ξ >2

= < ξ2 > −2 < ξ > [< ξ >+ + < ξ >−]+ < ξ >2
∫

Rm
|f(x)|2dx

=

∫

Rm

∣∣∣[Df+(x)][f+(x)]−1
∣∣∣
2
|f+(x)|2dx+

∫

Rm

∣∣∣[Df−(x)][f−(x)]−1
∣∣∣
2
|f−(x)|2dx

− 2 < ξ >

∫

Rm
Sc

{
[Df+(x)][f+(x)]−1

}
|f+(x)|2dx

− 2 < ξ >

∫

Rm
Sc

{
[Df−(x)][f−(x)]−1

}
|f−(x)|2dx

+

∫

Rm
< ξ >2 |f+(x)|2dx+

∫

Rm
< ξ >2 |f−(x)|2dx.

It is easy to see that
∫

Rm

∣∣∣[Df+(x)][f+(x)]−1
∣∣∣
2
|f+(x)|2dx+

∫

Rm

∣∣∣[Df−(x)][f−(x)]−1
∣∣∣
2
|f−(x)|2dx

=

∫

Rm
{Sc[(Df+(x))(f+(x))−1]}2|f+(x)|2dx

+

∫

Rm
{Sc[(Df−(x))(f−(x))−1]}2|f−(x)|2dx

+

∫

Rm

∣∣∣Nsc[(Df+(x))(f+(x))−1]
∣∣∣
2
|f+(x)|2dx

+

∫

Rm

∣∣∣Nsc[(Df−(x))(f−(x))−1]
∣∣∣
2
|f−(x)|2dx.

Therefore, we have

B2 =

∫

Rm
{Sc[(Df+(x))(f+(x))−1]− < ξ >}2|f+(x)|2dx

10



+

∫

Rm
{Sc[(Df−(x))(f−(x))−1]− < ξ >}2|f−(x)|2dx

+

∫

Rm

∣∣∣Nsc[(Df+(x))(f+(x))−1]
∣∣∣
2
|f+(x)|2dx

+

∫

Rm

∣∣∣Nsc[(Df−(x))(f−(x))−1]
∣∣∣
2
|f−(x)|2dx.

The proof is complete.

Remark 3.2 If, in particular, Hf
|Hf | =

x̄
|x| , then we have

Nsc[(Df±(x))(f±(x))−1] =
DA(f±)

A(f±)
+

(m− 1)x

|x|2 sin2 θ(x).

Let m = 1, B2 is just the classical case.

4 Uncertainty Principle

Definition 4.1 Assume f(x) ∈ L2(Rm). Define the mean of the space variable x by

< x >=

∫

Rm
ix|f(x)|2dx,

and the duration by

σ2x =

∫

Rm
(ix− < x >)2|f(x)|2dx.

Similarly to Theorem 3.1 and Theorem 3.2, we have

Theorem 4.1 Assume f(x), xf(x) ∈ L2(Rm) with the decomposition f̂(ξ) = f̂+(ξ) + f̂−(ξ),

f̂±(ξ) = ̂[χ∓f ](ξ). Then the mean of the space variable x is identical with

< x >= −
∫

Rm
Sc

{
[Df̂+(ξ)][f̂+(ξ)]−1

}
|f̂+(ξ)|2dξ −

∫

Rm
Sc

{
[Df̂−(ξ)][f̂−(ξ)]−1

}
|f̂−(ξ)|2dξ.

Theorem 4.2 Assume f(x), xf(x) ∈ L2(Rm) with the decomposition f̂(ξ) = f̂+(ξ) + f̂−(ξ),

f̂±(ξ) = ̂[χ∓f ](ξ). Then

< x2 > =

∫

Rm
|Df̂+(ξ)|2dξ +

∫

Rm
|Df̂−(ξ)|2dξ

=

∫

Rm
|Df̂+(ξ) +Df̂−(ξ)|2dξ

=

∫

Rm

∣∣∣[Df̂+(ξ)][f̂+(ξ)]−1
∣∣∣
2
|f̂+(ξ)|2dξ +

∫

Rm

∣∣∣[Df̂−(ξ)][f̂−(ξ)]−1
∣∣∣
2
|f̂−(ξ)|2dξ.

Next, we simplify the existing proof of known uncertainty principle ([Ra]). That is

11



Theorem 4.3 For real-valued signal f(x), if f(x),Df, xf(x) ∈ L2(Rm), then σxσξ ≥ m
2 . More-

over, if and only if when

f(x) = e−
s
2
(|x|2−2i<x>·x), s > 0,

then the equal relation holds.

Proof Since f is assumed to be a real-valued signal, we have < ξ >= 0 (See Remark 3.1). The

bandwidth is then reduced to

σ2ξ =
1

(2π)m

∫

Rm
|ξ|2|f̂(ξ)|2dξ.

Recall that the duration is
∫

Rm
(ix− < x >)2|f(x)|2dx =

∫

Rm
|x+ i < x > |2|f(x)|2dx.

From Theorem 3.2, and using Hölder’s inequality, we have

σ2xσ
2
ξ =

∫

Rm
|x+ i < x > |2|f(x)|2dx×

∫

Rm
|Df(x)|2dx

≥
∣∣∣∣
∫

Rm
[Df(x)](x+ i < x >)f(x)dx

∣∣∣∣
2

=

∣∣∣∣
∫

Rm
[Df(x)]f(x)(x− i < x >)dx

∣∣∣∣
2

.

It is easy to see that

[Df(x)]f(x)(x− i < x >) =
1

2
D[f2(x)(x̄− i < x >)]− m

2
f2(x),

On the other hand,
∫

Rm
D[f2(x)(x− i < x >)]dx = iξ[f2(x)(x̄− i < x >)̂](ξ)|ξ=0 = 0. (4.1)

Therefore,

σ2xσ
2
ξ ≥

∣∣∣∣
∫

Rm
[Df(x)]f(x)(x− i < x >)dx

∣∣∣∣
2

=

∣∣∣∣−
m

2

∫

Rm
f2(x)dx

∣∣∣∣
2

= (
m

2
)2.

The last step uses the unit energy assumption of f(x).

The use of Hölder’s inequality implies that if and only if (x + i < x >)f(x) and Df(x)

are linear dependent, then the equality holds. We have f(x) = e−
s
2
(|x|2−2i<x>·x). The proof is

complete.

Example 4.1 For the Poisson kernel f(x) = s
|s+x|m+1 , through directly computation, we have

σxσξ =

√
m(m+1)

2 > m
2 .
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Remark 4.1 The definition of the phase derivative and the above results are also valid for signals

of the axial form f(x) = U(r) + x̄
r
V (r) = ρ(r)e

x̄

r
φ(r) with r = |x|. Here ρ(r) =

√
U2(r) + V 2(r)

and φ(r) = arctan V (r)
U(r) . If an axial f(x) is also a monogenic signal, then we call it axial monogenic

signal.

Lemma 4.1

Nsc
{
[De

x̄

r
φ(r)]e−

x̄

r
φ(r)

}
x̄ = (m− 1) sin2 φ(r).

Proof By directly computation, we have

[De
x̄

r
φ(r)]e−

x̄

r
φ(r)

= D[cosφ(r) +
x̄

r
sinφ(r)][cosφ(r)− x̄

r
sinφ(r)]

= [− sinφ(r)Dφ(r) + (D
x̄

r
) sinφ(r) + cosφ(Dφ(r))

x̄

r
][cosφ(r)− x̄

r
sinφ(r)]

= [− sinφ(r)Dφ(r) +
m− 1

r
sinφ(r) + cosφ(Dφ(r))

x̄

r
][cosφ(r)− x̄

r
sinφ(r)]

= − sinφ cosφDφ(r) + sin2 φDφ(r)
x̄

r
+
m− 1

r
sinφ cos φ

− (m− 1)x̄

r2
sin2 φ+Dφ(r)

x̄

r
cos2 φ+Dφ(r) sinφ cosφ

= φ′(r) +
m− 1

r
sinφ cos φ− (m− 1)x̄

r2
sin2 φ.

Then

Nsc
{
[De

x̄

r
φ(r)]e−

x̄

r
φ(r)

}
x̄ = −(m− 1)x̄

r2
sin2 φx̄ = (m− 1) sin2 φ(r).

The proof is complete.

For axial monogenic signals, we obtain an improved uncertainty principle involving the phase

derivative as follows.

Theorem 4.4 Let f(x) be an axial monogenic signal with the form U(r) + x̄
r
V (r). If f(x), Df

and xf(x) ∈ L2(Rm), then σxσξ ≥
√
[−m

2 + (m− 1)
∫
Rm V 2dx]2 +Cov2ξx, where

Covξx =< xSc[(Df)f−1] > − < x >< ξ >,

< xSc[(Df)f−1] >=

∫

Rm
ixSc[(Df)f−1]|f(x)|2dx.

Proof Without loss of generality, we may assume < x >= 0, < ξ >= 0. Due to Theorem 4.3,

we have

σ2xσ
2
ξ ≥

∣∣∣∣
∫

Rm
[Df(x)]f(x)xdx

∣∣∣∣
2

.

If we write f(x) in the polar form ρe
x̄

r
φ, we have

[Df(x)]f(x)x
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= [D(ρe
x̄

r
φ)]ρe−

x̄

r
φx

= [(Dρ)e
x̄

r
φ + ρ(De

x̄

r
φ)]ρe−

x̄

r
φx

= (Dρ)ρx+ ρ2[(De
x̄

r
φ)e−

x̄

r
φ]x

=
1

2
D[ρ2x̄]− m

2
ρ2 + ρ2[De

x̄

r
φ(r)]e−

x̄

r
φ(r)x.

By the same reason as in the proof of Theorem 4.3, we have
∫

Rm
D[ρ2x]dx = 0.

Then
∫

Rm
[Df(x)]f(x)xdx = −m

2

∫

Rm
ρ2dx+

∫

Rm
ρ2[De

x̄

r
φ(r)]e−

x̄

r
θ(r)x̄dx

= −m
2

+

∫

Rm
ρ2Sc[(Df)f−1]x̄dx

+

∫

Rm
ρ2Nsc

{
[De

x̄

r
φ(r)]e−

x̄

r
φ(r)

}
x̄dx.

Remark 2.2 is used in the second equation. Applying Lemma 4.1, we have
∫

Rm
ρ2Nsc

{
[De

x̄

r
φ(r)]e−

x̄

r
φ(r)

}
x̄dx

= (m− 1)

∫

Rm
ρ2 sin2 φdx

= (m− 1)

∫

Rm
V 2(r)dx.

This implies

σ2xσ
2
ξ ≥

∣∣∣∣
∫

Rm
[Df(x)]f(x)xdx

∣∣∣∣
2

=

∣∣∣∣−
m

2
+ (m− 1)

∫

Rm
V 2dx+ i

∫

Rm
ixSc[(Df)f−1]|f(x)|2dx

∣∣∣∣
2

=

∣∣∣∣−
m

2
+ (m− 1)

∫

Rm
V 2dx+ iCovξx

∣∣∣∣
2

.

The proof is complete.

Remark 4.2 When m = 1, Theorem 4.4 reduces to the classical uncertainty principal.

For the axial monogenic signal f(x) = U(r) + x̄
r
V (r), we have x̄

r
V (r) = HU(r). Therefore,

∫

Rm
U2(r)dx =

∫

Rm
V 2(r)dx =

1

2
‖f‖2 = 1

2
.

Then we have

Corollary 4.1 Let f(x) be a axial monogenic signal. If f(x), Df, xf(x) ∈ L2(Rm), then

σxσξ ≥
1

2

√
1 + 4Cov2ξx.
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