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a b s t r a c t

In the literature adaptive Fourier decomposition is abbreviated as AFD that addresses
adaptive rational approximation, or alternatively adaptive Takenaka–Malmquist system
approximation. The AFD type approximations may be characterized as adaptive approxi-
mations by linear combinations of parameterized Szegö and higher order Szegö kernels.
This note proposes two kinds of such analytic approximations of which one is called
maximal-energy AFDs, including core AFD, Unwending AFD and Cyclic AFD; and the other
is again linear combinations of Szegö kernels but generated through SVM methods. The
proposed methods are based on the fact that the imaginary part of an analytic signal is
the Hilbert transform of its real part. As consequence, when a sequence of rational analytic
functions approximates an analytic signal, then the real parts and imaginary parts of the
functions in the sequence approximate, respectively, the original real-valued signals and
its Hilbert transform. The two approximations have the same errors in the energy sense
due to the fact that Hilbert transformation is a unitary operator in the L2 space. This paper
for the first time promotes the complex analytic method for computing Hilbert transforms.
Experiments show that such computationalmethods are as effective as the commonly used
one based on FFT.

© 2015 Elsevier Ltd. All rights reserved.

1. Preparation

Computation of Hilbert transform is a difficult task due to the singularity of the complex Cauchy kernel at the origin
(see for instance [1,2], and the references thereafter). In this paper we introduce a set of AFD type analytic methods to
compute Hilbert transform. As abbreviation of adaptive Fourier decomposition, AFD, in general, addresses all types of
adaptive approximations in the form of finite linear combinations of Szegö and higher order Szegö kernels. In this paper
we deal with two kinds of AFDs. One can be phrased as Maximal-Energy-AFD that, in its core algorithm part, is based on
a maximal selection principle to adaptively and optimally select the relevant parameters. Such AFD method was initiated
in [3] and further developed in [4–6]. The main variations of this kind include Core AFD, Unwending AFD and Cyclic AFD.
They have been found to have effective applications in system identification, aswell as in signal analysis [7–9]. The algorithm
of Core AFD is studied in [10]. The other kind of AFD concerned in this paper is a complex type SVM, phrased as SVM-AFD. In
this paper we also call it ‘‘complex SVM’’ although it is not just by using complex numbers, but complex analytic functions,
and especially Szegö kernels. The complex SVM is also found to have effective applications in system identification [11,12].
The relevant algorithm codes are found in the web address http://www.fst.umac.mo/en/staff/fsttq.html.
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The importance of Hilbert transformation lies in the facts that with
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dt,

the Cauchy integral of s, one has

lim
y→0+

Cs(x + iy) =
1

2π i


∞

−∞

s(t)
t − (x + iy)

dt = s+(t),

where

s+(t) =
1
2
s(t)+

1
2
iHs(t)

is the analytic signal associatedwith the given real-valued signal s of finite energy, andHs is its Hilbert transform. This result
is known as the Plemelj formula [13].

If s(t) is a given real-valued signal, then we have the easy relations

s = 2 Re s+, Hs = 2 Im s+.

Wenote that the analytic signals forma closed subspace, denoted L2(R) and called theHardy spaceH2(R). The corresponding
analytic functions in the upper-half plane form the complex Hardy space H2(C+). The last mentioned two spaces are
isometrically isomorphic [13].

For periodic signals there is a parallel theory. For a periodic signal s of finite energy we have
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has the boundary limit
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, (1.1)

where H̃ is the circular Hilbert transformation, given by

H̃s(eit) =


k≠0
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If s is real-valued, we have the relations

s = 2 Re s+ − c0, Hs = 2 Im s+. (1.2)

As in the real line case, the periodic analytic signals of finite energy form a closed subspace of L2(∂D), called the Hardy space
H2(∂D), that is isometrically isomorphic to H2(D), the latter consisting of the corresponding analytic functions in the open
unit disc. In the sequel we will concentrate in the unit disc case corresponding to periodic signals.

Efficiency and error estimate of a discrete method to compute images of operators are usually problematic, let alone
those of singular integral operators. The most commonly used method of computing Hilbert transform is the one through
FFT. Some novel methods to compute Hilbert transform were recently developed [1,2]. The B splines of cardinality of order
1 are used by Yang et al. in [1] to compute Hilbert transform. Their method is for continuous functions in the L2 spaces.
For functions in C3

∩ L2 Micchelli et al. also developed a spline method to compute Hilbert transform [2]. They established
error estimation in finite intervals that means locally. Referring to approximation accuracy the mentioned two methods
are superior to FFT (also see [14]). The AFD methods proposed by this paper have a few advantages comparing with the
existing ones. The first is that the algorithm is for general non-smooth and non-continuous signals: It is robust to changes
of signal values in sets of Lebesgue measure zero that can be dense subsets in the domain of definition of the signal. The
second is that the nth partial sum of a maximal-energy AFD has a global error estimation O(n−1/2). This estimation is for all
signals of finite energy including the non-smooth ones. This convergence rate is as coincidentally the same as the Shannon
sampling. But the latter is for a very narrow class: It is for band-limited signals equivalent to those in the Paley–Wiener
class consisting of entire functions, hence infinitely smooth, and with an exponential type of bounds. The third advantage is
that it is a by-product of an AFD approximation to a L2 function. In such way to compute the Hilbert transform of the signal
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does not require an extra effort. One obtains an approximation to the Hilbert transform at the same time as one obtains an
approximation to the original signal. This shows the power of the analytic function method. Finally, the AFD methods give
rise to explicit functional formulas, in fact, of the rational function type, for the approximations to the Hilbert transform, no
matter the original signal is presented by a discrete or continuous (functional) formality. This is, in particular, superior to
FFT.

2. Adaptive Fourier decompositions

Variousmaximal-energy AFDs involve orthogonal rational systems, or Takenaka–Malmquist systems (abbreviated as TM
systems). A finite or infinite TM system {Bn} is defined through, respectively, a finite or an infinite sequence a1, . . . , an, . . .
in the complex unit disc D. It reads as

Bn(z) =


1 − |an|2

1 − anz

n−1
l=1

z − al
1 − alz

, n = 1, 2, . . . .

In the infinite sequence case, {Bn} forms a basis ofHp(D), 1 ≤ p ≤ ∞, if and only if there holds the hyperbolic non-separable
condition

∞
k=1

(1 − |ak|) = ∞. (2.3)

A rational function system {Bn} is called a generalized Fourier system for the reason that it becomes a half of the Fourier
system, {zn−1

}, if all the parameters an’s are identically zero.
When we deal with signals defined on the real line (the whole time range) we involve the Hardy space H2(C+) in which

a TM system is of the form

Bn(z) =


βn

π

1
z − an

n−1
l=0

z − al
z − al

,

an = αn + iβn ∈ C+, n = 0, 1, . . . , z ∈ C+.

(2.4)

Such system is a basis in Hp(C+), 1 ≤ p ≤ ∞, if and only if the condition

∞
l=0

βn

1 + |an|2
= ∞ (2.5)

is met.
Maximal-energy AFD algorithmsmake optimal selections of the parameters a1, . . . , an, . . . , according to the given signal

s. The selections do not guarantee the above condition (2.3) or (2.5) to hold. Although the resulted TM system may not be a
basis, it offers fast decomposition of the given signal into the so called mono-components, or signals with positive analytic
frequency (phase derivative).

The main maximal-energy AFD variations include Core AFD [3], Unwending AFD [5] and Cyclic AFD [6]. The following
formulation is based onCoreAFD. For the other two somemodifications are needed. For a real-valued s ∈ L2(∂D) or s ∈ L2(R),
we first have the decomposition s = s+ + s−, and

s+ =

∞
k=1

⟨s, Bk⟩Bk,

where Bk are the rational functions in the corresponding TM systemwith optimally selected parameters a1, . . . , an, . . . .We
note that the above expression is valid for both the unit circle and the real line contexts.

Based on the relation (1.2), for the unit circle case, the corresponding expansion of the originally real-valued signal s is

s = 2 Re


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and that for the Hilbert transform is
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ρk(t) sin θk(t)
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where

ρk(t)eiθk(t) = 2⟨s, Bk⟩Bk(eit).

For the real line context we have the same expansions for s andHs, except that the constant c0 in (2.6) should be dropped
off.

The maximal-energy AFD results in a fast decomposition of s+. In view of (1.2) and (2.6), we get a fast decomposition
for s, too. Taking into account that Hilbert transformation in either of the two contexts preserves the L2-norm, there holds
∥s∥ = ∥Hs∥, and thusHs − 2 Im
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Since the right-hand-sides of the above equalities converge fast to zero, the left-hand-sides do the same, too. For functions
in a general enough class (see [4]) we have, in both cases,Hs −

n
k=1

ρk(t) sin θk(t)

 ≤
M
√
n
,

where M is a constant depending on s.
The right-hand-side of the above estimation itself may not look promising. But one should not expect better results for

the reason that we deal with signals that are, in general, non-smooth. However, if we restrict ourselves to functions s+ that
have analytic continuation cross the whole boundary of the unit disc or the upper-half plane, then we have a convergence
rate exponentially decaying along with n → 0 [3].

3. Complex SVM based on Szegö kernel

Complex support vector machine (SVM) based on Szegö kernels is first proposed in [12]. In the unit disc context the
parameterized Szegö kernel is

K(z, a) =
1

1 − āz
,

where a is the parameter and z is the argument, both being in D.
It is known that a Takenaka–Malmquist system is generated from a sequence of parameterized Szegö kernels by using

the Gram–Schmidt orthogonalization process.
Complex SVM, like real SVM developed by Vapnik and his coworkers in 1995 [15], is based on statistical learning theory.

Not only that our SVM algorithm uses powerful analytic function theory, but also it seeks to minimize upper bounds of
the generalization error constituted by the training error and the confidence interval. This is different from the commonly
used algorithms such as empirical risk minimization (ERM), the latter only minimizing the training error. The complex
SVMs achieve considerably better generalization performance than the existing learning algorithms based on, for example,
the ERM principle. The use of robust cost functions in complex SVMs can decrease the effect of outliers. Training SVM is
equivalent to solving a linearly constrained quadratic programming problem.

With the training data {(zm, s+(zm))}nm=1, the Szegö-kernel-based complex SVM is of the form

s+(z) ≈

n
m=1

ψmK(z, zm),

where ψm = (αm − α∗
m)− j(βm − β∗

m), αm, α
∗
m, βm and β∗

m are the solutions of a QP-problem.
As in the usual SVM framework, by letting ε > 0, we have only a subset of the Lagrange multipliers being nonzero, and

thus we obtain a sparse solution.

s+(z) ≈

n
m=1

ψmK(z, zm) =


m∈J

ψmK(z, zm), (3.7)
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Fig. 1. Comparison of the imaginary part of s+(z) and the Hilbert transform given by AFD.

where J = {m : ψm ≠ 0}. We, in fact, have the sparsity |J| ≪ n. The corresponding algorithm can be generated based
on [12].

Based on relation (1.2), the corresponding expansion for the original real-valued signal s is

s ≈ 2 Re


m∈J

ψmK(z, zm)


− c0

=


m∈J

ρm(t) cos θm(t)− c0 (3.8)

and

Hs ≈ 2 Im


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
=


m∈J

ρm(t) sin θm(t),

where

ρm(t)eiθm(t) = 2ψmK(z, zm).

Note that the decomposition is not orthogonal.

4. Experiment

Consider the singular inner function in the disc

s+(z) =
1 + 2z2

(z − 2)(z − 3)
−

1
(z + 2)(z + 3)

e
z+1
z−1 +

z+i
z−i +

z−i
z+i .

It is known that s+ is an analytic signal, or, equivalently, a signal in H2(D). The experiments are based on the fact that the
imaginary part of any analytic signal is the Hilbert transform of its real part.

It is well known that Fourier series of singular inner functions converge slowly. Figs. 1–3 show that in the high-oscillatory
portions of s+ the Core AFD graph and the complex SVM graph coincide with s+ very well, but the FD graph does not. Being
comparedwith FFT in Fig. 4, although the latter presents almost the same approximation as Core AFD and the complex SVM,
it does not give a functional solution, but only a set of approximating discrete data. Theoretically, errors of FFT in computing
continuous objects are hard to analyze. Comparing Core AFD and the complex SVM, on the given example, the SVMperforms
visibly better. The drawbacks of the SVM is that the cardinality of the support, |J|, cannot be a priori determined; and the
fact that the error estimation is in terms of statistics brings uncertainty. Like SVM-AFD, the other more sophisticated AFD
variations, including Unwending and Cyclic AFDs, perform better than Core AFD [16], the latter being the most fundamental
in the theory, and the very basic constructive block in the algorithms for the other maximal-energy AFDs. In particular, the
superiority of Unwending AFD compared with Core AFD, especially on singular inner functions, is shown in [16]. Since the
formulas given in Section 2 are based on Core AFD, the experiment in this paper is only done by using Core AFD.
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Fig. 2. Comparison of the imaginary part of F(z) and Hilbert transform given by complex SVM.

Fig. 3. Comparison of the imaginary part of s+(z) and the Hilbert transform given by Core FD.

Fig. 4. Comparison of the imaginary part of s+(z) and the Hilbert transform in Matlab through FFT.
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5. Conclusions

As advantage of the complex analysismethod, theAFDmethods, including the complex SVM, give, as a by-product, Hilbert
transforms of signals to be approximated. The AFDmethods, exhibiting a global estimation O(n−1/2) in the Core AFD case, is
tolerant to non-smooth signals, being robust to changes of signal values in sets of Lebesgue measure zero. The AFDmethods
for computing Hilbert transforms are valid for all signals of finite energy, no matter for restricted time or unrestricted time
ranges, and provide explicit rational functional approximations. In contrast, the other existing methods all require certain
degrees of smoothness, depending strongly on signal pointwise values, and having at most local error estimations. We point
out that the method is superior to FFT, for the latter only offering data to data approximation.
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