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Abstract Boundary value problems on a manifold with smooth boundary are closely
related to the edge calculus where the boundary plays the role of an edge. The problem
of expressing parametrices of Shapiro—Lopatinskij elliptic boundary value problems
for differential operators gives rise to pseudo-differential operators with the trans-
mission property at the boundary. However, there are interesting pseudo-differential
operators without the transmission property, for instance, the Dirichlet-to-Neumann
operator. In this case the symbols become edge-degenerate under a suitable quanti-
sation, cf. Chang et al. (J Pseudo-Differ Oper Appl 5(2014):69-155, 2014). If the
boundary itself has singularities, e.g., conical points or edges, then the symbols are
corner-degenerate. In the present paper we study elements of the corresponding corner
pseudo-differential calculus.
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1 Introduction

Elliptic operators on a smooth manifold with boundary are determined by a principal
symbolic hierarchy o = (09, 1) where o9 = 0p(A) is the homogeneous principal
symbol of the given elliptic operator A and o1 = o1(A) the twisted homogeneous
boundary symbol which is responsible for the boundary conditions. For instance, if
A=A=3", 82/8)%/ is the Laplacian in the half-space R” = {x = (x/, x,) : x' =
(x1,...,xn—1) € R"! x, > 0}, then we have oo(A)(§) = —|&|?, considered for
& #0, and

ol(A)E) = —|&'17 +0%/07, : H'(Ry) —> H T (Ry) (L.1)
for & # 0. Here & and & are the covariables belonging to x and x’, respectively;
clearly, if A has variable coefficients, then we have op(A) = 0p(A)(x, &) and o1 (A) =
o1(A)(x', &"). In (1.1) we assume an arbitrary s > 3/2. Then (1.1) is a family of

Fredholm operators, even surjective in this case, and there are many choices of operator
families

o1(T)(E) : H'(Ry) — C

which fill up (1.1) to a column matrix of isomorphisms

H 2 (Ry)
sE) = () @ @D~ o
C

For instance, for T we can take Ty, defined by Tyu := (9/ 8xn)ku|xn=0, correspond-
ing to Dirichlet (for k = 0) or Neumann (for k = 1) conditions. There is also the
famous category of mixed elliptic problems where the boundary is subdivided into
submanifolds with smooth boundary, e.g.,
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n—1 —=n—1

R =R"UR} (1.2)

1

—n— —n—1
for R" = {x' = (x", xy_1) € R" s x,_; <0}, x" = (x1, ..., Xn_2), and R:_
—n—1

determined by x,_; > 0. Then R"2> =R_ N ETI is the common boundary. In
mixed boundary value problems we assume boundary conditions with a jump across
R"—2, for instance, Dirichlet conditions on the minus and Neumann conditions on the
plus side.

Reducing the Neumann problem to the boundary by means of the Dirichlet problem
gives rise to a classical elliptic first order pseudo-differential operator on the Neumann
side of the boundary which has not the transmission property at R” 2, see, for instance,
[4]. A rigorous pseudo-differential calculus of boundary value problems in this case
requires the edge calculus which treats the interface on the boundary as an edge.
However, if the edge itself has singularities, then we have a case of corner singularities,
and this is just the situation of the present paper. For instance, instead of (1.2) we can
consider a decomposition

R*'=M_uM, for M, :=R'" x I%, M_ :=R" Nint My, (1.3)

Iseens Xn-3
where 72 is a cone in the (x,_2, Xn—1)-plane, for (¢, r) := (x,—2, x,—1) defined by

I .= {(t,r)eRz:tz 1,0<r <1} and I :={(t,tr):te@+,05r§ 1}.

1.4
In this case M is a domain with boundary R"~3 x 97* and edge R" 3. The cone
12 is regarded as a corner with two axial variables ¢t € @+ and 0 < r < 1, see
also notation below in Sect. 2. The interval / is treated as a manifold with conical
singularities r = 0 and r = 1. The task to establish an algebra of pseudo-differential
operators with ellipticity and parametrices is voluminous. Therefore in this article we
develop some typical elements of the general calculus. Examples and special cases
will be investigated in a forthcoming paper. More ideas and motivation may also be
found in [11].

This article is organised as follows. The material in Sects. 1 and 2 consists of neces-
sary preparations of the iterative process of establishing pseudo-differential structures
on higher singular configurations. In Sect. 2.1 we define a category of manifolds with
second order singularities which contains, in particular, domains with non-smooth
boundary, e.g., wedges as sketched before. In Sect. 2.2 we establish necessary tools
on weighted Sobolev spaces with double weights, based on the Mellin transform and
with a control at conical exits to infinity of the underlying configuration. Section 2.3
treats subspaces with iterated asymptotics, and we introduce Green symbols which
play a role as specific operator-valued symbols in the corner pseudo-differential cal-
culus. Section 3 is devoted to one of the crucial ingedients of the corner calculus,
namely, operator-valued Mellin symbols with a control of asymptotics in corner axis
direction, combined with asymptotics close to the conical singularities on the base 1
of the model cone of the wedge. In Sect. 4.1 we pass to the non-smoothing elements
of the corner calculus, first to corner-degenerate differential operators and their prin-
cipal symbolic hierarchies associated with the stratification of the underlying corner
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configuration. After that we consider corner-degenerate pseudo-differential symbols
and construct various quantisations in form of operator-valued symbols with twisted
homogeneity, referring to the spaces on the infinite stretched cone /" from Sects. 2.2
and 2.3. The main new results of Sect. 4.1 are Proposition 4.7 and Theorem 4.8. Owing
to the ideas of the iterative program they appear as natural generalisations of the first
order edge calculus. In Sect. 4.2 we establish other essential structures of the corner
pseudo-differential calculus, in particular, Theorems 4.9 and 4.12.

After the experience with pseudo-differential operators on manifolds with conical or
edge singularities, see [16,20], or the monographs [21,22], the program of expressing
parametrices to elliptic differential operators with some typical degenerate behaviour
in stretched coordinates, creates a number of additional types of operators referring
to the singularities or strata of the underlying configuration. Those are, for instance,
Green, trace, and potential operators as they already appear in the solution process
of classical elliptic boundary value problems, see, Boutet der Monvel [1], or Rempel
and Schulze [14]. Another important class are Mellin operators. Specific operators of
that kind have been discovered by Eskin [7] in connection with a pseudo-differential
algebra generated by truncated operators on the half-axis. Mellin operators in more
general form have been established in cone theories, cf. [16,23], and boundary value
problems without the transmission property at the boundary, cf. [15,25], and later on
in edge theories, see [20,22].

Another specific point are weighted cone and edge spaces and subspaces with
asymptotics where the above-mentioned operators act in a natural way. In the edge
situation the exponents inr”, p € C, for the distance variable r to the singularity may
be variable, and this requires adequate singular functions of such edge asymptotics
and new elements of the Green and Mellin calculus. Variable asymptotics in that
sense have been studied in general form in [21]. Since then this concept is integrated
in the subsequent development under the key-words variable discrete and continuous
asymptotics, see, in particular, [26,28], and the references there.

All these aspects formulate in advance the structure of parametrices and regularity
properties of solutions to elliptic equations on a singular manifold, also on manifolds
with higher edges and corners. Because of the extent of such a program here we confine
ourselves to a part of the new structures that participate in parametrices and regularitiy
for boundary value problems on corner manifolds.

2 Weighted Spaces on Manifolds with Boundary and Edge
2.1 Singular Manifolds
Let M be a stratified space, in our case a disjoint union
M = so(M) U s (M) Usz(M)
of strata s;(M) C M, j =0, 1,2, which are embedded smooth manifolds,

dimso(M) =2+d,dims; (M) =1+d,dims,(M) =d
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for some d € N\{0}. Here M\s>(M) is a smooth manifold with boundary
A(M\s2(M)) = s1(M), so(M) = int (M\s2(M)), and so(M) =: Z is an edge of
M. We assume that Z has a neighbourhood V in M with the structure of a locally
trivial 72-bundle over Z. Here I := {r e R+ : 0 < r < 1} is the unit interval and

I := Ry x /({0}y x I})

the infinite straight cone with base 7. The assumed length of the interval is unessential;
we could take an interval {co < r < c¢1} for any ¢g < ¢ as well. We often consider
the stretched cones

I" =Ry x1I, I":=RyxI

with the splitting of variables (¢, r) and the stretched wedges I x RY, TN x R? in
the variables (z, r, 7).
Incidentally the stratification of M will be indicated by the sequence of strata

s(M) := (so(M), s1(M), s2(M)). 2.1

An example is the wedge M = T2 x R4, In this case we have so(M) = int [ x
RY, s (M) = 31" x R, and so(M) = R?. The boundary 87" has two components

01", 31" (2.2)

that are copies of R, associated with 9/ = {0, 1}.

With the above-mentioned V we can also associate an 1”-bundle over Z , l.e., a
locally trivial bundle with fibre 7. This contains corresponding /" - and I -subbundles.
The transitions of fibres of the //\-bundle are defined as homeomorphisms Ry x I —
R x I that are restrictions of diffeomorphisms R x I — R x I (as smooth manifolds
with boundary) to R, x 1.

In the case M = I2 x RY the 1”-bundle is trivial, namely, TN x R4 , and it contains
the trivial subbundles 7 x R? and I x R?. The space M := I x R? plays the role
of the stretched manifold associated with M. It is obtained from M by attaching the
I-bundle 7 x R? to M\Z.

For general M we obtain the stretched manifold M by invariantly attaching the
above-mentioned /-bundle V over Z to M\ Z.

For purposes below we call a trivialisation of V over a coordinate neighbourhood
D C Z asingular chart

x:V|D—>IA><]Rd.

This is considered together with a chart o : D — R? on Z such that xpor =m0 x
with 7 being the respective bundle projection. The restriction of x to V|p\Z gives
rise to a map

Xxst: VID\Z - Ry x I x RY (2.3)

and to a local splitting of variables (¢, r,z) € Ry x I x R9.
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Remark 2.1 Our space M will also be interpreted as a manifold with boundary M :=
d(M\Z) U Z where 0 M is a manifold with edge Z. The program of the analysis here
is to perform a calculus of boundary value problems for pseudo-differential operators
that do not necessarily have the transmission property at d(M\Z). This requires a
suitable corner pseudo-differential approach. According to (2.1) the operators A in
this calculus have a principal symbolic hierarchy

0 (A) = (00(A), 01(A), 02(A)). 2.4

This will be developed below.

The space M with the stratification (2.1) belongs to the category 91, of mani-
folds with second order singularities, in the terminology of [24]. While 977y indicates
smoothness, 91 is the category of manifolds with conical singularities or edge. The
elements B € 91| have a stratification

s(B) = (s0(B), s1(B))

with ¥ := s1(B) € 9y being the conical singularity or edge of B and so(B) :=
B\s1(B) € My the main stratum. It is assumed that Y has a neighbourhood W C B
with the structure of a locally trivial X*-bundle over Y for some X € 9. Let
7w : W — Y be the bundle projection. Trivialisations

x:Wlg —> X2 xR,

q := dimY, belonging to charts xo : G — R? on Y (where xp o 7 = 7 o x) will be
referred to as singular charts on B. The restriction of x to W|g\Y gives rise to a map

xst: Wig\Y = Ry x X x R? (2.5)

and to a local splitting of variables (r, x, y) € Ry x X X R,

Similarly as before the X*-bundle over ¥ can be considered together with an
R x X bundle over Y. This contains an X-bundle W’ over Y as a subbundle. It can be
invariantly attached to B\Y, and we then obtain the stretched manifold B associated
with B. Then B is a manifold with smooth boundary 3B = W’. An example is the
case B := X2 x RY which can be identified with W. Moreover, B = R+ x X x RY,
and W = X x RY.

2.2 Weighted Corner Spaces

Let us now establish some tools on weighted corner Sobolev spaces. Consider the
Mellin transform

Mu(w) ;=/ P u(r)dr,
0
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first for u € C3°(Ry), with the inverse M~ lg)(r) = fr,g rgw)dw, dw =
Qmi)~'dw. Here

I'g:={weC:Rew =g}

for some real 8. Incidentally, in order to indicate the variable r and its covariable
w € C in the Mellin transform we also write M,_,,, rather than M. Extending the
Mellin transform to, say, r” Lz(R+), y € R, then we take § = 1/2 — y. In this case
M induces an isomorphism

My 7 L2 (Ry) = L2(T1j2-)),
and M,, is called the weighted Mellin transform with weight y. The weighted Mellin

Sobolev space H*:"1 (R ) of smoothness s and weight y; is defined as the completion
of C§°(Ry) with respect to the norm

1/2
Nl 3 ryy = / (W) | (My 1) (w) Pd w )
T2y

s, Y1 € R.
Similar spaces will play a role with respect to a second half-axis variable ¢ and its
Mellin covariable v € C, and a weight y». We define the space

HS (R, x RY)

for some n € N as the completion of C§°(R,. x R") with respect to the norm

1/2
lull 72 R, xR = [/ / (0, E)|(My—y Fygu) (v, €)2d vdé}
" IT (14n) 22—y

(2.6)
with F,_, ¢ being the Fourier transform in R” 5 x. Then for any closed C° manifold
X we have the space H*72(R4+ x X) with the norm

N 1/2
lutllpera @y = § D N@ju o Gdr, X 1)~ g @, iy
j=1
Here x; : U; — R", j = 1,..., N, are charts for an open covering of X by
coordinate neighbourhoods {Uy, ..., Uy}, and {¢1, .. ., ¢y} is a subordinate partition

of unity.

If a Fréchet space E is a left module over an algebra A then we set [a]E =
closure of {ae : e € E} in E. Moreover, if Ey, E; are Fréchet spaces, embedded in
a Hausdorff topologial vector space, we define the non-direct sum Eg + E7 in the
Fréchet topology from the identification Eg + E| = Eo @ E1/A for A := {(e, —e) :
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e € Eg N E1}. In particular, the non-direct sum of Hilbert spaces is again a Hilbert
space as the orthogonal complement of A in the direct sum.
We define

K (Ry) = {ou+ (1 —o)v:u € HYY (Ry), v € H Ry)), 2.7)

s,y € R, where w is a cut-off function on the r half-axis, i.e., » € COO(RJF) real-
valued, w = 1 close to r = 0, @ = 0 for r off some neighbourhood of r = 0. The
choice of w is not essential for (2.7). However, we fix w and endow the space with the
Hilbert space structure of the non-direct sum

K2 (Ry) = [0]lH™ (Ry) +[1 — o] H* (R4).

Moreover, let
Ry = (r) 7K (Ry) 2.38)

for any s, y, e € R. For s = y = ¢ = 0 we have natural identifications
KOOORy) = KOORy) = HOORy) = LA(Ry). (2.9)
The K%%%(R ,)-scalar product induces non-degenerate sesquilinear pairings
KOV R x K57V ¢(Ry) > C and HYYRy) xH 5 7"(R4) — C (2.10)

for every s, ¥, e € R.
Note that the dilation operator ¢s : u(r) +— u(ér), 6 € R4, acts both on

HSY (Ry), HS(R,), and K5V (R,) or K73¢(R.y). Moreover, 8] = (3/dr)/ induces
continuous operators

ol HY (Ry) — MY T (Ry), HY(Ry) — H ™ (Ry),
K7 (Ry) = K57V (Ry)

where
o =8/1500 15", 8 € Ry

For s € N we have an equivalence of norms

1/2
lallicor @y ~ {0, ) + 10510, )2 .11
More generally, if X is a closed C° manifold we define
K7 (XM 1= (0] (X7) 4 [1 = 0] Higne (X7). (2.12)

Here Hj,..(X") is the set of all u € Hj} (R x X)|g, xx such that for any chart

x:U — R'onXand B : Ry x U — R defined by B(r, x) = (r, rx(x)) we
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have (1 — w)gu o B~! € HS(R'™), for any ¢ € C5°(U) and a cut-off function  on
the r half-axis. There is an anologue of the relation (2.11) for the spaces (2.12), cf.
[27, Proposition 1.2].

For a function in (r, x) € X" we set

Cks)u(r, x) == 8Dy 5r, x), 8 € Ry (2.13)

This is a group action on the space k%7 (X”) in the following sense. A Hilbert space
H is said to be endowed with a group action ¥ = {«s}scr,, if ks : H — H is an
isomorphism for every §, moreover, ksk, = ks, §, v € Ry, and if 8§ — «sh defines
an element of C(R4, H) forevery h € H.

Now if H is a Hilbert space with group action, then

W (RY, H), (2.14)

s € R, is defined as the completion of Cgo (RY, H) with respect to the norm

1/2
leellyys g, by = {/<n>2xllkg7§ﬁ(n)llildn] :

for d n := (2m)~9dn and the Fourier transform i (n) = Fy_,u(n) in RY.
Clearly the spaces (2.14) depend on the choice of «. If necessary we write

WHRY, H)e

rather than (2.14).
It can be easily verified that W* (R4, H),, C S'(R?, H). Analogously as in notation
for standard Sobolev spaces for any open set 2 € R? we have the spaces

Wgomp(Q,H)K and Wy (R, H),

where W(on, (€2, H) e consists of all elements of W*(R?, H), which have compact
support in 2, while W} (2, H), is the space of those u € D'(Q, H) such that
ou € W(R?, H), for every ¢ € C3°(R).

Recall from [21] that a motivation of the definition of (2.14) is the anisotropic
reformulation of standard Sobolev spaces H®(R™ x R?) over a Cartesian product
R"™ x R? 3 (x, y) as

HYR"™ xRY) = W' (RY, H*(R™)), for (ksu)(x) = 8"?u(sx), § € Ry. (2.15)

More generally we have the following iterative property.

Proposition 2.2 [21] Let H be a Hilbert space with group action k = {ks}ser, - Then
also W*(RY, H), is a Hilbert space with group action x = {xs}scr, for (xsu)(y) :=
892 k5u(8y) where ks acts on the values of u in H, and for every p € N we have

w? (Rps w? (qu H)K)X =W (R[J+q’ H).
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Remark 2.3 Let ]Ri be the half-space in R? 5 y = (yy, ..., y4), defined by y, > 0.
Analogously we define R{i, R? and R? by y, >0, y;, <0, andy, <0, respectively.
Setting

WHRL, H) := W*(RY, H)hR‘i’ WS(Eq_, H)) :={ueW @RI H)):suppu C RZ}
we have a natural identification
WS R, H) = W (RY, H)/Wy[RL, H),

and both W*(R%, H) and Wy (Eq , H) are Hilbert spaces with group action, induced

by x ={xs}ser, of Proposition 2.2. The group action W @®R?, H)is simply the restric-

tion of x to the subspace of elements supported by R?, while that on W*(RZ, H) is
the corresponding quotient map.

Remark 2.4 1t is necessary to formulate more results on abstract wedge spaces
W?H(R?, H) for Hilbert spaces H with group action « in general. In our applica-
tions we have in mind more specific spaces, such as weighted cone Sobolev spaces
H = K57 (X"), etc. Also Fréchet subspaces with group action will be of interest.
The following invariance property under diffeomorphisms is valid for the concrete
spaces of our applications, cf. [22, Theorem 3.1.29]. Let €2, Q C RY be open sets and
x : © — $ adiffeomorphism. Then the pull back x* induces isomorphisms

X Woomp(Q H) = Wi (R, H), Wi (R, H) — Wi, (2, H)
for every s € R.

Let us consider the space (2.14) for ¢ = 1. Since W* (R, H) C S'(R, H) it makes
sense to form W*(Ry, H) := W (R, H)|g, . Moreover, let W R_,H) :={u €
WS(R, H) : suppu C R_}. The latter space is closed in W*(R, H), and we have a
canonical identification

W Ry, H) = W' (R, H)/WSR_, H). (2.16)

Notation with calligraphic letters such as H*"' (Ry), " (Ry), WS (RY, H),
etc., indicate a situation where the underlying manifold such as R or R? affects prop-
erties ‘up to the non-compacts ends’ of the configuration, e.g., uptor — 0, r — oo,
or |y| — oco. However, if such aspects are not in the focus of considerations we prefer
notation similar to standard Sobolev spaces.

An example are the following spaces on the interval I, regarded as a compact
manifold with conical singularities » = 0 and r = 1, namely,

HPONI (D) = [wpIHY O (Ry) + 9 [or THY Y (R4) for s, 71,0, 71,1 € R,
(2.17)
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defined by
P R_o={reR:—co<r<1}—> Ry, 9(r)=—r+1, (2.18)

and cut-off functions wq, w; on the half-axis such that wy(r) + w((—r +1) = 1 for all
r € I. For convenience from now on we assume that the weights at the end points of 1
are equal, i.e., 1,0 = y1.1. The generalisation to different y; o, 1,1 is straightforward.

Definition 2.5 Let B be a manifold with edge Y (not necessarily compact). Then

H[SIL)ZI)(B) for s, y1 € R is defined as the set of all u € Hi;c(B\Y) such that for any

singular chart
x:Wlg > X2 xR?
belonging to a chart o : G — R? on Y and

Xst := Xlwig\y : Wig\Y — X" x RY

we have

(e )fou € WSRY, K57 (X)),
for any 0 € C*°(B) of the form 0 = ygoo for some cut-off function oy on the
half-axis.

Let us now recall a few notions on operator-valued symbols with twisted symbolic
estimates that we also need later on in connection with edge amplitude functions of
second singularity order. _

Given Hilbert spaces H and H with group action « and &, respectively, by S¥(U x
RY; H, H)jor u € Rand open U C R” we denote the set of all a(y, n) € C®°(U x
RY, L(H, H)) such that

IRy DS DEaCy, Mbcull g iy < el ! (2.19)
forall (y,n) € KxR?, K € U, @« € N, 8 € N4, forconstants c = ¢(K, «, ) > 0.

Moreover, let B
SM(U x (RI\{O}); H, H), (2.20)

v € R, be the space of all a(,)(y, n) € C*®U x (R7\{0}), L(H, ﬁ)) such that

awy (v, 81) = 8"Rsaw) (v, mk; |

forall § € Ry. Then SS(U x RY; H, ﬁ) C SM(U xRY; H, ﬁ), the set of classical
elements a(y, n), is defined by the condition

N

a(y,m — D xmag—jy,n) € S*"NVW x RY; H, H)
=0
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for suitable ag,— j)(y, n) € SE=D (U x (RI\{0)); H, H), j € N, forevery N € N.
Here x is an excision function (i.e., an element of C*° (RZ) which is equal to O for
In] < eo and equal to 1 for || > e, for some 0 < gy < ¢1). Clearly the spaces
SH(U x RY; H, H ) depend on the choice of «, k. Also the notion of homogeneous
components in classical symbols can depend on the group actions.

Remark 2.6 Leta(y,n) € C*°(U x R?, L(H, 1-7)) and a(y, 6n) = §*ksa(y, U)KE]
forall§ > 1and|n| > C forsome C > 0. Thenwehavea(y, n) € Sg(Uqu; H, H).

For any a(y, y',n) € S#(2 x @ x RY; H, ﬁ), Q C RY open, we set

Op(a)u(y) = / / O Ma(y, v muy)dy'dn,

for u € C3°(2, H). There are many types of continuity results for operators Op(a).
For instance, we have continuity of

Op(a) : C(Q, H) — C(RQ, H), WS

omp

(Q, H) — W, (2, H), s € R,
2.21)
or, when a = a(n) has constant coefficients,
A:=0p(a) : W R?, H) > W HRY, ﬁ), s € R. (2.22)
Concerning more subtle cases, see, e.g., [21,30]. If a consideration is valid both for
classical and general symbols we write subscripts “(cl)”.

Let us assume Q = RY and a(n) € S(’éD(Rq; H, H). Then a simple computation
shows that

IAN 2owvs Re . 1y W= (e Fyy = SUPyera (M) lla)l 2o i) (2.23)
Let Y (0) be in Cgo(Rg), and Yg(0) = 1 for |0] < R/2, yr(@) = 0 for |6] >
R/2. Setting ag(y, y', n) := ¥r(y — y)a(n) the operator Ag := Op(ag) is properly
supported. In addition

AR :WSRY, H) - W H®RY, H) (2.24)

is continuous for every s € R. In fact, let us set
k(ag)(0) = / ¢Myrp(0)a(n)dn.

Then k(ag)(y — y’) is the distributional kernel of Ag, and we can write
Ar =A+Cg

for A = Op(a) and

Cru(y) = / / O M (Yr(y — y) — Da(mu(y)dy'd .



Boundary Value Problems 1169

We can write Cg = Op(cg) for cg(n) = fe_’9'7k(cR)(9)d0 where k(cg)(0) =
fe‘a"(l//R(O) — Da(n)dn. We have cg(n) € S(R,7, L(H,H)) = S™(RY; H, H).
Since Op(cg) : W' (RY, H) — W™ (R4, H ) is continuous for every s, and because
of the continuity of (2.22) we also obtain the cont1nu1ty of (2.24).

Note that for ag(n) = fe le”k(ag)(@)d@ € S(Cl)(R‘f H, H) we have Ap =
Op(ar), and also this gives us the continuity of (2.24).

Lemma 2.7 We have
agr(n) = a(n) for R — oo
in S('él)(]Rq; H, ﬁ), and hence
Op(agr) — Op(a) for R — oo

in LOVS(RY, H), W~ (R4, H)).
This result is known in the context of kernel cut-off operators, cf. [22, Remark 1.1.51].
Proposition 2.8 Leta € S*(R?; H, H ), and assume that
a(n): H— H forall n € RY
defines isomorphisms, and a—' € ST*(RY; H, H). Then foreverys e R
@
Op(a) : W*(R?, H) - W™ (RY, H)

is an isomorphism;
(ii) there is an Ry > 0 such that for all R > Ry both

Op(ag) : W*(R?, H) - W™™RY, H) (2.25)
and
Op(ar) : WeomyRY, H) — Wi, (RY, H) (2.26)

are isomorphisms.

Proof (i) follows from Op~—!(a) = Op(a™").

(ii) is a consequence of (i) together with the convergence Op(agr) — Op(a) in the
space LOWS(RY, H), W~ H*(R?, H )) for R — oo. In fact, for sufficiently large
R the operator (2.25) is an isomorphism, since isomorphisms form an open set
in LOW*(RY?, H), W™ R4, H)), but Op(ar) is properly supported for every
R > 0 and hence defines a map (2.26) which is obviously bijective when R is
sufficiently large. O
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For H = H = C and trivial group actions, i.e., kg = kg = idc for all § € R4 we
recover the scalar symbol spaces S(‘él)(U x RY).

Let Séf) be defined as the set of all # € A(C) := the space of entire functions in
the complex variable w, such that |, € S(’él)(r‘ﬁ) for every € R, uniformly in
compact S-intervals.

For any h(r, w) € C®(Ry, S;,) we set

oph (h) = rPopy, (TP hyr=F (2.27)

for (T~Ph)(r, w) := h(r, w—pB), B € R, whereop,, (f)u = ML f(r, w)(My—).

Consider an edge-degenerate symbol p(r, p) € Sé‘l(]RJr x R), i.e., p(r,p) =
p(r,rp) for a p(r, p) € Sﬁ (E-hr x Rjz). Then a quantisation result, cf. [22, The-
orem 3.2.7], tells us that there is an A (r, w) € C“(E.h Sé) such that

0p§4(h) = Op,(p),

modulo an operator with kernel in C*° (R x R ), forevery 8 € R. We then call & a
Mellin quantisation of p.

Theorem 2.9 [17,22, Theorem 3.1.27, Remark 3.1.28] There exists an operator A €
LZ(RQ which induces an isomorphism

A KN (Ry) — KSTHP(RY)
for every s € R and prescribed y, B € R where
A" € C® Ry, LY (Ry), KSTHP(RL))

for every s € R.

Operators A as in Theorem 2.9 can be found in the form A = g#~V*1 A for an
operator Aj in the cone algebra on the infinite half-axis, which shifts weights at zero
from y to y — w, or directly as in [22, Definition 2.4.1],

A= rﬁ_ya)opVM(h)w/ + g(r)Pr (1 — ®)O0p, (p)(1 — ") + M + G. (2.28)

Here o’ < w < o' are cut-off functions (¢ < ¢’ means ¢’ = 1 on suppg), and g €
C°° (R4 ) is a function with the properties g(r) = r for0 < r < g9, g(r) = 1 forr >
g1 for some 0 < g9 < & where ¢ is so small that g(r)# =V Hr="w(r) = rP~ Y w(r)
and g(r)P~7tHr=#(1 — w) = r*(1 — w) for large r. The Mellin symbol & = h(r, w)
belongs to C oo(@_h Sé), the symbol p is degenerate in the sense p(r, p) = p(r, rp)
fora p(r, p) € Sfl (KJN x Rj), and we assume that / is a Mellin quantisation of p.
Moreover, M is a smoothing Mellin and G a Green operator in the cone calculus with
discrete asymptotics, cf. the terminology of [22].
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For any strictly positive function T + [t] in C*°(R) with [t] = |7] for |t| > C
for some C > 0 we form a function

b (1) = [Ty Ay, (2.29)

which belongs to C*®(R,, LK (R1); KS~*F(R,))). By virtue of twisted homo-
geneity

b (87) = 871 sy Agyy = 8" 1sb™ (1)1 !
for§ > 1, |t| > C, it follows that
b (1) € SHR; KV (Ry); K5 —H BRY)), (2.30)
cf. Remark 2.6. We will consider below also the double symbol
(1,1, T) = b“(r)t € SHR xR x Ry K7 (Ry), £°7H PRy (231

We will employ a Mellin generalisation of the spaces (2.14) for a Hilbert space H
with group action k, namely,

HYY (R4, H) = H"Y Ry, H)xe, (2.32)
y € R, defined as the completion of C3°(R, H) with respect to the norm

1/2

Nl Ry 1y = /r (>23||K (Mt—>vu)(v)(77)||]-1dv , (2.33)
b+1

for some b = b(H) € N which is given together with H. For instance, if H =
KC3:71 (X ™) for some smooth closed manifold X of dimension n we setb :=n + 1. In
our application we will have H := K1 (R, ) with the group action k :=x, i.e., the
integration in (2.33) is over I'j_,,.

Remark 2.10 The map t5 : u(t) — u(8t), § € Ry fixed, induces an isomorphism
52 HY Ry, H) — H* (R, H)

forevery s, y € R.

In fact, the replacement of ¢ by é¢ under the Mellin transform in the expression
(2.33) generates a factor §'. For v € Fb+1 thls contributes a factor 8 -y it

which yields an equivalent norm for every ﬁxed 5 e Ry.
The operator

Sy i CE Ry H) = CPRe, H), u(®) > ™5™ (2.34)
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extends to an isomorphism

S

yob HYY(Ry, H) — W' (R, H) (2.35)

[STiS

for every s € R.

Let H*Y (R, H)[c,a) for 0 < ¢ < d be the set of all u € H*Y (R, H) supported
by [c, d]. Moreover, let W*(R, H)[. 4 for reals ¢’ < d’ be the space of all u’ €
WH(R, H) supported by [¢/, d']. The transformation (2.35) induces an isomorphism

Sy—% : HS’V(RJ,_, H)[c,d] — WS (R, H)[c’,d’] (236)

forc = e ¢, d = e~ . Infact, the space C°((c’, d"), H) isdensein W* (R, H)¢' a1
similarly as a corresponding property in the case H = C for the trivial group
action. Since (2.34) also induces an isomorphism S, ;2 : Cf)’o((c, d),H) —
C3e((c',d"), H) the space C{°((c,d), H) is dense in H*Y (R, H)[c,4. Moreover,
as a consequence of the invariance of Wy, (R, H)-distributions under diffeomor-
phisms of R, cf. Remark 2.4 above, and since the multiplication by the exponential
factor occurring in S b transforms that space isomorphically to itself, it follows that

2
HSY (R4, H)je.q) = W (R, H)j¢,a1 for every 0 < ¢ < d. This gives us the relation
eH* (R4, H) = oW (R, H) (2.37)

for every ¢ € C°(R).
Let t +— [¢] be a strictly positive smooth function on R > ¢ such that [t] = 1 for
[t] < 1 and [¢] = |#| for large |t| > c; for some c; > 1. Define the spaces

Wne R, IV R = {u(t, [11r) = u(t, F) € WER, KV R ). (238)

Then v(t, r) = u(t, )iz € WioneR, K" (R4))1,. is equivalent to

v, rllws

con

SRS (R, = IV, 1 A) s @, Joon ®, 1, <00 (2.39)

In applications below the spaces (2.38) will occur only in combination with a factor
1 — o for a cut-off function o on the ¢ half-axis, and the choice of o is unessential,
cf. Lemma 2.16 below. Therefore, it is not necessary here to discuss the influence of
the specific function ¢ +> [¢] in (2.38) (there is, in fact, no influence). However, in
connection with group actions on cone-spaces the difference between 7 and [¢] can
be inconvenient. Therefore, on the half-axis R, ; we define cone-spaces in modified
form, compared with (2.38), namely, by

WE e Ry, KSR )1, = {u(t, tr) s u(t,7) e W Ry, K5 (R+))1K}. (2.40)
In order to avoid confusion we recall that

WS(R+3 ,CS,]/] (R+))1K = WS (R7 ICS,)/I (R+))1K|R+'
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The following observation is motivated by Proposition 2.2.

Proposition 2.11 (i) The map (Fksv)(t, r) := Sv(St, [18]17'8[11r), 8 € R, induces
a group action

Rles WS e R, KKV (R )1, — WS

cone cone

R, K" R,

for every s € R.
(i) The map (ksv)(t,r) = 8v(8t,r), 8 € R, induces a group action

s = Wipne R, KV R D)1 = Wi Ry, KWV (R )1,

for every s € R.

Proof (i) According to (2.39) the property v(t,r) € Wi, .(R, >V (Ry)) means
that v(z, [1]7'F) € WS (R, K57 (R4 7)). Then, by virtue of Proposition 2.2

(xsv) (1, [1171F) 1= 812 Liesv(St, [8:1171F) = sv(5t, [81]7'8F)
belongs to W (R, K* "1 (R4 7))1,.. Thus, if we replace 7 again by [t]r, we see that
(Zesv) (2, r) = Sv(8t, [t81718[¢]r) belongs to WS, (R, K571 (R4)).

(i) The property v(t,r) € Wiy Ry, KSV(Ry)) means that v(r,17'F) €
WS (R4, K7 (R4 7)). Similarly as in Proposition 2.2 we form

(xsv) (@, 171F) == 812 Liesv(St, (81)'F) = sv(st, (51)~'67)
which belongs to W* (R, K" (R 7))1,. Thus, replacing 7 by tr, it follows that

Ciesv)(t, r) = 8u(St, (t8)~'8tr) = Su(St, r) belongs to W5 . (R, L7 (R)).
O

Observe that for s = y; = 0 we have
Weone R, KX VR )1, = [117 /2L (R x Ry). (2.41)
In fact, since the group '« is unitary in K*Y(R,) = L?(R,) we have

WOR, K%OR,))1, = LR x Ry).

Thus, v(z, [t]r) € Wgone(R, ICO’O(]R+))1K means that the function v(z, 7) in the nota-
tion of (2.38) belongs to LR, x R, 7). This is equivalent to

u(t, [t1r) € 117 2L2 (R, x Ry ),

i.e.,//l[t]mv(t, [t]r)|2drdt=//|[r]1/2v(t,f)|2[r]—1dfdr=||v(z,f)||iz(Rth+j)_
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Remark 2.12 The spaces W*(R?, H), have been widely studied in connection with
operators on a manifold with edge, firstin [20], and then in numerous papers and mono-
graphs, see, in particular, [6,21]. For corner singularities of order > 2 the involved
spaces H may depend on the edge variable y. This effect plays a role also in [27].
There is no functional analytic investigation for such a situation in general. Even for
the spaces (2.38) the influence of the edge variable ¢ is nontrivial. However, there
are specific operator-valued symbols, also studied in [17], cf. the consideration after
Theorem 2.9, which can be applied to such spaces, cf. the proof of Proposition 2.14
below.

Consider the space

KRy =[] KRy,

s,y,e€R

cf. the formula (2.8), which is dense in *7 (R;) for every s, y. The operator ¢ :
u(t, r) — u(t, [t]r) induces an isomorphism

L G R, K7 (Ry)) — CF (R, K& (R4)).

Remark 2.13 The space C°(R, K (R,)) is dense both in W* (R, K7 (R4 )1,
and Wi (R, Y (R4)), forevery s, y € R.

cone

Proposition 2.14 We have

®, T R D)1, C© Wi R, K R, (2.42)

cone

and for every ¢ € C*°(R)

R, LR, = oW (R, K (R (2.43)

canc

Moreover, the space WS, ,(R, K*V1(R1))1, is independent of the choice of the func-

tiont — [t], s € R.

cone

Proof For abbreviation in this proof we drop subcripts L . Let us set (), r) =
u(t, [t]r). Then, by definition, we have isomorphisms

s W R ([R) — Wigpe(R, K571 (R )

COHC

and

s WOR, KOORL)) = WhL®R, KO Ry = [1172L2(R x Ry).

COHC

Next we employ a consequence of Theorem 2.9, namely, the existence of a symbol
(2.29), now for = s denoted by

b(t) € S5(Ry; K57 (Ry), KOO (RL)),
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taking values in a modification of the cone algebra on the infinite half-axis R , inter-
preted as a manifold with conical singularity at » = 0 and conical exit for r — oo,
such that

b(1) : K7 (Ry) — KOORy)
is a family of isomorphisms, b~ (1) € S5 (Re; ICO’O(R+), KSY(R4)), and
B = Op,(b) : W' (R, K™ (R1)) —> WOR, K™ (Ry))
is an isomorphism. Then also
R, T R) = [1]72L2R x Ry) = (117 PWOR, KOR )

~1
n By

cone

is an isomorphism. The inverse is of the form
B~ = Op, (b~ ")l = Op,(
ga s = tnOp; (b~ )y, = Op, ().

for a double symbol I(t, ¢, T) € S;° (R, x Ry x Re; KOO(Ry), K51 (R+)) Clearly
in this computation we interpret the ¢-variable on the right of Op, (-) as #’. The operator

Op; (1) : WeompR, KO (R 1)) = Wi (R, L7 (R4))

is known to be continuous by a general result of the pseudo-differential calculus with
operator-valued symbols and twisted symbolic estimates, cf. the second relation of
(2.21). Then also

Op, () : [1171*W?

comp

R, K%O(R ) — Wi (R, K7 (R))

R, K%°(R,)). But we
(R KOO(R4)), and
R, K57 (Ry))

is continuous, since [1]~Y2W Comp(R KYORY)) € comp
know that Op, (I) extends to [t]~'/2WO(R, K*O(R,)) = Cone
still maps to Wy (R, K71 (IR )). Since the image is equal to W,
the relation (2.42) is proved. The property (2.43) is a refinement. For

Wcsone comp(Rs IO (RY)) = {u(t,r) € cone(R’ KSR )) s ult,r) =0
for t ¢ K forsome K € R;} (2.44)
it suffices to show
Wione.comp . K571 (R4)) = Wi (R, K571 (R4)). (2.45)

Because of WO (R, K*O(R;)) = [1]7'2L*(R x Ry) and WOR, KOO(Ry)) =
L>(R x R) the relation (2.45) is true for s = 0, y; = 0. Moreover, we have

Wcsone,comp(R’ K (R-i-)) = L[t]Wcsomp (R, Kon (R+)).
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In fact, u € WS, (R, K" (R,)) implies (ju € WS R, 5" (R4)). Con-

comp cone ,comp
versely, v € Wigne comp R, K71(R4)) gives rise to ¢, v e Weomp R, £H71(R4)).

We now apply elements of the proof of Proposition 2.8 (ii). We form the symbol bg and
obtain the properly supported operator Op(bg) which gives rise to an isomorphism

OP(bR) : Wagmp®, K¥71 (R ) = W (R, K% (R ).

comp

Also ¢[71Op(b R)L[_t]l induces an isomorphism

{1OP(BRIG;)  Wane.comp B K7 (R 1)) = Wepne comp B K0 (R1)),  (2.46)

since W9 R, LS (Ry)) = L[,]Wgomp (R, K£*Y1(R4)). Moreover, the operator

cone. comp

tnOp(bR)y, t] is properly supported and defines an isomorphism

UOPBR] + WigmpR. K57 (R1)) = Wohnn (R, KPR ). (2.47)

Because of (2.45) for s = y; = 0 the spaces in the preimages of (2.46) and (2.47)
coincide, and hence we obtain the relation (2.45) in general. We immediately obtain
the relation (2.43) and also the independence of the cone-spaces of the choice of the
function ¢t — [¢]. O

Recall that
W R4, KSR, =W (R, KSR, IR, - (2.48)

Moreover, let

Wigne R, K71 Ry, i= W

cone

R, LR, R, - (2.49)

Definition 2.15 For y1, y» € R we define

(1)
KRN Ry x Ry) 1= [oTHY 2Ry, KN Ry,
H[1 — o IWine Ry, KSR, (2.50)
for a cut-off function ¢ on the ¢ half-axis, cf. (2.32) for y = y, H =

K7 (Ry), k = 'k, and formula (2.49);
(i) for the interval I := {0 <r < 1} we set

(IR = (g K2 Ry x Ry) + 0¥ [won W72V (R x Ry), (2.51)

for cut-off functions wq, w; on the r half-axis such that {wg, ¥ *w; } form a partition
of unity on /, cf. notation (2.18).

Lemma 2.16 The spaces in (2.50) are independent of the choice of o. Those in (2.51)
are independent of the involved partition of unity {wg, 9*w;} on I.
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Proof In the proof we drop again subscripts '«.
(i) Let 0! and o2 be two cut-off functions on the ¢ half-axis. Then

o MRy, KSR ) + (1= 0 YW Ry, K57 (RY))
= PHI Ry, KV (R1)) + (1 — )W Ry, K471 (R )
+ ' = HH PR K (RY) + (07 — oY Wi Ry, KSR ).

Similarly as before the interpretation of the latter relations is that we talk about the
spaces consisting of the sets of sums of elements in the involved spaces, e.g.,

our+ (1 —oHuy + (6! —o?)u3 + (062 — oy

for arbitrary uy, u3 € H*7? (R4, LYY (Ry)) and up, ug € Wi, Ry, KOV (RY)).
From (2.37), i.e.,

PH 2Ry, K5 (R4 )) = oW (R, K¥7(Ry))
and
eW (R4, K57 (R1)) = @Wegne Ry, K971 (R4))
for every ¢ € C§°(R4) we obtain
PH* R, K (RY)) = @Wegne Ry, K7 (RS))

for every ¢ € C3°(R4). This shows that K*727 (R, x R,) is independent of the
choice of .
(ii) Let us first recall some tools on the spaces

WERY, KWV (X)), (2.52)

fors, y € R, and a smooth compact manifold X, n = dim X, cf. (2.12). These spaces
belong to the edge pseudo-differential calculus for an edge of dimension g. Despite
of the anisotropic description of (2.52) we have the relation

HE oo (XN x RY) € WP (RY, Y (XM)) € HY (X" x RY)

comp

for every s, y € R, cf. [22, Proposition 3.1.21]. This property relies on the estimate
cillull gs wi+nray < Nullyws e ks (snyny) < callull gs i+n+a) (2.53)

forallu e Cj°(RY, CSO(R”")R) forevery R > 0, for constants¢; = ¢;(R) > 0, i =
1,2, with S” being the unit sphere in R'™. Here C§°(R!*")R means the subspace
of all u € C5°(R'™\{0}) supported by {¥ € R'*" : || > R}. We apply this to the
spaces W* (R, KC%-¥1 (R4.)) which are a special case of (2.52) forg = 1and X" = Ry,
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i.e., n = 0, and ¢ now plays the role of the edge variable y. From (2.38) and (2.49),
(2.48) we see that the elements u (¢, r) of Wi, (R4, ¥ (IR )) are characterised by
the property u(z, [t]7'r) € WS (R4, K571 (R4)). As a consequence of (2.53) we have
the relations

A=W Ry, LM RL)rsp = (1 —0)H (R x Ry 7)r-r (2.54)
and

(I = ) Weone R, KRy N ir=r = (1 = )WV Ry, KM Ry ) ler> R
=(- G)HS(R X R+,tr)|tr>R- (2.55)

Now if we have two cut-off functions a)(l) and w(z), then the spaces

wh (1 — YW e (R, K5V (R4 ) = R

for i = 1, 2 differ from each other by

oo(1 — U)Wcsone(R+’ Kon Ry NDler>r

fora ¢y € C3°(Ry ). Translated into the variables (z, 7) the change of the spaces is
caused by the change from w(l)(F /1) to w%(f /t). By virtue of (2.54) we are far from
t =0, and (po(F/t)(l — o (1)) cuts out standard Sobolev spaces H*(R x R, ;) in a
region of R = which is conical for large 7. So the nature of the spaces close tor = 0 on
the 1nterval I is not changed under changing the cut-offs in r. Close to r = 1 we have
a similar effect, but since the involved cut-off functions “)0 and %*w form a partition
of unity both for i = 1 and i = 2, the change of the spaces near r = 0 caused by
replacing a)(l) by a)g is compensated with the opposite sign by the change from a){ to
a)% near r = 1. That means the space (I — o)K*72-¥1(I") remains unchanged under
changing the partition of unity on /.

It remains to show that o JC*72:71(I"") is independent of the chosen partition of
unity on /. Although there is an additional weight y» the arguments are a little easier.
We apply the isomorphism

S, 1t H PR, KP(RE)) - W (R, KO (RS)),

N

cf. (2.34), for H = %" (R4) and b = 1. Then a)(lﬂ-ls”’2 (R4, K5Y1(Ry)) is trans-
formed to a)(l)WS R, 5 (Ry)). This space differs from a)gWS R, L5"(RL)) by
oW (R, K¥"(R4)) = goH*(R x R4). In a similar manner we can argue for the
change from a)} to w%, and the change over [ is with the opposite sign, when we
change the partitions of unity {wé, z?*a)f)} fromi = 1toi = 2. At the same time we

see that the spaces o C%¥2:Y1 (") remain unchanged. O
Proposition 2.17 The space K572V (I") is a Hilbert space with group action * =
{s)sery -

Cesu) (1) = Su(st), § € Ry (2.56)
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Proof From Definition 2.15 we see that K*72:¥1(I") is a sum of two spaces, namely,
[wol{[oTH* (R4, ¥V (Ry)) + [1 — 0 IWegpe Ry, KW7H(R )} (2.57)

and an analogous space referring to r = 1. They are of the same structure; so we
consider (2.57). The change from ¢ to &t acts in the cut-off function o and in the
remaining (¢, r)-variables. Because of Lemma 2.16 the change of o preserves functions
within the space (2.57). Therefore, we may focus on the other (7, r). Here it suffices
to apply Remark 2.10 and Proposition 2.11. O

Remark 2.18 Let ¢ € Cgo (int 7)) and o a cut-off function on the t half-axis.

(1) Let us identify the interval / with a closed interval I} on the unit circle S ! via
a fixed diffeomorphism ¢ : I — I; C S'\{2x}; in the following notation we
suppress ¢ again. For every s, 2, y1 € R we have a continuous embedding

oQIS VI (TN s HE2(SHM).
(i) There are continuous embeddings
oK V(1N > g K57 (17

fors’ > s, y, = y2, ¥{ = y1 that are compact for s’ > s, y5 > y2, ¥{ > 71.
(iii) The space

ICEY2YEE(IN) = (1) TSN (TN, e € R,
is a Hilbert space with group action %, and we have continuous embeddings
]CS/J’Z/J’{J’,(I/\) s [CSr2 ;3(1/\)

fors’ > s,y, = y2.¥{ = y1,€ > e, that are compact for s’ > s, y; > y2, ¥ >
v, e > e.

Proposition 2.17 allows us to form edge spaces
WS RY, IS V2V (M), (2.58)

based on the corner spaces in Definition 2.15 (ii). Those play a role as local models
of weighted corner spaces. Moreover, let M be a compact manifold with second order
corner Z = op(M), cf. Sect. 2.1. Then

HS7271 (M) (2.59)

is defined as the subspace of all u € Hﬁgg)(M \Z) such that for any singular chart
x : Vip = I® x R? associated with a chart D — R¢ on Z and xg := Xlvip\z :

VIp\Z — Ry x I x R? we have (stl)*ou e WS (RY, KCs:12n (I™))s,. Here o is
any element of C°°(M) of the form oo for some cut-off function on the ¢-half-axis.
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2.3 Tterated Asymptotics and Corner Green Operators

Asymptotics of distributions u € K7 (Ry) as r — 0 will be expressed in terms of
singular functions of the form

w(r)r—P logk r
for p € C, k € N, and some cut-off function w on the half-axis. A sequence
P:={(pj,mj)}jeg CCxN, (2.60)

J € N, is called a (discrete) asymptotic type if 7¢ P := {p;} ey is either finite or
Rep; — —ooas j — oo. We say that P is associated with the weight data (y, ®)
for a weight y € R and a weight interval ® := (¢, 0], —o0 < ¢ < 0, if

ncP C{1/2—y+9 <Rew < 1/2 — y}.

In future, for convenience, we assume that P satisfies the shadow condition, i.e.,
p € ncP implies p —1 e rcP foralll e Nsuchthat1/2—y +9 <Rep—I[.If P
is associated with (y, ®) and © finite, then

mj
5;(R+) ={u= w(r)Zchkr*”i logkr icjreC0<k<mj jel
jel k=0
(2.61)
for a fixed cut-off function w is a finite-dimensional subspace of ¥ (R;). The
coefficients ¢ are uniquely determined by u. We set

Ky Ry) i= EpRy) + K" (Ry) (2.62)
for
Kg' (Ry) := lim K7 =P8Ry, (2.63)
>0

The space (2.63) is Fréchet, and also (2.62) as a direct sum of Fréchet spaces. In
the case of infinite © we define K" (R}) = Lil_n}lEN{E;n Ry) + IC;): (Ry)} for
O, :=(—m+1),0land P, :={(p,m) e P:1/2—y —(m+1) <Rep < 1/2—y}.
Since asymptotics only refer to » — 0 it makes sense also to form

Hp' (Ry) = o7 (Ry) + (1 — 0)H"Y (Ry).
Analogously as (2.17) we define
Hp (1) = [wolHp" (Ry) + 9 [w11Hp Ry) for s,y € R, (2.64)

for asymptotic types
P associated with (y, ®). (2.65)



Boundary Value Problems 1181

Recall that . . .
9 :'R_ >Ry for ' Ro={reR:—co<r <1}, (2.66)

is defined by ¢ (r) = —r + 1, cf. (2.18), and wyp, w; are cut-off functions on the
half-axis such that wy(r) + wi(—r 4+ 1) = 1 on the interval /. Moreover, let

MU = Lo H P Ry, KT R ) + 0 (o TH? Ry, K Ry

(2.67)
In addition for finite A = (A, 0], we set
MUY = [o im M T AN + [ = oTHP A (2.68)

e>0
for some cut off function o on the # half-axis. Recall that we could admit different
weights at the end points of I and different asymptotic types P. This generalisation
is simple and left to the reader.

In order to define functions with iterated asymptotics for r — 0 and r — 0 we also
consider singular functions in #-direction

o ()t log t
for g € C,[ € N, and some cut-off function o on the ¢ half-axis. Let
Q = {(gi,ni)}ie1 € C x N, (2.69)

I € N, be a (discrete) asymptotic type with respect to 7, associated with the weight
data (B8, A) for a weight 8 € Rand A := (A,0], —oco <A <0, i.e.,

ncQ C{l/2-B+Xx <Rev<1/2—-8}

From now on, for convenience, we set I = {0, 1, ..., N} for some N € N U {o0}.
If Q is associated with y» and finite A, i.e., finite N, and P as in (2.64) we set

N n;
fﬁ‘%' ") = [f = U(I)ZZCUF"" log't ey e HY'(D),0 <1 <my,i el
i=0 1=0

(2.70)
for some fixed cut-off function o in ¢. Similarly as in (2.61) the coefficients c;; are
uniquely determind by f.

Moreover, let

HE B (U7 = Fp () + 1= oTH™> 7 (1), @70

cf. notation (2.67).
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Definition 2.19 We set

®
Wione Ry, KV Ry )1 = {ut, 17) s v(t, 7) € W Ry, KV Ry 7)1}
(Aksu)(F) = 8Y2u(87), and
V Y1 A S, V1 * N S, V1 .
cone [)(I ) - [U)O] cone(ﬂ%—F7 K:[) (Egﬁ—))lk‘4_l? [Cul])/bzone(ﬂﬁ-ka K:[) (H£4_))IK,
(ii)
K7™y = 1o TH 5" U™ + 11 = o Wert p(I7); 2.72)

cone,

(i) K57 UM) =[0I 3" UM + 1 = alit) Wi pU7), e € R.

A Fréchet space, written as a projective limit of Hilbert spaces £ = hm E 7 with

continuous embeddings E/*! < EJ for all j, is said to be endowed w1th a group
action k = {ks}ser, if k is a group action in EO, cf. Sect. 2.2, and | pj a group action
in E/ for every ;.

Proposition 2.20 The spaces in Definition 2.19 are Fréchet in a natural way, and
the group actions of Propositions 2.11(ii) and 2.17 restrict to group actions in those
spaces.

Proof Let us first consider the spaces in Definition 2.19 (i) for P associated with the
weight data (y1, ®), © finite. The case of ® = (—o0, 0] can be easily reduced to
finite ® by passing to a projective limit. This step is left to the reader. It is known that
we can write

G Ry) = Ko™ Ry) + K57 (R)

as a non-direct sum of Fréchet spaces, where IC‘;;yl (R4+) is Fréchet as a projective
limit (2.63) of Hilbert spaces IC*”1 =7~/ (R ), for any 0 < &, [ € N, tending to 0
as [ — 0o. We can choose ¢; in such a way that 1/2 4+ ¢ 4+ ¢ < 1/2 and r¢cP N
[12-y140+e =V foralll € N. Then

=CNTTERY) + € , (R4)

for P ;= {(p,m) € P :1/2 —y1 + 9V + ¢ < Re p} is a Hilbert space with group
action k. Thus
S, V1 T 1
Kp" (Ry) = 1(£n E (2.73)
leN

is a Fréchet space with group action. This gives us

W Ry, K (R1) = im W Ry, EDg, -
leN
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Setting
Wi e (R oy ED o= {u(t, tr) s v(t, ) € W (R s, ED)

for WW(R4 4, Eé) = WS (R, Eﬁ)hRH, with Eé being the space of functions in E in
the variable 7, it follows that

cone(RJr K K y (R+ r) = hm cone(R+ ) E ).
IEN

Now we can proceed in a similar manner as in the proof of Proposition 2.11 (ii). From
Proposition 2.2 we obtain a group action {xs}ser, in W* (R;, Ef:)lk which induces a
group actionin W* (R4 ;, E é) 1., cf. Remark 2.3; here we use for the moment subscript

'« which is involved in .
The property v(t, r) € Wi, (R4, IC‘;;V' (R4+))1, means that

v(t, t7'F) € W Ry, EDi,
for every I € N. Similarly as in Proposition 2.2 we form
(xsv)(t, 7 'F) i= 812 Liesu(8t, (81)~'F) = Sv(st, (81) ' 67)

which belongs to W* (R4, Eé)l,(. Thus, replacing 7 by tr, we see that Gesv)(t,7) =
sv(8t, (t8)~18tr) = Su(8t,r) belongs to Wi e R, E! )1,.. Since this is true for

every [ we obtain (sv)(t,7) € Wi Ry, K" (R4 )1, It is now evident that

% = {xs5)ser . s also a group action on the Fréchet space WCOQ: pIM).
1

We now turn to (ii). Let us set £ := K" (Ry), endowed with the group action '«,
and

HXYZ(R-F’ E) = [G]@Hs,yszfé‘(R_'—’ E) + [l — O,]HS,]/Z(R+’ E),

>0

cf. the notation (2.32) for the Fréchet space E rather than H and formula (2.68). Then
we have

S‘ VZ 4! (I/\) Fé%»gl (I/\) +ch\s?/}2;yl (IA)
for

K37 = [oNlwolHy? Ry, E) + 9 [0 ]H* Ry, E)}
+ [1 = o W{[wo]Wigne Ry, E) + 0¥ [@1IWipe Ry, E)}
= [wol{[o1H)* R4, E) + [1 — 0 IWi Ry, E)}
+ 9 [ {[oTH? R4, E) + [1 — oW e Ry, E)}. (2.74)
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The action of % on the space (2.74) can be verified in a similar manner as in Proposition
2.17. It remains to look at the effect of the group action on .7-" v Vl (I™). But here it is

clear that we do not leave the space up to a remainder in ICA yz y' ). O

It follows that there are edge spaces modelled on ICSQ’T’;‘VI (1), namely, analogously
as (2.58),
WHERY, Ky 57 (1)a (2.75)

for any pair of asymptotic types Q and P, associated with the weight data (y», A) and
(y1, ©®), respectively. Moreover, for an open set 2 € R? we have comp/loc-spaces,

(Q, K5 7 M), Wine(Q, K575 UM))a.

comp

Another topic of this subsection are Green symbols and Green operators of differ-
ent kind. Recall from the classical theory of elliptic boundary value problems that
there appear Green’s functions. For instance, in the case of the Dirichlet problem for
the Poisson equation in a smooth bounded domain, Green’s function (regarded as
an operator) solves the inhomogeneous equation for vanishing boundary conditions.
Pseudo-differential boundary value problems also employ such operators. In Boutet
de Monvel’s calculus for operators with the transmission property at the boundary, cf.
[1], these operators contain parts with a symbolic structure locally along the bound-
ary, with specific operator-valued symbols, in this case referring to Taylor asymptotics
{(=J,0)}en in normal direction. Also the edge pseudo-differential calculus, devel-
opedin [20] as well as diverse corner theories, cf. [10,23,29], contains adapted variants
of Green symbols and associated operators. In the present article we intend to establish
such a concept on corner manifolds M in the sense of Sect. 2.1.

The following definition concerns symbols referring to the edge Z, cf. the notation
in Sect. 2.1. Therefore, variables and covariables will now be denoted by z and ¢,
respectively, with z varying in R?. Then U means an open set in R? for some b €
N\ {0}, and we employ the notation (2.2).

Green symbols refer to formal adjoints in IC5¥2¥1 (1), K5V (RL), etc., with
respect to the scalar products of spaces of smoothness and weight zero, cf. (2.10)
for the case over R.. Concerning /" we employ the identification

KOO0 Ay = V2 2Ry x 1) = V2L Ry, L2(D)).

The operator % given by Ciesu) (1) = Su(81), is unitary in K901, and ks given
by ("ksu')(t) = 8'/%u’ (81), is unitary in KOO (R ) for every § € R. Analogously as
(2.10) we have sesquilinear pairings

ST ([N ¢ [CTHTTIETE(IN)  C (2.76)

for every s, y2, y1, e € R.
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Definition 2.21 Let U C R” be an open set and u € R.
(i) An I™-Green symbol g(z, ¢) of order © € Ris a

g(z,0) € ﬂ SéLl(U % Rd; s rere Ny, K%i);}zl—u,yl—u;oo(lA))

s,ecR

such that

g*(Z, é.) e ﬂ Sﬁ(U X Rd’ ICSv_VZ'i‘,us_Vl"FM;e(I/\), ’C(éozy’_QVIZy_VHOO(I/\))

s,eeR

for certain g-dependent asymptotic types Pj, Q;, j =1,2.
(i) An (I, 3°1")-Green symbol g(z, ¢) of order u € Ris a

g0y e () SHW x RE KNV, KPR @0)
s,eeR

such that

g o) e [ SGU x R HE@01Y), kG 52 " U™)

s,eeR

for certain g-dependent asymptotic types PZO, Qj, j=12.
(iii) A (3°17, 3°1")-Green symbol g(y, ) of order ;1 € Ris a

8@ )€ () SGU X RE K@), K37 @01™)
s,eeR

such that

g*(29 ;—) c m Sé‘i(U X Rd, ’CS,*VZ‘FHQE(&OI/\), ICOQOgv_VZQOO(a()IA))

s,eeR

for certain g-dependent asymptotic types on , Q(z).
(iv) In a similar manner we define

@I, 1), (1N, 0 1=, 17, 0N -, (M, 9" T,
etc., Green symbols, the latter for m, n = 0, 1, and m # n.

There are more types of Green symbols, e.g., trace and potential symbols for the edge
Z, but we drop the details, since we mainly focus here on 7" -Green symbols. However,
in order to give an impression on the full symbolic information, we already observe
that corner symbols in (z, ¢) take values in continuous operators
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JCSv21 ([A) ]CS*M,}Q*M,M*M(IA)

@ @
5901 KOS (g0 A
a(z, §): 5] — @ , 2.77)
j ! (311/\) Ics—ﬂ,yl—u(all/\)
@ @
C C

or between corresponding subspaces with asymptotics and decay for t — oo.
The expression (2.77) contains some simplification concerning smoothness, orders
and weights that may depend on the respective entries of the block matrix a.
In addition, in applications to mixed elliptic corner problems, similarly as [4],
in the edge case, it makes sense to admit vector-valued spaces, for instance,
[Covevi(IN, CY, KS—Hr2=imn=i ([~ C™), etc. However, for the generalities of the
corner pseudo-differential calculus it suffices to consider spaces of scalar functions.
In any case the shape of block matrices (2.77) shows the kind of entries which are
not yet formulated in Definition 2.21, namely, those referring to C. Of course, they
are part of the calculus as well. For instance, writing a(z, ¢) = (a(z, {)i)k.1=1....4
the component ay4(z, ¢) takes values in L(KC*¥2Y1 (1), C) and has the meaning
of a trace symbol with respect to the edge U > z, while a41(z, {) takes values in

L(C, IC‘;;”?]*“ VITH2(11)) and has the meaning of a potential symbol. Both refer to
I”™. Similarly we have trace and potential symbols with respect to the edge U > z,
referring to 31", i =0, 1. The lower right corner a44(z, ¢) is a matrix of classical
scalar symbols.

Let us fix notation for the symbol spaces in Definition 2.21. By
RIEWU x RY, g)1r.10 (2.78)

for
g = (ng g1)1 gi = ()’ia Yi — K, ®i)v l = 1721 (279)

we denote the space of all Green symbols, defined by Definition 2.21 (i). Similarly we
have the operator spaces

REU x R, g)(1n 0010y, R (U x RY, g5) 5071 g011)s (2.80)

etc., with obvious meaning of notation.

The properties of Green symbol spaces in the present context are to some extent
analogous to those in the edge calculus of singularity order 1, see, for instance, [11,22],
or [4]. Therefore, we content ourselves on the case of upper left corners of the indicated
block matrices.

Theorem 2.22 Let g;(z,¢) € Rl ' (U x RY, g)yn 7y, j € N be an arbitrary
sequence of Green symbols where the involved asymptotic types are independent of
j. Then there is an asymptotic sum g(z,¢) ~ Z?‘;o gi(z,¢), g(z,¢) € R’é(U X
R4, )~ 10y, unique modulo REOO(U x R4, g)ur,1ny, which means that for every
N € N we have
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N

g(z,¢) — Zgj(zﬁ {) € R’é_(NH)(U x R, g)r 10y,
=0

Proof The proof employs the following fact. If H is a Hilbert space with group action
and E = lim___ E* a Fréchet space with another group action, then a sequence of

<—keN
symbols in g; € S47/(U x RY; H, E) := lim SL77(U x RY; H, EX) has an
asymptotic sum. In the present case, if the involved asymptotic types are the same for
all j, the spaces EX are independent of j. To be more precise, the involved asymptotic
types are contained in a larger fixed asymptotic type for all j. For the formal adjoints

the argument is similar. O

We apply Green symbols in the case U := Q x €, @ € R? open, denote the
variables by (z, z') € Q x €, and form associated operators Op(g),

Op(g)u(z) = / / D (o O NdLd e, 2381)

first for functions u € C§° (€2, K°¥>¥1(1")). In addition we define smoothing Green
operators C associated with the weight data (2.79) in terms of mapping properties.
Such an operator is asked to induce continuous maps

C - Wigmp(Q, L7211 (1)) = WiR(Q, K 277y,

comp

C* : Wegmp(Q, K87 HLmNH (M) > Wi, Ky, g7 ™)),
for all s € R, and corresponding C-dependent asymptotic types P;, Q;, j = 1,2,
where C* is the formal adjoint of C with respect to the Wgomp(Q, K0-0-0(1~Y)-scalar
product. Green operators on an open set 2 € R?, of order i € R, associated with the
weight data (2.79) are defined as sums G := Op(g) + C for a Green symbol g and a
smoothing Green operator.

For g(z, 7/, ¢) in (2.81) we find a left symbol g1.(z,¢) € Riz(U x R, g)(1n yn)
such that Op(g) — Op(gr) is a smoothing Green operator. The proof is similar to the
case of classical scalar pseudo-differential operators. Starting from (2.81) it suffices
to pass to gL.(z,8) ~ D, end 1/01!(82‘,D?g)|z/=z(z, £), where the assumptions of
Theorem 2.22 for the asymptotic summation are satisfied. If a Green operator is written
G:=0p(g)+Cforag(z,¢) € R’é_(NH)(Q x RY, g)in. 1), @ C RY open, and a
smoothing Green operator C, we set

01(G)(z,¢) == guw(z, ¢) (2.82)

where g(,,)(z, ¢) is the homogeneous principal part of g as a classical symbol of order
w. Incidentally, instead of g(,)(z, ¢) we also write 01(g)(z, ¢).

Proposition 2.23 Every Green operator G can be written in the form G = Go + C
for a properly supported Green operator Go and a smoothing Green operator
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Proof Write g(z, 2, ¢) in (2.81) as ¥(z,2)g(z, 2/, &) + (1 = ¥ (z,2))g(z, Z', ¢) for
a function ¥ (z, z’) € C*°(22 x Q) with proper support (i.e., every strip A x 2 and
Q x B for arbitrary A, B € Q2 intersects supp ¥ in a compact set) such that supp ¢
contains diag(2 x €2) in its open interior. Then Go = Op(¥g) is properly supported.
Applying the asymptotic expansion that turns (1 — ¥)g to a left symbol we easily see
that C = Op((1 — ¥)g) is a smoothing Green operator. O

Theorem 2.24 Let G := Op(g) + C be a Green operator on Q2 C R, of order .,
associated with the weight data (2.79). Then G induces continuous operators

G - Wiy (2, K771 (1)) — Wi (@, K2 1 (1),

comp loc

foralls € R, for asymptotic types P>, Py, independent of s. If G is properly supported
we can write loc or comp or comp on both sides.

Proof The proof is a direct consequence of the second part of formula (2.21). O

Theorem 2.25 Let G := Op(g) + C and L := Op(l) + D be Green operators with
symbols g(z,¢) € RZ(Q x R4, garny and l(z,¢) € R (2 x R, c)nr.1ny, for
u, v € R, and corresponding smoothing Green operators C and D, respectively. We
realise G, L as continuous operators

G: WS (Q, ICSJ’ZJ’I (]A)) — WS_M(Q, KS—M,}/Z_IMVI_IL(IA))7

comp loc

L: WS 1 (Q, /CS—M,Vz—H,Vl—M([A)) N WS—U(Q’ ]CS—M—VJ/Z—M—V,VI—V«—V(IA))’

comp loc

assuming an obvious compatibility of weights in the involved data g, c. Moreover, we
assume that B or G is properly supported, such that B or G operate both in comp and
loc-spaces. Then the composition LG is a Green operator, i.e., of the form

LG =0p(f)+B

for some f(z,¢) € R’é+”(§2 x R, b) i~ 1~y with weight datab =1 o g := (y;, vi —
(n +v), ©;)i=1,2, and a smoothing Green operator B, where

o1(LG)(z,¢) = 01(L)(z, $)o1(G)(z, §). (2.83)

Proof The proof follows in an analogous manner as in the scalar calculus of pseudo-
differential operators. O

3 Mellin Operators
3.1 Mellin Operators of First Singularity Order
Pseudo-differential operators based on the Mellin transform will appear in this paper

in different variants. In this subsection we briefly recall the shape of Mellin operators
that are known from the cone and edge calculus, i.e., of singularitiy order 1. We
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also formulate Green operator-valued Mellin symbols on the interval /. Those will
contribute to the corner pseudo-differential calculus over I”*. In the simplest case we
have

opl, (fu(t) :=/ /)" fu(ydt /t'dv, dv= Qri) 'dv, (3.1)

Cip—y /Ry

for a symbol f(v) € S¥(I'1/2—,), cf. also (2.27). In this notation T = Im v plays the
role of the covariable. The expression (3.1) is interpreted as a Mellin oscillatory inte-
gral, first foru € C3°(IR+) and then extended to more general distribution spaces, e.g.,
H*Y (R4). We apply here Mellin operators in numerous variants, e.g., with symbols

f@,t',v) e CPRy x Ry, S*(T1/2-y))

with variable coefficients, or taking values in several operator classes, analogously
as those with twisted symbolic estimates, cf. the terminology in Sect. 2.3. We first
consider operators (3.1) where the symbol f extends to the complex v-plane as a
meromorphic function.

By A(G), G € C open, we denote the space of all holomorphic functions in G.
Similarly as (2.60) we consider sequences

S:={(ss,n)lea. CcCxN (3.2)

for an index set . € Z, and we assume that 7¢S := {57}, intersects every strip
{c < Rev < ¢} in a finite set. We call S a Mellin asymptotic type. Then

M;oo

denotes the set of all f(v) € A(Cy\ncS) that are meromorphic with poles at the
points s; of multiplicity n; 4+ 1 and such that for any w¢ S-excision function x (i.e.,
x € C®(0), x(v) = 0 for dist (mcS, v) < &y, x = 1 for dist (mc S, v) > &, for
some 0 < g9 < €1)

xflry € S(T'p)

for every real 8, uniformly in compact B-intervals.

Let us now turn to smoothing Mellin symbols of the corner calculus. First we for-
mulate such symbols for 8’ /" = R, i = 0, 1. Those are well-known in the calculus
of boundary value problems without the transmission property at the boundary, here in
the framework of the edge calculus over the half space R, ; x R‘j where the boundary
R‘Zi is interpreted as an edge. We fix any strictly positive function { — [¢]in C*°(R%)
with the property [¢] = |¢]| for |{]| > ¢ for some ¢ > 0. Moreover, we choose arbitrary
cut-off functions o, o’ on the ¢ half-axis. For any function ¢(r) we set

Q¢ (1) = @(t[C]).
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Now a smoothing Mellin edge symbol in (z, ¢) € U x R? for open U € R? is of the
form

k
m(z, ¢) =1y D17 D" opy” (fia) (@) %0] (3.3)

=0 lel=j

for fjq(z,v) € C*®(U, ngz"), where S, are Mellin asymptotic types and y» ;o € R
weights such that

V2= J = V2ja =2, TCSja NTij2—p 0 =Y

for all j, . The meaning of kK € N in the sum (3.3) is that whenever we talk about
families of such Mellin operators we assume that

A= (—(k+1),0]

is the weight interval in asymptotics on the ¢ half-axis for + — 0. Recall that we have

m(z, £) € SGU x RY KW (Ry), K27 7H(Ry)) (34
and
m(z,¢) € Sh(U x R K (Ry), K7 (Ry) 3.5)

for every s € R and every asymptotic type P, for some resulting Q»; clearly P> and
Q, refer to asymptotics for 1 — 0. Identifying R, with 8°7" by

Riy (U xR, g5) 5018 5010y for gy = (v2, 12 — jt, A) (3.6)

we denote the set of all (m + g)(z, ¢) for arbitrary m(z, ¢) of the form (3.3) and
8(z,0) € Ry, U x R, 82)(@017,9077)-

3.2 Mellin Operators of Second Singularity Order
Another kind of smoothing Mellin symbols is based on Green operators, referring to

the interval / with two conical end points. According to the general terminology of
the cone pseudo-differential calculus by

Lo, g1) 3.7
for weight data g := (y1, y1 — i, ®), with a weight interval ® as in (2.64) and a

weight y; € R, we denote the space of all G € ﬂseR L(HSY(I), HSHY—K(T)),
cf. the spaces (2.17), that induce continuous operators

G: H*"(I) — Hyp """
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and
G*: H ¥y — H,» (D)

for all s € R and G-dependent asymptotic types P and Q, see the notation (2.65).
If we fix P and Q we obtain a subspace Lg(I, g)p,0 C Lg(I, g) which is
Fréchet in a natural way. Now let us fix a Mellin asymptotic type T as in (3.2), and let

M7=, g))p,0

be the set of all

f) e AC\ncT, Lg(I. g1)p.0)

such that f is meromorphic with poles at the points s; of multiplicity n; 4+ 1 and such
that for any ¢ T-excision function x we have

xflrg € STp, L1, 81)p.0)

for every real 8, uniformly in compact B-intervals. In addition we require that the
Laurent coefficients of f(v) at the powers (v — s))~**D 0 < k < ny, are of finite
rank.

Set

M=, gp) = | M7™U gDro
PO

where the union is taken over all asymptotic types P and Q, associated with the weight
data involved in the definition of Lg (1, g{)p, 0.

In the corner calculus of boundary value problems we have Mellin operator families
of a similar structure as (3.3), namely,

k
mz ) =170 > 10 D> oph 2 (fia) )0%] (3.8)
j=0 lal=j

for fio(z,v) € C*(U, M;jzo(l, g1)), where T, are Mellin asymptotic types and
2. ja € R weights such that

2—J <vje =72, acTjaNli—y, ,, =9
for all j, a.

Proposition 3.1 The family of operators (3.8) defines elements

m(z,¢) € SE(U x RY; STV (M), KOOV VI=h (1Y) (3.9)
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and

m(z,¢) € SH(U x RE KR (1), K575 11 (ahy) (3.10)

forevery s € R and every pair ofasymptotic types P>, Py for some resulting Q», Q1.

Proof Let us write (3.8) in the form
m(z,¢) =1 “a;ZﬂZ > op (i) )¢
j=0 I=0 j—l|a|=l
Then, for
k .
M8 =17 o > > oph T P (fia)@e%el (B
J=0 j—lal=l
we have m(z, ¢) = 3o mu—i(z, ¢) and

myu—1(z,8¢) = 8" csmy—1(z, ¢) (is) ™!

forall § > 1, |¢| > C, for some C > 0. Because of Remark 2.6 it remains to observe
that m(z, ¢) is a smooth function with values in

LOCHPIIIN), RPN and LOCET (UM, Kyl M7 (7)),

respectively, for all s € R. O
Definition 3.2 By
Rhyic(U xR, g)n 1n)

fOr/L € Randweightdatag = (g27 gl)forgi = (Vi, Yi—H, (_(k+1)7 O])7 i = 17 27
we denote the set of all operator families

(m+g)(z. %) (3.12)

for m(z, ¢) asin (3.8) and g(z, ¢) € RE(U x RY, g)(1n 1n).

4 Corner-Degenerate Operators
4.1 Corner Symbols and Quantisations

Let Diff*(X) for a smooth manifold X be the space of all differential operators on
X of order u € N with smooth coefficients in local coordinates. Moreover, if B is a

manifold with edge Y, cf. the notation in Sect. 2.1, by Diff deg(B) we denote the space
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ofall A € Diff*(so(B)) that are locally near Y in the variables (7, x, y) € Ry x X xRY
for g > 0, cf. the formula (2.5), of the form

A=rT" " aja(r, y)(=rdr) (rD))* (4.1)
Jtlal=p

for coefficients a;, € C*® (R4 x RY, Diff*~U+leD (X)), For ¢ = 0 the manifold B
has conical singularities. In this case, instead of (4.1) we assume

I
A=r"">"a;(r)(=ror)! 42)

j=0

for coefficients a; € C OO(E+, Diff*~/ (X)). The base X of the local cone close to
the conical point s1(B) may have different connected components. Those can be
interpreted as several conical singularities of B. If we want to distinguish them we ask
the local form (4.2) close to the different conical points {cg, c1, ...} = so(B) with
respect to the individual base manifolds X; that depend on the corresponding ¢;. In
particular, for B := 1 = {r € R: 0 < r < 1} we have two different conical points
r = 0 and r = 1, and the respective cone bases are of dimension 0. In this case the
operators in

Diffy., (1) (4.3)

,,,,,

r=0orr=1.

Let M € 91, be a stratified space as in Sect. 2.1. Then Diffgeg(M ) is defined as the
space of all A € Diff" (sq(M)) belonging to Diffgeg(M\sz(M)) that are locally near
Z = so(M) and r = 0 in the variables (¢t,7,z) € Ry x I x R4, cf. (4.1), of the form

A=r7f 3 ajup(r y, 1, 2)(=rdr) (rDy)* (—r1dn) (r1D,)P (4.4)
JHlalHA+Bl<p

for coefficients a joi € C™ (R xR? xRy xR?). A similar representation is assumed
locally near Z and » = 1, the end point of /. Instead of (4.4) forr =0andr = 1 we
can equivalently assume

A=1H z crs(t, 2)(—tan* ¢ D.)° (4.5)
k+18|<p

for coefficients cs(f, z) € C°(Ry x RY, Diffge_g(kﬂal) ).
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Definition 4.1 Let ®; := (—(k; + 1),0], k; € N.

(i) Let Riyye g (Ry x U x R g)) for U € R” open, g1 := (y1. 71 = . ©1). be
the space of all

gedge(t, Z, :E, E) (S} ﬂ Sél{(@+ x U x lettd; ]CS,}/I;E(IR+)7 IC;‘]%}’I*MQOO(R+))

s,e€R

such that

Slage(t: 2. T.0) € [ SHRY x U x RGN TR ), Ko7 (Ry)

s,ecR

for certain gedge-dependent asymptotic types Py, Q1, associated with (y1 —u, ©1)

and (—y1, ©1), Easpectively.

(i) Let joge’MJrG(RJr x U x R;E‘l, gy) for U and g as in (i) be the space of all
operator families

(medge + gedge)(t, 2, T, E)

for gedge (7, 2, T, 0) e Rgdge G(EJr x U x R;‘Ed, g) and for cut-off functions w, '
on the r half-axis '
ki
N i Y1ja ~
Medge(t, 2, T, §) == 1w, Z(‘;rf lZ'Oer’ (f1a) (. D(F O . (4.6)
J= al=]

Here fjo(t,2) € C™ Ry x U, Mlgjzo) for Mellin asymptotic types R, referring
to the Cy,-plane and weights y;, € R such that

Y1 —J =Vije = V1, 7cRja NT1p2—y, 5, = 9.

(iii) By C®([Ry x U, Lgdge,M+G(I’ g; R;Ed)) for g = (g¢. &) we denote the space
of all operator functions of the form

Eedge,M+G(t’ 7, T, E) = w()(medge,o + gedge,O)(t, 7, T, g)wé)
+ 0, 01 (Meage,1 + Gedge, (1,2, T, D)0 (47)

w
edg

in (ii). Here w; < a);, i = 0, 1, are cut-off functions on the r half-axis such that
wo(r) +wi(—r+1) = 1 ontheinterval I , and ¥ lis the push forward belonging
to the inverse of (2.66).

+

for symbols (m+g)edge,i (1, 2, T, §) € Rlgge yy 6 R x UxR] ;’, g1) introduced

)
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Let us now consider symbols
Pitoc(t, 7,2, T, 0, &) = Pijloc(t, 1,2,7T, 7P, T)

for pitoc(t, 1,2, 7, p, ) € SH(Ry x Ry x U x R¥.), i =0, 1. Via Mellin quan-
T.p.¢
tisation in r-direction with p; 10c(¢, 7, 2, T, 7P, ) we associate an

ﬁi,loc(t, Tz, % w, E) € Sé (EJr X @+ x U x thd)
w T,{

such that for h; 1oc (2, 7, 2, T, W, ;:) = }:z,',loc(t, r,Z,rT, w, r;:) we have
Op, (Pitoc) (1. 2. 7. £) = oply (hiee) (1, 2. T, 0)

modulo C® (R, x U, L™®(Ry; R?‘Ed)), for every B € R.
Let us now form ’

fedge(1. 2. T, §) 1= wor™ "oz zopyy” (ho.100) (¢ 2. 7. D),
+ (1 =z 0P, (Pooe) (1. 2, T. (1 = o )}
+ 0 o o; zopyy! (hee) (1, 2. 7. D,

+ (1= @z H)OP (Prioc) (. 2. 7. D) (1 — o] D}, (4.8)

; Z(r) = w(rl|T, g:l). Since the final results are independent of the choice of the
cut-off functions ” < w < ' on the r half-axis we take the same both for i = 0 and
i=1.
Let .
C®Ry x U, L"(1, gy; Ré*{’)) 4.9)

be the set of all operator functions
pt,z, 7, E) = dedge(tv 7, T, E) + Bedge,M+G(t’ Z, T, E) + Eedge(t, Z, 7, g)’ (4.10)

where dedge (7, 2, T, E) and Bedge,M+G(tv z, T, g: ) are given by (4.8) and (4.7), respec-
tively, while Ceqge (¢, 2, T, 0) e C"Q(EJr x U, S(R?’Ed, Lg(1, g4))), cf. formula (3.7).
In an analogous manner we define ’

CO¥Ry x U, L*(1, g3 RY))
by simply omitting everywhere the variable T and

C®Ry x U, L*(1, g1; Tg x R?))



1196 D.-C. Chang et al.

by replacing 7 in (4.9) by Imv for v € I'g.
Now let .
C¥Ry x U, Mp5, (1,813 RY) (4.11)
be the space of all
B2, 0,8) € ACy, C¥Ey x U, LI, g1 RY)))
such that

h(t,z.f+it.0) € C®Ry x U, L"(I.g:Tp x RY)

for every B € R, uniformly in compact S-intervals. We employ the following Mellin
quantisation result:

Theorem 4.2 For every
p(t,z,7,8) = p(t, 2,17, 18)
p(t.z,%.2) € C®Ry x U, L”(I,gl;R;Ed)), there exists an h(t,z,v,7) €
C®R,4 x U, My (I, g1 Rg)) such that for
h(t,z,v,¢) = h(t, z, v, 10)
we have
oply, (2. £) = Op,(p)(z. ¢)

modulo C*®(U, L™ (Ry. x I, g3 RY)), for every p € R.

Theorems of that kind have been first established in connection with cone and
edge pseudo-differential algebras, cf. [22, Theorem 2.3.7]. There are many variants
and alternative proofs, see, in particular, [18] in the framework of boundary value
problems with the transmission property at the boundary, Krainer [13] in connection
with parabolic operators, or the iterative constructions for higher singularities in [9],
[3]. For purposes below we form

po(t.z.7.8) = p(0, 2, 17.10), ho(t, 2, v, §) := h(0, 2, v, 1%).
Then, similarly as in Theorem 4.2 we have
oply, (h0)(z. £) = Op, (po) (z. ¢)

modulo C*(U, L=(R4+ x I, g; R?)), for every B € R.
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Definition 4.3 The space
RUU x RY, g), (4.12)

foru e Rand g = (g5.81), & =i vi — 1, 0;), ©; =(—(k; +1),0], i =1,2,
is defined as the set of all operator families

a(z.§) == ot Mogoply P () (2. £)of + (1 = 5)0p,(p)(z. £)(1 — 6{))o’

+ @O0p, (pind) (z, @' + (m + g)(z, ¢) (4.13)

for arbitrary p, h asin Theorem 4.2, (im+g)(z, ¢) € R‘;,HG(U xR?, g), cf. Definition

3.2, pinc(t, 2,7, ¢) € CPR4 xU, L*(1, g;; Rl}d)), cut-off functionso” < o < o’

0,0’ on the ¢ half-axis, and ¢, 9" € C° (R, ;).

IfU = Q) x Q, Q> € R? open, we write (z, Z) € Q» x Q rather than z.
Fora(z, ¢) € R* (2, x R, g) we set

02(a)(z, ¢) i= 1 {ocjoply (o) (2, Doy
+ (1= 01DOp, (o) (2, (1 = o[} + 02(m +£)(2, ), (4.14)

@.8) € Qo x RO for o1(1) := o (¢|¢]). ete., and o2(m + g)(z. §) = (m +
&) (2, ¢), with () indicating the (%)-twisted homogeneous principal component
of order p of the corresponding classical symbol.

The operator families a(z, ¢) € R*(U x R?, g) contain information from the cal-
culus of pseudo-differential operators on 1", interpreted as a (non-compact) manifold
with edge s1(I") = 9°1" U ' 1", cf. notation (2.2). Assume for the moment that
a = a(¢) is independent of z; the z-dependent case is straightforward and tacitly
included below.

It is convenient for the moment to refer to a general manifold B with edge s1(B) =
Y, main stratum so(B) = B\Y, where B is locally near s1 (B) modelled on X A x Q)
for a smooth closed manifold X, n = dim X, and open 2; € RY, corresponding to
acharton Y, g = dimY. A special case is B = I, Y = s1(I"), so(I") = Ry x
(0, 1), where X is a single point. The well-known parameter-dependent edge calulus
(edge algebra) contains edge-degenerate pseudo-differential operators, together with
smoothing edge Mellin and Green operators. It is furnished by spaces

L*(B, g1; RY) € L (so(B); RY) (4.15)

of ¢-dependent classical pseudo-differential operators over so(B) = B\Y, associated
with the weight data g; = (y1, Y1 — i, ©1), cf. Dorschfeldt [5], or [2,3,11,12].
Notation has been changed and unified during the development of the past decade, in
order to make the calculus iterative for increasing orders of singularities. In the present
article we freely use notation and results of [27].

AW() e LM(B, g;; ]R?) has a parameter-dependent homogeneous principal sym-
bol of order p

oo(W)(x.§,%), (4.16)
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determined by W (¢) regarded as an element of Lgl(so(B); R‘g), cf. (4.15). Here (x, &)
means variables and covariables in 7*(so(B)), and (4.16) is homogeneous in (&, {) #
0 of order . Moreover, let 1 € R? for ¢ := dim Y be an open set, belonging to a
chartons|(B) = Y, with variables and covariables (y, n) on 2| xR? = T*(21). Then
W() € L*(B, g1; R‘Z) is locally near s;(B) modulo a local smoothing parameter-
dependent edge operator of the form

Op, (‘a)(¢) (4.17)

for an 'a(y, 1, ¢) belonging to a space of edge amplitude functions (for simplicity, left
symbols)

R x B g1) (4.18)

which is of a similar structure as (4.12). More precisely, first we have an analogue of
Theorem 4.2, namely,

Theorem 4.4 For every
'p(roy pom,©) = p(ry, rp 1)
1p"(r, v, 0,1, E) € COO(K%, X 21, Lé‘l(X; RZ:%))’ there exists an 1fl(r, y, w, 17, 5) €
C°°(@+ x 21, Mgw (X; R‘f;yg)) such that for
"y, w, . &) =y, w,orn, rg)
we have
oy, (M)(y.n.2) = Op,('p)(v. 0. ©)
modulo C*° (21, L~ (R4 x X; Rf]:d)),for every B € R.
Setting
'po(r, y, 0.0, &) = "pO, y,rp, rn, o), tho(r, y, w,n, £) = R0, y, w, rn, ro),
we also have

oply, (ho)(v. 1. &) = Op,('po) (v, 1. )

modulo C® (1, L™ (R4 x X; R?ﬁgd)), for every B € R.
Other ingredients of (4.18) are spaces

d d
RE Q1 x RITE g1) and 'Ry, (@1 x RIT g)

of Green and smoothing Mellin plus Green edge symbols, respectively, cf. [22, Defini-
tions 3.3.6,3.3.14]. They are of a similar structure as those in Definition 3.2. The formal
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difference is that [ is replaced by X, and the smoothing Mellin symbols f (y, w) belong
to C° (R, MS_OO(X)) for a Mellin asymptotic type S = {(s;, n;)};eL, cf. formula
(3.2), where MS_OO(X ) consists of the set of all meromorphic functions with values in
L™°(X) = C*°(X x X) with poles at the points s; of multiplicity n;+ 1, and finite rank
Laurent coefficients at (w — s;)~**tD 0 < k < ny, and Xf|1“,g e S(Tg, L™*(X))
for every B € R, uniformly in compact S-intervals.

Then (4.18) is the space of families of operators

a(y. 0. 8) = or Mawycophy "G Ol + (1 = w,,0)0p,(P) (v, 1. £)
(=) N +¥O0p,Cpnd (v, 1. OV + (m+ ')y, n,0) (419

for arbitrary 'p, ' asin Theorem 4.4, ('m + g) (v, n,¢) € 1RMA,HG(Q] x RIt4, g0,

1 d
moreover, 'pini(r, y, p, 1, ¢) € C®(Ry x @1, LECGR,HT
0" < w < o', w, ® on the r half-axis, and ¥, ¥’ € CoP Ry ).

For la(y, y,¢) € "R*(Q x RZ;’I, g) we set

)), cut-off functions

o1(a)(y.n. ¢) = r ™ {wp.conhy " Cho) (v Oy ¢

+(1 = @p.ePOp, (o) (v, 1, ) (1 — )y )}
+or('m + '9)(y. m. 0), (4.20)

(.m0 € Q x RITN\{0}) for w),¢(r) = w(rln, ), etc., and o2('m +
9,1, ¢) == (m+ )y, n, ¢), with (1) indicating the (*x)-twisted homo-
geneous principal component of order u of the corresponding classical symbol.

A parameter-dependent operator W(¢) € L*(B, g;;RY) then has a parameter-
dependent homogeneous principal edge symbol o1 (W) of order u, locally near s1(B)
determined by (4.17), and we set

o1l (W)(y, n, &) = o1('a)(y, n, ¢). (4.21)

Together with (4.16) we have the principal symbolic hierarchy
o (W) = (oo(W), 01(W)) (4.22)

of operators W in the edge calculus.

Remark 4.5 Note that the specific choice of the functions ” < w < o', @, @ on
the r half-axis, and ¥, ¥" € CJ°(Ry ;) is not essential. Remainders under changing
these functions remain in (4.18). In particular, if we assume @ > ¥, @ > ¥’ the
summand in (4.19) with the factors ¥, ¥’ can be integrated in the one with the factors
®, ®', modulo a flat Green remainder (flat means trivial asymptotic types), though
1 pint(r, ¥, p, 1, §) is not edge-degenerate. Without loss of generality we could assume
the latter contribution to be edge-degenerate, but since this term is localised off r = 0
both versions are equivalent modulo a flat Green term.
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In particular, we may assume @ > w,, ® > a);) for all . Thus

_ NN
Wy = Wy, W, = O,.

Let us now recall the following important relations. For every s € R we have
R x RIM ) c SU(U x R H, H) (4.23)
for the pair of spaces

H =" (XM, H := KXY or Hi=Kp!" (X"), H := Ky,

(4.24)
for asymptotic types P, associated with the weight data (1, ®1) and some resulting
01, associated with (y; — u, ®1). For references below we sketch here the main argu-
ments, cf. also the constructions in [19]. Let us ignore elements (‘m + lg) (y,n,¢) €
IR’;, 4G (21 x Rzzd, g1) of (4.18) which are even classical symbols with more specific
properties. It suffices to consider symbols a = a(y, n) since dimensions of variables
and covariables are independent, and changing notation we may drop ¢. The depen-
dence on the variable y does not cause any specific difficulty; so we drop it. Moreover,
it is convenient first to assume that lﬁ(r, 0, 1) and h (r, w, n) are independent of r;
the general case is treated by applying a tensor product argument, cf. details below.
Thus, taking into account Remark 4.5 and setting

Yotr, o, 1) == 1500, rp, rn), Tho(r, w, n) :== (0, w, rn) (4.25)
it remains
la(m) := () + le(n) (4.26)
for
() = r " wmophy " (ho) (), (4.27)

le(n) == @' f(n@ for 'f(n) =r""(1 = w,)O0p,('po)((1 — ). (4.28)

Now we have 'b(n) € C*°(RY, L(H, H)) for the spaces in (4.24). The spaces with
asymptotics in the second pair are written as projective limits of Hilbert spaces

lim H™, lim H' (4.29)
< <—
meN leN

for Hilbert subspaces
cH™ s M s s HO = OSTH(XY)
and

...Hl-i—l s ﬁl [N HO — KS—;,L,yI—M(XA)
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with group action L, cf. also formula (2.73). In this case ~A e L(H, H ) means the
existence of a functionr : N — N such that A € E(Hr(l), H') foralll € N, while

St (@1 x RY; H, H) := U ﬂ Sten (@1 x R%; H'O A (4.30)

r leN
where the union in (4.30) is taken over all mappings r : N — N. Remark 2.6 is
valid both for pairs of Hilbert and Fréchet spaces with group action. In our case we

can apply this to the function (4.27) which belongs to C®°(R?, L(H ') HY) for a
suitable r : N — N. Without loss of generality we can assume r(0) = 0. Because of

(sy) = 6" ks b)) ('ks) ! (4.31)

for all 6 > 1 and |n| > const for some constant > 0 the assumptions of Remark 2.6
are satisfied, and we obtain the desired symbol property for '6(1). In addition the map

My, (X;RD) — sh@i x RS HOLAY, 70, w, i) > 'b(3n)

for the indicated r is continuous.
The arguments for (4.28) are as follows. First note that

le(n) € C*(RY, L(H, H)). (4.32)
Then, for any excision function x (1) we write
le(n) = c(n) +d(n)

for c(n) == (1 — x(n)) 'e(n), d(n) = x(n) 'e(n). Since c(n) is of compact support
in 7 it follows together with (4.32) that ¢(n) € S™*°(R?; H, H). Moreover, we have

dm) = ex(m 'f()e'. (4.33)

Since the operators of multiplication by @ and @’ both belong to SO(R?; H, H) and
So(RY; H, H), it remains to observe the relation

X' F ) = xr (1 — w,)O0p,('po) (1 — ) € S*RY: H, H)  (4.34)
and the continuity of

LE(XGRE ) — SHRE H, H), 50, 5, i) = f (). (4.35)

Remark 4.6 Let C ﬁf R] (EJr) be the subspace of all ¢ € C <>Q(KWL) suppi)rted by [0, R]
for some R > 0, the operator M, of multiplication by ¢ € Cﬁf r)(R4) belongs to
SO(RY; H, H) and So(RY; H, H ), and the corresponding operators
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Cy r®) — YR H, H), ¢ —> My,

are continuous. Analogous relations are true with respect to H.

Now for r-dependent 1 p(r, p, 1) and lfl(r, w, 1) there is a tensor product argument.
The abstract background is that the elements of the projective tensor product EQ, F
of Fréchet spaces E and F can be written as a convergent sum

(0.¢]
D hje;® £ (4.36)
j=0

ford; € C, 2710 |Aj| <ocande; € E, f; € F, tendingtoOinthe_respectivespaces
as j — oo. In the present case this can be applied to E := C E’OO r)(R4) (the subspace
ofallg € COO(KJr) supported by [0, R] for some R > 0) and F = L’C‘l(X; R% ﬁ)’ ie.,

B(r, 5, 7) € CfF gy Ry, LE(X; RE ) = CFF gy Ry)& LU (X RY )
or F = Mgw(x; Rg) and

h(rw. ) € Cff gy Ry, Mgy (X RD) = CF gy R)® Mp5 (X1 RY).
Proposition 4.7 We have

RMU xR, g) c SY(U xR H, H) (4.37)
for the pair of spaces
H = 572N, H = KSTHRmiyi=i(ph)

as well as

e SV VLA 7 . jSTHYV2T YT/ gy A
H = Cp)% (™), H =Ky )

for every s € R and asymptotic types P>, Py, for some resulting Q2, Q1.

Proof Throughout this proof we assume that the operator functions (4.13) are inde-
pendent of z. The general case is straightforward and left to the reader. By notation we
have (m + g)(¢) € R’If,l +G(R?’ g). By virtue Definition 2.21 (i) the Green summand
g(¢) is as claimed. Moreover, Proposition 3.1 tells us that also m(¢) is as desired,
even a classical symbol.

Applying an analogue of Remark 4.5 to elements (4.13) of (4.12) we may ignore
the summands with factors ¢, ¢’ completely. In addition without loss of generality we
may assume ¢ > o, 0’ > aéf for all ¢. Thus o0y = oy, a’aé = oé, and it remains
to look at

a(t) == b() +e(?) (4.38)
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for
b(¢) =t ocoph () (©)of. () =0 (), (4.39)

and
(@) == 17" —or)O0p,(p) (&) (1 = 0)). (4.40)

We have b(n) € C”(Rd, L(H, FI)) for the spaces in (4.37). The spaces with asymp-
totics in the second pair are written as projective limits of Hilbert spaces analogously
as (4.29) for Hilbert subspaces - - - H" ! < H" < ... < HO = (%7271 (]") and
o HP s Bl s oo O = (ST =i ([N) with group action %, cf. also
Proposition 2.20. We have

a(t) e C¥RY, L(H, H)). (4.41)

This can be concluded from b(7), e(¢) € C®°(RY, L(H, H)), cf. (4.39). The desired
symbol property of b(¢) follows from a tensor product argument, combined with
Remarks 2.6 and 4.6 which also holds for the spaces in (4.37). More precisely, we may
assume h(t,v,¢) € Cf’&R] (R+)®nMgu I, g1; R‘g) for asufficiently large R > 0, i.e.,
we can write

h(t,v,8) =D hjgj(Oh; (v, 0)

j=0

for 4 € C, 232 |xj| < 00, ¢j € C§ g (Ry) and hj(v, ) € Mgv(l,gl;]R‘g),
tending to O in the respective spaces as j — oo. This gives us

b() = iAjM(pjbj(C) (4.42)
j=0
for
bj() = ocoply P (©)of. hjw.©) =y, 10).
Because of

b (82) = 8" %cs lz/'(é“)(z/%)_l (4.43)

forall§ > 1 and |¢| > ¢ for some ¢ > 0, the assumptions of Remark 2.6 are satisfied,
and we see that b;({) is a classical symbol, tending to zero as j — oo. Thus (4.42)
converges in the claimed symbol space. In order to treat e(¢) we choose an excision
function x (¢) in R and write

e(¢) =c(f) +d(©) (4.44)

forc(¢)=0(1—x(@) f(¢)a’, d)=0x()f(¢)o’.Sincec(y) € C®(RY, L(H, H))
is of compact support in ¢ it follows that c(¢) € S —%(R%; H, H) which is contained
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in the desired symbol space. Moreover, we may assume
~ ~ Z o0 M \S " . l+d
pt,7,¢) € C[O,R](R+)®HL I, g1; Rf R )
for a sufficiently large R > 0, i.e., we can write
o0
PE =D hjejt)p;(F.0)
Jj=0
for 1 € C, 524141 < 00, ¢ € Cfy pyRy) and ;(7.0) € L“(I,gl;Rif'Ed),
tending to O in the respective spaces as j — oo. This gives us
oo
d(@) =D AjMyd; () (4.45)
j=0
for

dj(¢) =0 x () fj(5)’,
fj({) = t_ﬂ(l - U{)Opt(P])(f)(l _O';/')’ Pj(t, T, ;) = ﬁj(lf? t{)

A computation based on oscillatory integrals yields that
L1 g REE) — SURYHLH), f(7.0) > dj (@),
is continuous, and hence (4.45) converges in S (R4; H, H ). O

Theelementsa(z, ¢) € R*(U xR?, g) are particular families of parameter-dependent
edge operators

a(z, £) € C®(, LF(I", g RY).

As such they have the symbols oy (-) and oq(-), smoothly depending on z € 2,
namely,

oo(a)(t,r, 2,7, 0, §),
cf. (4.16), where x is replaced by (¢,7) € R x (0, 1) and & by (7, p) € R2, and
o(@)(t,z,7,8),

cf. the formula (4.21), with (y, n) being replaced by (¢, t). Together with (4.14) this
gives us the principal symbolic hierarchy in R* (2, x R?, g) 5 a(z, ¢), namely,

o(a) = (00(a), 01(a), 02(a)). (4.46)
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Setting
RN xR, g) 3 a(z,¢) = {a e R xR, g) : 0(a) = 0}

we obtain a subspace of elements which have a triple of principal symbols of order
u — 1, namely,

_ —1 -1 -1
o' Na) = (op " (@), 0f (@), 03 (@)
Successively we obtain subspaces
RNy x RY, g) C R*(22 xR, g), N €N,

the weight data of which are independent of N. Analogously as in the edge calculus
we have the following result on asymptotic summation.

Theorem 4.8 For every sequence a;j(z,{) € RH=I(Qp % R4, g2), j € N, where the
weight intervals contained in g are finite and the asymptotic types of the involved
Green symbols independent of j, there is an asymptotic sum

a(z,ﬁ)NZaj(z, $),
j=0

a(z,¢) € R*(2 x R4, g), unique modulo REOO(QQ x R, g)ur,1ny, Le., for every
N € N we have

N

az. ) — > aj(z.0) e R V(@) x RY, g).
j=0

The main ideas of the proof are similar to that of a corresponding result on asymp-
totic summation of edge symbols. So we drop the proof here.

4.2 Corner Boundary Value Problems

We now study the operators of the corner calculus, locally generated by symbols
a(z, ¢) in the sense of Definition 4.3.

Theorem 4.9 a € R' (2 x RY, g), b € R*(Q x R, h) for g = (g5, 8,), h =
(ha, hy),

g=Wi—v,vi—v—u0), hi =i yi—v, 0, 0; = (- +1),0] k; €N,
implies ab € R* V(S x R, g o h) for

goh=(g;oh)i=0,1, giohi=Wi.yi—v—n0;), i=12,
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and we have
oi(ab) = o;(a)o; (b), i =0,1,2.

Proof The result employs the known composition behaviour of operators in the edge
calculus, i.e., the fact that ab also contains the pointwise composition between the
values of operator-valued symbols in weighted spaces, controlled as in Proposition
4.7, namely,

ael’(I", g, beL*(I" h)) = abe L*(I", g, ohy).

In addition, similarly as in the composition of symbols in the edge calculus for singu-
larity order 1, cf. [8], we can refer to a quantisation only based on holomorphic symbols
as obtained for singularity order 2 in the article [27]. This gives us the composition in
the corner symbol spaces themselves. O

Remark 4.10 Let a € R*(Qy x RY, g) for g = (8))i=12, 8 = Wi, vi — I, ©;).
Then for the (z, ¢) wise formal adjoint with respect to the ICO'O’O(I MY-scalar product
we have a* € RH(Qa x RY, g*) for g* = (g1)i=12, &' = (=i + 1, —¥i. ©)).

Let M be a stratified space as at the beginning of Sect. 2.1. We now assume that
M is compact. Recall that close to Z = so(M) the space M is modelled on 12 x RY,
Moreover, M\ Z is anon-compact manifold of dimension 2+d with boundary 0 (M\ Z)
of dimension 1 + d for d > 1. We treat M\ Z as a manifold with smooth edge, since
our operators will not have the transmission property at the boundary. On M\ Z we
have the well-known edge operator spaces

LY (M\Z., g,) for gy =(y1,y1 —u On
and weighted edge spaces

Hy 7N (M\Z) C Hj, (int (M\Z2)), (4.47)

locally near d(M\ Z) modelled on
WS (R1+d, ICS,VI (RJ’_))

where R is the inner normal of the boundary d(M\ Z) in M\ Z. Moreover, we have
subspaces

Hyols p (M\Z), (4.48)

locally described by
W R KR (R)).
Finally on M\ Z locally near Z in the splitting ov variables

(t,r,z)eR+xIde
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we have the spaces
HS YRy x [ x RY) := WH(R?, 7271 (1)) (4.49)
and subspaces with asymptotics

Hy 37 Ry x I x RY) = W (R, K30 (1), (4.50)

By gluing together (4.47) and (4.49) via charts and a subordinate partition of unity we
obtain weighted spaces
H*>Y2Y (M) (4.51)

over M. In a similar manner we obtain weighted spaces with asymptotics

Hyp) (M) (4.52)

by gluing together (4.48) and (4.50), cf. formula (2.59).
By

L™(M, g)

for g = (g,, &) as in Definition 4.3 we denote the space of all continuous C :
HSY2VH (M) — HOOV2IN=I(M), s € R, that induce continuous operators

C: Hs)/zJ/](M)_)HOO)’Z w,y1— M(M),
. S, —Y2+u,—y1+ur 00, —¥2,— V1
Cc*: HS " M) — Hyy TN (M),

s € R, for C-dependent asymptotic types P; and Q;, associated with the weight data
(yi — 1, ©;) and (—y;, ©;), respectively. Here C* is the formal adjoint of C with
respect to the non-degenerate sesquilinear pairings

HY72 (M) x H™ 777" (M) — C,
based on the H%%-9(M)-scalar product.
Definition 4.11 The space of corner operators
L"(M, g)
forp € Rand g = (g,, g;) is defined as the set of all A € LH(M\Z, g) which are
modulo L™°°(M, g) locally near Z of the form Op, (a) for some a € R* (23 x R, g),
where Q, C R4 corresponds to a chart on Z.

The elements of L* (M, g) represent boundary value problems on M, more pre-
cisely, upper left corners of operator block matrices, analogously as (2.77).
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Theorem 4.12 An operator A € L*(M, g) for uw € R and g = (g,, g) induces
continuous operators

A HS 2N (M) — HS—M,VZ—M,VI—M(M)’

.S S=I, V2= YI—
A:Hp"p" (M) — Hp ' (M),

for every s € R and arbitrary asymptotic types P;, associated with (y;, ®;) and
resulting Q;, associated with (y; — |4, ©;), depending on P; and the operator A.

Proof The results are a direct consequence of the local continuity of operators off
s2(M) as edge operators and of Proposition 4.7 combined with relation (2.21) and its
analogue for Fréchet spaces with group action. O

The inclusions
L"(M, g) C LE(so(M)), L*(M,g) C L"(M\Z,g)) (4.53)

show that an operator A € L*(M, g) has the (standard) homogeneous principal
symbol op(A) as a classical pseudo-differential operator over the smooth mani-
fold so(M) and the (twisted) homogeneous principal symbol o1(A) as an opera-
tor in the edge calculus over the manifold M\Z with smooth edge, in this case
with boundary s1(M) = 9(M\Z). Locally near s1(M) in variables and covariables
(y,n) € 21 x (R\{0}) for an open set 2; € R, representing a chart on s1(M), the
symbol o1 (A) is a family of continuous operators

o1(A)(y, m) : K (Ry) — KTHMTH(R,),
continuous for all s € R and twisted homogeneous of order 1, namely,

o1 (A)(y, 8n) = 8" 5o (A) (v, m) (Cies) ™!

forall § € R.

Moreover, locally near so(M) = Z in variables and covariables (z,¢) € Q2 X
(Rd \{0}) for an open set 2, C R4, representing a chart on s (M), the symbol 02 (A)
is a family of continuous operators

02(A)(z,0) : | aiend (]A) N ]CS*MJQ*M,VPM(IA)’
continuous for all s € R and twisted homogeneous of order i, in this case,
02(A) (2, 8¢) = 8" %ics02(A) (2, ) (ies) ™!

forall § € R;.

Theorem 4.13 Let A € LY (M, g), B € L*(M, h) for g, h as in Theorem 4.9. Then
we have
AB e L"™ (M, g o h), (4.54)
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and
0;(AB) =0;(A)o;(B), i =0,1,2. (4.55)

Proof The composition AB is well-defined in the sense of continuous operators
between corresponding weighted corner spaces, cf. the first assertion of Theorem
4.12. By virtue of (4.53) this corresponds to compositions both of classical pseudo-
differential operators over so(M) and edge operators over M\ Z. Since the principal
symbols o;(-) for i = 0, 1 refer to (4.53), and because of the known composition
behaviour in the corresponding operator spaces, including the symbolic rules (4.55)
fori = 0, 1, it remains to show the relation (4.54) and (4.55) fori = 2.
It suffices to characterise local compositions of the kind

@Op._ (a)poOp, (b)¢’ (4.56)

for symbols a(z, ¢) € R"(2 x RY, g),b(z,¢) € R*(Q x R?, h), for functions
@, 90, ¢" € C3°(2), where Q; corresponds to a chart on Z = s3(M). In order
to localise expressions after treating (4.56) once again in a compact subset of €2,
instead of (4.56) we can write ¢pOp, (a)poOp, (b)¢'¢’ for functions ¢ > ¢, ¢’ > ¢’
in C;°(R22). Wehave pob € R* (2 xR?, h), and the Leibniz product ¢ := a#(pob) ~
D weNd l/a!az"aD? (@ob) canbe carried outin R (2 xR?, goh), cf. Theorem4.8.
By using the right behaviour of the symbol classes in Definition 4.3 under pointwise
formal adjoints we obtain that (4.56) is equal to $Op_(c)¢" modulo a smoothing
operator localised in 1" x €2;. We easily see also the symbolic rule (4.55) fori = 2.

O
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