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Abstract Since the last decade, motivated by attempts of positive frequency decom-
position of signals, complex periodic functions s(eit ) = ρ(t)eiθ(t) satisfying the
conditions

H(ρ(t) cos θ(t)) = ρ(t) sin θ(t), ρ(t) ≥ 0, θ ′(t) ≥ 0, a.e.,

have been sought, where H is the circular Hilbert transform and the phase deriva-
tive θ ′(t) is suitably defined and interpreted as instantaneous frequency of the signal
ρ(t) cos θ(t). Functions satisfying the above conditions are called mono-components.
Mono-components have been found to form a large pool and used to decompose and
analyze signals. This note in a great extent concludes the study of seeking for mono-
components through characterizing two classes of mono-components of which one
is phrased as the Blaschke type and the other the starlike type. The Blaschke type
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mono-components are of the form ρ(t) cos θ(t), where ρ(t) is a real-valued (gen-
eralized) amplitude functions and eiθ(t) is the boundary limit of a finite or infinite
Blaschke product. For the starlike type mono-components, we assume the condition∫ 2π
0 θ ′(t)dt = nπ , where n is a positive integer. It shows that such class of mono-
components is identical with the class consisting of products between p-starlike and
boundary (n − 2p)-starlike functions. The results of this paper explore connections
between harmonic analysis, complex analysis, and signal analysis.

Keywords Circular analytic signal · Mono-component · Blaschke product ·
Bedrosian identity · Multivalent starlike functions · Boundary starlike functions

1 Introduction

Fourier series expansion (for periodic functions) and inverse Fourier transform (for
non-periodic transform), in fact, are signal decompositions into basic signals of non-
negative instantaneous frequencies. In those decompositions the basic signals are
trigonometric functions that are of constant frequencies. With combined efforts of
researchers, based on the Hardy space theory and analysis of functions of one com-
plex variable, a comprehensivemono-component function theory and the related signal
decompositions, especially lately the adaptive ones, were established (see [1–7], and
related references). We now recall the mono-component concept in the unit disc con-
text. Now require that the function x(eit ) = ρ(t) cos θ(t) satisfies H(ρ(t) cos θ(t)) =
ρ(t) sin θ(t), where H is the circular Hilbert transformation. The last requirement
amounts to the circular analytic signals has a form of s = x + i Hx = ρeiθ . Let
H p(T) be the set of all circular analytic signals in L p(T). In the case ρ(t) cos θ(t)
is the real part of the boundary limit of a good analytic function, say a Hardy
H p(D) space function in the unit disc D, 1 ≤ p ≤ ∞ [8]. We further write
s(z) = ρr (t)eiθr (t), z = reit , r < 1, t ∈ [0, 2π). If, moreover, the following
limit exists and satisfies

lim
r→1− θ ′

r (t) ≥ 0, a.e., (1.1)

then x(eit ) is said to be a mono-component, and the limit is defined to be θ ′(t), as the
analytical instantaneous frequency, or simply, instantaneous frequency (IF) [9,10].
If x(eit ) is a mono-component, then we say that the associated analytic signal s(eit )
is also a mono-component, and vice versa. It is noted that the necessity of taking
limit from inside the unit disc is due to the fact that the classical derivative θ ′(t) as a
measurable function may not exist when we extract θ(t) from the boundary limit of a
Hardy space function.

The first type mono-components with nonlinear phases are Möbius transforms.
They are of the form

s(eit ) = eit − a

1 − aeit
, |a| < 1.
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It is a known fact that its phase derivative is identical with the Poisson kernel. Möbius
transforms turn to be the very basic constructive blocks of most other types of mono-
component. In particular, it immediately implies that finite Blaschke products are
mono-components. They are also constructive blocks of infinite Blaschke products.
It took a while to find a proof for the fact that infinite Blaschke products are also
mono-components. In [10], Qian proves that for all inner functions positivity of their
phase derivatives are reducible to the Wolff–Julia–Carathéodory Theorem. We note
that only in the limiting sense as given in (1.1) this property can be proved. Owing to
this result unit module mono-components have all been found, as summarized in the
following [8,10]:

Theorem 1.1 Let s(eit ) be of the form s(eit ) = eiθ(t), where θ(t) is a real-valued
measurable function. Then s(eit ) is amono-component if and only if H(cos θ) = sin θ,

or, equivalently, H(eiθ ) = −ieiθ , and if and only if s(eit ) is the non-tangential
boundary limit of an inner function in D.

Signals of unit module are called phase signals [11]. The above theorem character-
izes all phase signals that are mono-components. What is left now is to characterize
non-unimodular mono-component signals s(eit ), viz. those with non-constant module
ρ(t) = |s(eit )|.

We restrict ourselves to the Hardy spaces H p(D), 1 ≤ p ≤ ∞. We divide non-
unimodule mono-components into the Bedrosian and non-Bedrosian categories. We
call s(eit ) = ρ(t)eiθ(t) as aBedrosian typemono-component if both the original signal
ρ(t)eiθ(t) and its phase signal part eiθ(t) are mono-components, and ρ is real-valued,
and θ ′

ρ(t) = 0, a.e. where ρ = |ρ|eiθρ . We call s(eit ) = ρ(t)eiθ(t) as a non-Bedrosian

type mono-component if ρ(t)eiθ(t) is a mono-component, but eiθ(t) is not.
Note that in the Bedrosian category we release the usual restriction ρ = |s| ≥ 0,

a.e., and, instead, replace it with a real-valued function ρ = |ρ|eiθρ such that θ ′
ρ = 0,

a.e. In the sequel we call such a function ρ as a generalized amplitude.
To justify the terminology “Bedrosian type” we recall the Bedrosian Theorem on

the real line (There is a counterpart result in the unit circle context): if 1◦. For some
σ > 0, supp f̂ ⊂ [−σ, σ ] and supp ĝ ⊂ R\(−σ, σ ); or 2◦. f, g ∈ H2(C+), then

H( f g) = f Hg. (1.2)

Note that 1◦ and 2◦ are only sufficient conditions for the Bedrosian identity (1.2) (see
[12,13]).

Now, if eiθ(t) for a real-valued θ(t) is a mono-component, or, equivalently,
H(cos θ) = sin θ or eiθ(t) is the boundary limit of an inner function, then

H(ρ cos θ) = ρ sin θ

holds if and only if

H(ρ cos θ) = ρH(cos θ) (1.3)
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holds. The last relation amounts to saying that for f = ρ and g = cos θ the Bedrosian
identity (1.2) holds. On the other hand, if H(cos θ) 
= sin θ, then for ρ and cos θ the
Bedrosian identity (1.3) does not hold. The last mentioned case corresponds to the
non-Bedrosian type mono-components.

In this paper, to study the Bedrosian type mono-components, we concentrate to the
case that eiθ(t) is the non-tangential boundary limit of an infinite Blaschke product
(The finite Blaschke case has previously been proved in [14]), and ρ is real-valued
and changes its sign only at a finitely many points. We will call such a Bedrosian type
mono-component as a Blaschke type mono-component.

The non-Bedrosian typemono-components are essentiallymulti-starlike andmulti-
boundary starlike functions, or products of those two types of functions. The
non-Bedrosian type corresponds to the case where a Hardy space signal s(eit ) has
a non-trivial outer function factor, i.e. θ ′

outer is not identical with the zero function but
(θouter(t) + θinner(t))′ ≥ 0, a.e. Under certain conditions to avoid non-trivial singular
inner functions, we present a class of non-Bedrosian type mono-components. Due to
their relation with starlike functions, the non-Bedrosian type mono-components are
also called starlike type mono-components.

For signals defined on the whole real line there is a counterpart theory. In this paper
we will concentrate on the unit disc context corresponding to periodic signals.

2 Mono-Components of the Blaschke Type

Efforts of finding mono-components of the Bedrosian type, in fact, form a new phase
of study of the Bedrosian identity [5,7,13,14].

The essential structure of such typemono-components is presented in the following
example:

s(eit ) =
(

1

1 − a1eit
+ 1

1 − a1eit

)
eit − a1
1 − a1eit

eit − a2
1 − a2eit

, a1, a2 ∈ D.

In verifying that s(eit ) is a Bedrosian type mono-component, the key point is that

1

1 − a1z

z − a1
1 − a1z

z − a2
1 − a2z

is an analytic function in the disc; and for |z| = 1, the product

1

1 − a1z

z − a1
1 − a1z

z − a2
1 − a2z

has an analytic continuation to the whole interior part of the disc. As a result, s(z) is
analytic, and, in fact, an H∞-function in the disc. Since 1

1−a1z
+ 1

1−a1z
is real-valued

and has finitely many sign-change pints on |z| = 1, it is a generalized amplitude on
the circle T := {z| |z| = 1}.
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In the literature the following result for Blaschke products of finitely many zeros
is known [5,14].

Theorem 2.1 Let eiθ(t) be the boundary limit of a Blaschke product with finitely
many zeros a1, . . . , an in the unit disc D, where multiples of zeros are counted. Let,
in particular, the multiple of the zero z = 0 is m : 1 ≤ m ≤ n. Hence

eiθ(t) = eimt
n∏

k=m+1
ak 
=0

|ak |
ak

ak − eit

1 − akeit
= Bn(e

it ). (2.1)

Then ρ(t), as a real-valued generalized amplitude function in L p[−π, π ], 1 ≤ p ≤
∞, gives rise to a mono-component ρ(t)eiθ(t) if and only if

ρ(t) = c1 +
n∑

k=2

[
ckek(e

it ) + ckek(eit )
]
, (2.2)

where {ek(eit )}nk=1 denotes the rational orthonormal (Takenaka-Mulmquist) system

{

1, eit , . . . , ei(m−1)t ,

√
1 − |am+1|2eimt

1 − am+1eit
, . . . ,

√
1 − |am+r |2eimt

1 − am+r eit

m+r−1∏

j=m+1

eit − a j

1 − a j eit
, . . . , 1 ≤ r ≤ n − m

⎫
⎬

⎭
,

generated by a1, . . . , an, and c1, . . . , cn are arbitrary complex numbers.

It is known that the linear space spanned by the rational orthonormal sequence
{ek(eit ), k = 1, . . . , n} is identical with the space H p(T)

⋂
Bn(eit )H p(T), referred

as backward shift invariant subspace in H p(T), 1 ≤ p ≤ ∞ [15,16].
Next, we will extend the above result to infinite Blaschke products. Recall that an

infinite Blaschke product is defined

B(z) = zm
∞∏

k=m+1
ak 
=0

|ak |
ak

ak − z

1 − akz
, (2.3)

where the points ak ∈ D satisfy the condition
∞∑
k=1

(1 − |ak |) < ∞. It is known the

non-tangential boundary limit

B(eit ) = lim
r→1− B(z), z = reit , (2.4)

exists and |B(eit )| = 1 for almost all t ∈ [0, 2π ] [17]. To extend Theorem 2.1 to
the infinite Blaschke products case we first quote two lemmas from [18]. We provide
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our proofs below that are shorter than what are found in [18], as well as for the self-
containing purpose.

We need the truncated Blaschke products

Bn(z) = zm
n∏

k=m+1
ak 
=0

|ak |
ak

ak − z

1 − akz
. (2.5)

Lemma 2.2 Let Bn(eit ) and B(eit ) be given by (2.5) and (2.4). Then

lim
n→∞

∫ 2π

0
|Bn(e

it ) − B(eit )|pdt = 0

for 1 < p < ∞.

Proof For p = 2, as n → ∞, we have

∫ 2π

0
|Bn(e

it ) − B(eit )|2dt =
∫ 2π

0
Bn(e

it )Bn(eit )dt

− 2Re

[∫ 2π

0
B(eit )Bn(eit )dt

]

+
∫ 2π

0
B(eit )B(eit )dt

= 4π − 4π
B(0)

Bn(0)

= 4π

(

1 −
∞∏

k=n+1

|ak |
)

→ 0,

where the last equality employs the fact that
∑∞

k=1(1 − |ak |) < ∞ implies that∏∞
k=1 |ak | converges.
Next, we prove that for any p > 1, there holds

lim
n→∞

∫ 2π

0

∣
∣Bn(e

it ) − B(eit )
∣
∣pdt = 0.

First assume p > 2. Then, as n → ∞, due to |Bn(z)| ≤ 1, |B(z)| ≤ 1 for |z| ≤ 1, we
have

∫ 2π

0

∣
∣Bn(e

it ) − B(eit )
∣
∣pdt ≤ 2p−2

∫ 2π

0

∣
∣Bn(e

it ) − B(eit )
∣
∣2dt → 0.
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For 1 < p < 2, by Hölder’s inequality, we have, as n → ∞,

∫ 2π

0

∣
∣Bn(e

it ) − B(eit )
∣
∣pdt ≤

(∫ 2π

0
|Bn(e

it ) − B(eit )|2dt
) p

2
(∫ 2π

0
1dt

) 2−p
2

= (2π)1−
p
2

(∫ 2π

0

∣
∣Bn(e

it ) − B(eit )
∣
∣2dt

)p/2

→ 0.

The proof is completed. ��
Lemma 2.3 Let Bn(eit ) and B(eit ) be defined as inLemma 2.2. Then for any h(eit ) ∈
L p(T), 1 < p < ∞, we have

lim
n→∞

∫ 2π

0

∣
∣
∣Bn(e

it ) − B(eit )
∣
∣
∣
p ∣∣
∣h(eit )

∣
∣
∣
p
dt = 0.

Proof For any δ > 0, let En(δ) = E
{
t | |Bn(eit ) − B(eit )| > δ, t ∈ [0, 2π ]} and

E∗
n (δ) = [0, 2π ]\En(δ). Since

δ pmes(En(δ)) ≤
∫

En(δ)

|Bn(e
it ) − B(eit )|pdt ≤

∫ 2π

0

∣
∣
∣Bn(e

it ) − B(eit )
∣
∣
∣
p
dt,

by Lemma 2.2, we have lim
n→∞mes(En(δ)) = 0, where mes(E) denotes the measure

of E .
For any h(eit ) ∈ L p(T), the integral can be decomposed as

∫ 2π

0

∣
∣
∣Bn(e

it ) − B(eit )
∣
∣
∣
p ∣∣
∣h(eit )

∣
∣
∣
p
dt ≤ 2p

∫

En(δ)

|h(eit )|pdt+δ p
∫

E∗
n (δ)

|h(eit )|pdt.
(2.6)

By choosing a small δ we can first have

δ p
∫

E∗
n (δ)

|h(eit )|pdt ≤ δ p
∫ 2π

0
|h(eit )|pdt <

ε

2
.

Then, by absolute continuity of integral and lim
n→∞mes(En(δ)) = 0, for a large N =

N (ε, δ), if n > N , we have

2p
∫

En(δ)

|h(eit )|pdt <
ε

2
,

and thus

∫ 2π

0
|Bn(e

it ) − B(eit )|p|h(eit )|pdt < ε.

This completes the proof. ��
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Theorem 2.4 Let B be an infinite Blaschke product with zeros a1, . . . , an, . . . , count-
ing the multiples, where a1 = 0, with the multiple m ≥ 1. Let {ek(eit )}∞k=1 be the
rational orthogonal system

{

1, eit , . . . , ei(m−1)t ,

√
1 − |am+1|2eimt

1 − am+1eit
, . . . ,

√
1 − |am+r |2eimt

1 − am+r eit

m+r−1∏

j=m+1

eit − a j

1 − a j eit
, . . . , 1 ≤ r < ∞

⎫
⎬

⎭

generated by the sequence {ai }∞i=1. Then we have

(1) ρ(t) is a real-valued function such that ρ(t)B(eit ) ∈ H p(T), 1 ≤ p ≤ ∞, if and
only if ρ is the real part of some function in the backward shift invariant space
induced by the Blaschke product, viz., ρ ∈ Re{H p(T)

⋂
B(eit )H p(T)};

(2) let 1 < p < ∞, ρ ∈ Re{H p(T)
⋂

B(eit )H p(T)} if and only if

ρ(t) = c1 +
∞∑

k=2

[
ckek(e

it ) + ckek(eit )
]
, (2.7)

where ck = 〈ρ(t), ek(eit )〉 = 1
2π

∫ 2π
0 ρ(t)ek(eit )dt for k = 1, 2, . . . , and the

convergence is in the L p(T) norm sense.

Proof (1) Let ρ+ = 1
2 (ρ+ i Hρ),where H is the Hilbert transformation on the circle.

Then ρ+ ∈ H p(T) and thus ρ+B ∈ H p(T). Based on the last relation, ρB ∈
H p(T) if and only if (Hρ)B ∈ H p(T), and hence, if and only if ρ+B ∈ H p(T).

The last relation is equivalent to ρ+ ∈ BH p(T), or ρ+ ∈ H p(T) ∩ BH p(T).

(2) If ρ has the representation (2.7), then surely ρ ∈ Re{H p(T)
⋂

B(eit )H p(T)}
(see [19]). What is needed is to show the “only if” part. We assume that ρ ∈
Re{H p(T)

⋂
B(eit )H p(T)}, and we show that ρ has the expression (2.7).

Since ρ+ ∈ H p(T),we have, by invoking the Plemelj formula and relation Hρ+ =
−iρ+ (see, for instance [17]),

ρ+(t) = lim
r→1−

1

2π

∫ 2π

0

1

1 − e−i x z
ρ+(x)dx, z = reit ∈ D. (2.8)

On the other hand, since ρ+ ∈ B(eit )H p(T), we have that B−1ρ+ is the boundary
limit of some function in the Hardy space H p outside the unit disc. The Cauchy
formula of the outside Hardy space function on the boundary gives,

lim
r→1−

1

2π

∫ 2π

0

e−i x zB−1(eix )B(z)

1 − e−i x z
ρ+(x)dx

= zB(z) lim
r→1−

1

2π i

∫

∂D

B−1(ζ )ρ+(ζ )

ζ(ζ − z)
dζ, z = reit ∈ D,

= 0. (2.9)
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Adding up (2.8) and (2.9), we obtain

ρ+(t) = lim
r→1−

1

2π

∫ 2π

0

1 − e−i x zB−1(eix )B(z)

1 − e−i x z
ρ+(x)dx, z = reit ∈ D.

Let

ρ
(n)
+ (t) = lim

r→1−
1

2π

∫ 2π

0

1 − e−i x zB−1
n (eix )Bn(z)

1 − e−i x z
ρ+(x)dx, z = reit ∈ D.

Then

∥
∥
∥ρ+(t) − ρ

(n)
+ (t)

∥
∥
∥
p

=
∥
∥
∥
∥ lim
r→1−

1

2π

∫ 2π

0

e−i x zB−1
n (eix )Bn(z) − e−i x zB−1(eix )B(z)

1 − e−i x z
ρ+(x)dx

∥
∥
∥
∥

p

≤
∥
∥
∥
∥
∥
lim

r→1−
1

2π

∫ 2π

0

[
B−1
n (eix ) − B−1(eix )

]
e−i x zBn(z)

1 − ze−i x
ρ+(x)dx

∥
∥
∥
∥
∥

p

+
∥
∥
∥
∥ lim
r→1−

1

2π

∫ 2π

0

e−i x zB−1(eix ) [Bn(z) − B(z)]

1 − e−i x z
ρ+(x)dx

∥
∥
∥
∥

p

.

Due to (2.9) the last integral and thus the corresponding L p-norm is zero. By the
Plemelj formula and L p-boundedness of the Hilbert transformation for 1 < p < ∞,

we have

∥
∥
∥ρ+(t) − ρ

(n)
+ (t)

∥
∥
∥
p ≤ Ap

∥
∥
∥
[
B−1
n (eit ) − B−1(eit )

]
ρ+(t)

∥
∥
∥
p

= Ap

∥
∥
∥
[
Bn(e

it ) − B(eit )
]
ρ+(t)

∥
∥
∥
p
,

where Ap is a finite constant. By Lemma 2.3, we have

lim
n→∞

∥
∥
∥ρ+(t) − ρ

(n)
+ (t)

∥
∥
∥
p = 0. (2.10)

Since {ek(eit ), k ∈ Z
+} is an orthonormal sequence, by the Christoffel–Darboux

formula, we have

n∑

k=1

ek(eix )ek(e
it ) = 1 − e−i(x−t)B−1

n (eix )Bn(eit )

1 − e−i(x−t)
.
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Let ck = 〈ρ(x), ek(eix )〉 = 1
2π

∫ 2π
0 ρ(x)ek(eix )dx . Then

ρn+(t) = 1

2

n∑

k=1

[
〈ρ(x), ek(e

ix )〉ek(eit ) + i〈Hρ(x), ek(e
ix )〉ek(eit )

]

= 1

2

n∑

k=1

[
〈ρ(x), ek(e

ix )〉ek(eit ) − i〈ρ(x), H̃ek(e
ix )〉ek(eit )

]

= 1

2
〈ρ(x), e1(e

ix )〉 +
n∑

k=2

〈ρ(x), ek(e
ix )〉ek(eit )

= 1

2
c1 +

n∑

k=2

ckek(e
it ).

With (2.10), we obtain that

lim
n→∞

∥
∥
∥
∥
∥
ρ(t) − c1 −

n∑

k=2

[
ckek(e

it ) + ckek(eit )
]
∥
∥
∥
∥
∥

p

= 0.

This completes the proof. ��
Corollary 2.5 Let ρ ∈ Re{H p(T)

⋂
B(eit )H p(T)} be continuous on T = ∂D with

its zeros forming a null set. Then ρ(t)B(eit ) is a mono-component.

Proof If ρ is continuous and a.e. non-zero, then {t ∈ (0, 2π) : Re(ρ) > 0} ∪ {t ∈
(0, 2π) : Re(ρ) < 0} has measure 2π , being the union of some constructive open
intervals. On each of the intervals the phase is a constant. Hence the phase derivative
of ρ is a.e. zero. In the case ρ is a generalized amplitude, and therefore, ρ(t)B(eit ) is
a mono-component.

The above Corollary enables us to easily construct mono-components of the
Bedrosian-type. For instance, if the series (2.7) contains finitely many non-zero terms,
then it gives rise to mono-component ρB.

Remark The proof of (2) of Theorem 2.4 provides an alternative proof of the recently
established result that any rational orthonormal system {ek}∞k=1 is a Schauder basis
in the L p closure of the span of the system, viz., spanp{ek}∞k=1, 1 < p < ∞ [20].
The condition a1 = · · · = am = 0 with m ≥ 1 is to guarantee what is obtained is a
mono-component. Technically, the proof of (2) itself does not rely on this assumption.

3 Mono-Components of the Starlike Type

Let 
 be a domain and let a belong to the closure of 
. We say that 
 is starlike with
respect to a if for each z ∈ 
, every point t z+ (1− t)a ∈ 
, with 0 < t ≤ 1, belongs
to 
.

Definition 3.1 A univalent function s(z) is said to be a starlike function if s(z) is
holomorphic in D, s(0) = 0 and s(D) is starlike with respect to 0.
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Let S∗ denote the set of starlike functions. It is known that s(z) ∈ S∗ if and only
if s(z) is univalent and holomorphic in D, s(0) = 0 and

∂

∂t

[
arg s(z)

] = Re

{

z
s′(z)
s(z)

}

> 0, (3.1)

for all z = reit ∈ D, where Re(z) denotes the real part of z.
The definitions of n-starlike function and weakly n-starlike function can be found

in [21]:

Definition 3.2 For a given positive integer n, letS(n) be the class of n−valent starlike
functions s(z) that is holomorphic in D and satisfies

(i) there exists some positive r such that for all r < |z| < 1, Re
{
z s

′(z)
s(z)

}
> 0;

(ii)
∫ 2π
0 Re

{
z s

′(z)
s(z)

}
dt = 2πn, z = qeit for each q, r < q < 1.

Definition 3.3 A function s(z) is said to be weakly n-valent starlike function if and
only if s(z) is holomorphic in the unit disc D, has exactly n zeros at points a1, . . . , an
in D (multiples are counted), and

s(z) = [h(z)]n
n∏

k=1

(z − a j )(1 − a j z)

z
,

where h(z) ∈ S∗.

Let Sw(n) denote the class of all weakly n−valent starlike functions. It is observed in
[21] that S(n) is a proper sub-class of Sw(n). It is shown in [21] that

f (z) = zn

(1 − z)2n

n∏

k=1

(z − ak)(1 − akz)

z
∈ Sw(n)\S(n),

where ak are points in D for k = 1, . . . , n.
The relation between 1-starlike functions and mono-components is apparent as

indicated in [9] (also see Lemma 3.1). In [4], it is stated that all n-starlike functions are
mono-components. Further studies along this direction in connection with n-starlike
functions, or weakly n-starlike functions, are presented in [5,7], as well as the related
papers. The work [7] establishes the identical relation between the class of weakly
n-starlike functions and the class of the so called H -2n atoms (see below) which form
a subclass of mono-components.

In this paper, we will study a wider type mono-components involving boundary
starlike functions. Univalent starlike functions with respect to the boundary point was
first introduced and investigated by Roberson [22] andwere further studied by Lyzzaik
and Lecko [23–25].

Definition 3.4 A univalent function s(z) is said to be a starlike function with respect
to the boundary point 0 if s(z) is holomorphic inD, limr→1− s(r) = 0, s(D) is starlike
with respect to the origin, and Re{eiαs(z)} > 0 for some real α and all z ∈ D.
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Denote by G∗ the class of all starlike functions s(z) with respect to the boundary
point. It was proved by Lyzzaik in [23] that s(z) ∈ G∗ if and only if s(z) is univalent
and holomorphic in D, limr→1− s(r) = 0 and

Re

{

2z
s′(z)
s(z)

+ z + 1

z − 1

}

> 0, z ∈ D.

Let h(z) = −zs2(z)
(1−z)2

. By simple computation, we have

∂

∂t
[arg h(z)] = Re

{

z
h′(z)
h(z)

}

= Re

{

2z
s′(z)
s(z)

+ z + 1

z − 1

}

.

This gives the corresponding relationship that s(z) ∈ G∗ if and only if h(z) = −zs2(z)
(z−1)2

∈
S∗.

Below we introduce the definition of Hilbert-n atoms that form the wider class that
we mentioned earlier.

Definition 3.5 Let s(eit ) = ρ(t)eiθ(t) ∈ L p(T)be a nonzero complex function,where
p > 1. Then s(eit ) = ρ(t)eiθ(t) is called an H -n atom if it satisfies the conditions

(i) H [ρ(t) cos θ(t)] = ρ(t) sin θ(t) modulo constants;
(ii) ρ(t) ≥ 0, θ ′(t) ≥ 0 for almost all t ∈ [0, 2π ];
(iii)

∫ 2π
0 θ ′(t)dt = nπ.

It is obvious that all H -n atoms are mono-components. The following result is
proved in [9].

Lemma 3.1 A complex function s(eit ) = ρ(t)eiθ(t) satisfying ρ(t) 
= 0, 0 ≤ t < 2π ,
where ρ(t), θ(t) are absolutely continuous functions and

∫ 2π
0 s(eit )dt = 0, is an

H-2 atom if and only if s(eit ) is the boundary limit of a starlike function s(z) whose
boundary is a bounded rectifiable closed Jordan curve.

In order to conveniently prove our structural result we assume that s(z) is holomor-
phic on the closed unit disc cl{D} := {z| |z| ≤ 1}. Let A denote the class of functions
that are holomorphic in the closed unit disc.

Lemma 3.2 There holds A ∩ S(n) = A ∩ Sw(n).

Proof It is shown in [21] that S(n) ⊆ Sw(n). Conversely, if s(z) ∈ Sw(n), then s(z)
can be represented as

s(z) = hn(z)
n∏

k=1

(z − ak)(1 − akz)

z
,

where h(z) ∈ S∗. Obviously, s(z) contains only n zeros a1, . . . , an in D. Since s(z)
is holomorphic on cl{D}, we have that h(z) ∈ S∗ is holomorphic on cl{D}. For both
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s(z) and h(z), their respective limiting phase derivatives given as in (1.1) coincide
with their boundary phase derivatives along the circle. Note that the factor

n∏

k=1

(z − ak)(1 − akz)

z

on the circle has constant phase. We hence have

Re

{

eit
s′(eit )
s(eit )

}

= n Re

{

eit
h′(eit )
h(eit )

}

≥ 0.

Hence there exists some0 < r < 1, max{|a1|, |a2|, . . . , |an|} < r < 1 such that for all

r < |z| ≤ 1,we haveRe
{
z s

′(z)
s(z)

}
> 0, due to theminimumvalue principle of harmonic

functions. By the argument principle, we have
∫ 2π
0 Re

{
z s

′(z)
s(z)

}
dt = 2πn, z = qeit

for each q, r < q < 1. This shows that s(z) ∈ S(n). The proof is completed. ��
Under the assumption that s(z) is holomorphic on cl{D}, we now study relations

between H -n atoms with certain products of multi-starlike functions and multi-
boundary starlike functions. In order to interpret H -n atoms more easily, we first
give some characterizations for H -2 atoms. Below is a slightly modified version of
Lemma 3.1 with a proof. It is also for the self-containing purpose.

Lemma 3.3 Let a nonzero function s(z) be holomorphic on the closed disc cl{D} and
|s(eit )| > 0. Then its boundary function s(eit ) is an H-2 atom if and only if one of
the following conditions holds:

(1) s(z0) = 0 for some z0 ∈ D, and s(D) is a starlike domain bounded by a rectifiable
Jordan curve;

(2) s(z) = (z− z0)(
1
z − z0)h(z) ∈ Sw(1), where h(z) ∈ S∗ is holomorphic on cl{D};

(3) s(z) ∈ S(1).

Proof If s(eit ) = ρ(t)eiθ(t) is an H -2-atom,we have θ ′(t) ≥ 0 and
∫ 2π
0 θ ′(t)dt = 2π .

Since s(z) is holomorphic in cl{D} and |s(eit )| > 0, by the argument principle and the
nondecreasing property of θ(t), we know that s(z) has only one zero in D and s(D)

is a starlike domain bounded by a rectifiable Jordan curve. Without loss of generality,
we assume that s(z0) = 0 for some z0 ∈ D. This proves that H -2-atom implies (1).

Assuming (1), we show that (2) holds. Let h(z) = z s(z)
(z−z0)(1−z0z)

. Since s(z) is
holomorphic on cl{D} and contains only one zero at z = z0 in cl{D}. Then h(z) is
holomorphic in cl{D}, containing only one zero at z = 0 in cl{D}. By

∂

∂t
[arg(h(eit ))] = ∂

∂t
[arg(s(eit ))] ≥ 0

and the argument principle, we know that h(D) is a starlike domain bounded by a
rectifiable Jordan curve h(T). To prove that h(z) is univalent in D, we consider

χ(h(z), c) = 1

2π i

∮

|z|=1

h′(z)dz
h(z) − c

= 1

2π i

∮

J

dω

ω − c
.
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Since h(z) is holomorphic in cl{D}, by the argument principle, χ(h(z), c) is identical
with the number of times that h(z) takes the value c in the open disk. By the residual
theorem, we have χ(h(z), c) = 0 if c 
= h(D) and χ(h(z), c) = ±1 if c ∈ h(D).
This follows that h(z) is a univalent holomorphic function in cl{D}, and h(D) is a
starlike domain bounded by a rectifiable Jordan curve. Hence, we have h(z) ∈ S∗ is
holomorphic on cl{D}. This proves that (1) implies (2).

Finally, we prove that (2) implies that s(eit ) := ρ(t)eiθ(t) is an H -2 atom. If
s(z) = (z−z0)(1−z0z)

z h(z), where h(z) ∈ S∗ is holomorphic on cl{D}, then s(z) is
holomorphic and has only one zero at z = z0 in cl{D}. Since s(z) ∈ H2(D), we have
H [ρ(t) cos θ(t)] = ρ(t) sin θ(t). By the property of starlike functions h(z) given in
(3.1), for all t ∈ [0, 2π ], we have

d

dt
[arg(s(eit ))] = d

dt
[arg(h(eit ))] = Re

{

eit
h′(eit )
h(eit )

}

≥ 0.

Furthermore, by the argument principle, we obtain
∫ 2π
0 θ ′(t)dt = 2π. This shows that

s(eit ) is an H -2 atom.
(3) is a direct result of Lemma 3.2. The proof is completed. ��

The next theorem, as a main result of this paper, generalizes the above results by
involving boundary starlike functions. In fact, the two types of starlike functions, viz.,
those with zeros inside the unit disc and on the unit circle, are unified together with
the concept H -n atoms.

Theorem 3.4 Let s(z)beholomorphic on the closedunit disc cl{D}andhaveanumber
of p zeros inside the unit disc D. Then its boundary value function s(eit ) = ρ(t)eiθ(t)

is an H-n-atom (n ≥ 1) if and only if

s2(z) =
[ p∏

i=1

hi (z)

]2 n−2p∏

j=1

g2j (z)

=
[ p∏

k=1

(z − ak)

(
1

z
− ak

)]2
⎡

⎣
n−2p∏

k=1

(z − bk)

(
1

z
− bk

)
⎤

⎦ [h(z)]n, (3.2)

where {ak}pk=1 are zeros of s(z) in D, {bk}n−2p
k=1 are zeros of s(z) on the unit circle

T (some maybe multiple), h(z) ∈ S∗, hi (z) ∈ Sw(1) and g j (b j z) ∈ G∗, all being
holomorphic on cl{D} for i = 1, . . . , p and j = 1, . . . , n − 2p.

Proof Assume that s(z) has an expression given by (3.2). Since on the unit circle the
phases of

(z − ak)

(
1

z
− ak

)

and (z − bk)

(
1

z
− bk

)
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are all zero, we have

2 arg s(eit ) = n arg h(eit ). (3.3)

If h(z) is a starlike function in S∗ and holomorphic in cl{D}, by Lemma 3.3, h(eit ) is
an H -2 atom, that is

∫ 2π
0

d
dt [arg h(eit )]dt = 2π and d

dt [arg h(eit )] ≥ 0. From (3.3), it
follows that s(eit ) is an H -n atom.

We now show the converse result. Since s(z) is holomorphic in cl{D}, s(z) only has
a finite number of isolated zeros in the closed unit disc cl{D}. Assuming that s(eit ) is
an H -n atom, by the argument principle, s(z) has exactly p zeros inD and n−2p zeros
on T. We denote by {a1, a2, . . . , ap} the zeros of s(z) in D and {b1, b2, . . . , bn−2p}
the zeros of s(z) on T. Let

g(z) = s2(z)
p∏

k=1

[
(z − a j )(1 − a j z)

]2 n−2p∏

k=1
(z − b j )(1 − b j z)

.

Note that g(z) is holomorphic and nonzero in cl{D}, so is [g(z)]1/n . Set h(z) =
z[g(z)]1/n . Then

s2(z) = [h(z)]n
p∏

k=1

[
(z − a j )(1 − a j z)

z

]2 n−2p∏

k=1

(z − bk)(1 − bkz)

z
,

where h(z) is holomorphic and contains only one zero at z = 0 in cl{D}. Moreover,
by (3.3) and Lemma 3.3, we have h(z) ∈ S∗ is holomorphic in cl{D}.

Let hi (z) = (z−ai )(
1
z −ai )h(z) for i = 1, . . . , p and g2j (z) = (z−b j )(

1
z −b j )h(z)

for j = 1, . . . , n − 2p. Then s(z) can be further written as

s2(z) =
[ p∏

i=1

hi (z)

]2 n−2p∏

j=1

g2j (z).

By the definition of Sw(1) and G∗, we know that hi (z) ∈ Sw(1), i = 1, . . . , p, and
g j (b j z) ∈ G∗, j = 1, . . . , n−2p, are holomorphic on cl{D}. The proof is completed.

��
The cases that s(z) has no zero in D or no zero on T correspond to the following

two corollaries.

Corollary 3.5 Let s(z) be holomorphic on the closed unit disc cl{D} and s(z) 
= 0
for z ∈ T. Then the boundary value function s(eit ) = ρ(t)eiθ(t) is an H-2n atom if
and only if s(z) ∈ S(n) or

s(z) =
n∏

k=1

hk(z) = hn(z)
n∏

k=1

(z − ak)

(
1

z
− ak

)

∈ Sw(n),
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where {a1, a2, . . . , an} are the zeros of s(z) in the unit disc D, hk(z) ∈ Sw(1) and
h(z) ∈ S∗ are holomorphic on cl{D} for k = 1, . . . , n.

Corollary 3.5 is obtained in, and as a main result of [7].

Corollary 3.6 Let s(z) be holomorphic in the closed unit disc cl{D} and s(z) 
= 0 for
z ∈ D. Then the boundary value function s(eit ) = ρ(t)eiθ(t) is an H-m atom if and
only if

s2(z) =
m∏

k=1

g2k (z) = hm(z)
m∏

k=1

(z − bk)

(
1

z
− bk

)

,

where {b1, . . . , bm} are the zeros of s(z) on the unit circle T, gk(bkz) ∈ G∗ and
h(z) ∈ S∗ are holomorphic on cl{D} for all k = 1, . . . ,m.

Remark If s(z) is holomorphic in the closed disc cl{D} and s(z) 
= 0 for z ∈ D. Then
s(eit ) is an H -1 atom if and only if s(eitk z) ∈ G∗ for some tk ∈ [0, 2π). Corollary 3.6
reveals the identical relation between the class of mono-components as H -1 atoms
and the corresponding class of starlike functions with respect to the boundary points.

Finally we provide some conditions that guarantee a.e. existence of the phase deriv-
ative θ ′(t) defined by (1.1).

Theorem 3.7 Let nonzero functions s(z) ∈ H1(D) and s′(z) ∈ H1(D). Then θ ′(t) is
a well defined measurable function by (1.1) and θ ′(t) = Re

[
eit s′(eit )
s(eit )

]
exists for a.e.

t ∈ [0, 2π ].
Proof If s(z) ∈ H1(D) and s′(z) ∈ H1(D), then the non-tangential boundary limits
s(eit ) and s′(eit ) exist almost everywhere. Since s(z), s′(z) ∈ H1(D) are nonzero
functions, it follows that s(eit ) and s′(eit ) are a.e. non-zero on the unit circle T =
{z||z| = 1}. Hence, the non-tangential limit

θ ′(t) = lim
r→1− Re

[
reit s′(reit )
s(reit )

]

= Re

[
eit s′(eit )
s(eit )

]

exists for almost all t ∈ [0, 2π ]. ��
In [17] it is shown that s(z) ∈ H1(D) and s′(z) ∈ H1(D) if and only if s(z) is

holomorphic in |z| < 1 and absolutely continuous on T. These conditions do not
imply that s(z) has finitely many zeros on cl{D} as assumed in our main Theorem 3.4
concerning H -n atoms. Generally, s(z) may have infinitely many zeros on cl{D}. It is
an open question on how to extend Theorem 3.4 to the infinitely many zeros case.
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