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Abstract. This paper discusses generalization bounds for complex data learn-
ing which serve as a theoretical foundation for complex support vector machine
(SVM). Drawn on the generalization bounds, a complex SVM approach based
on the Szegő kernel of the Hardy space H2(D) is formulated. It is applied to
the frequency-domain identification problem of discrete linear time-invariant
system (LTIS). Experiments show that the proposed algorithm is effective in
applications.
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1 INTRODUCTION

In learning from a set of examples, the key property of a learning algorithm is gen-
eralization, namely the ability of an algorithm to perform accurately on new examples
after having trained on a set of training data. The training examples come from some
generally unknown probability distribution, while the learner has to extract from them
something more general that allows him to produce useful predictions in new cases. As
for learning with real-valued examples for classification and regression, many researchers
including Duda and Hart [10], John Shawe-Taylor and Nello Cristianini [33], Vapnik and
Chervonenkis [40] devote themselves to working on the generalization of the learning al-
gorithm. This paper takes into consideration the bounds on the generalization errors for
complex-valued data. We obtain that the bounds on the generalized errors hold with high
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probability over randomly chosen training set where the generalization errors are the prob-
ability of failing to achieve a target accuracy in complex-valued function prediction. This
type of bounds allows one to conclude that the error is small with high probability. This
result is an extension of John Shawe-Taylor and Nello Cristianini [33] to complex-valued
data learning.

The generalization bounds give us a foundation to employ complex SVM. SVM is a
system for efficiently training the linear learning machines in the kernel-induced feature
spaces, with respect to the insights provided by the generalization theory. SVM was first
proposed to obtain maximum margin separating hyperplanes in classification problems
[39]. This technique now has become an integral part of a general learning theory [27,32].
A comprehensive description of this method for classification and regression problems can
be found in [4] and [34] respectively. It has been shown that SVMs perform well in practice
in system identification, such as time series analysis with real SVM regression [23,35] and
channel estimation in LTE Downlink system with complex SVM regression based on the
Gaussian kernel [5]. In this paper, we will construct a complex SVM with the Szegő kernel
which is complex-valued and never be used in SVM framework before. This complex SVM
will be applied to system identification.

System identification concerns the model of physical systems that can be described
by input-output measurements in time domain or frequency domain. We concern the
problem of approximating the dynamics of “single input, single output (SISO)” discrete-
time linear time-invariant systems (LTIS) that are causal and stable in frequency domain.
A discrete-time LTIS can be represented by [8, 24,43]

f(z) =
∞∑
k=0

hkz
k, (1)

where f(z) is called the transfer function of the discrete-time LTIS, which is given by
the Z-transform (generally evaluated at 1/z). Researchers have been using the rational
orthogonal systems by making the model structure priori-linear in parameters, viz, the
transfer function f(z) is approximated by

n∑
k=1

θ(k)Bk(z),

where {Bk} is a rational orthogonal system, {θ(k)} is an n−tuple of parameters to be
determined, n is the order of the model structure. A rational orthogonal system is also
called a Takenaka-Malmquist (TM) system. In the unit disc D case, a TM system is
defined by

Bk(z) =

√
1− |ak|2
1− akz

k−1∏
l=1

z − al
1− alz

, (2)

where ak ∈ D and k = 1, 2, . . ..
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For k = 1,

B1(z) =

√
1− |a1|2
1− a1z

(3)

is the normalized and parameterized (by a1) Szegő kernel. We note that a TM system is
generated from a sequence of parameterized Szegő and multi-Szegő kernels by using the
Gram-Schmidt orthogonalization process [28].

It is known that [36] {Bk}∞k=1 forms a basis of Hardy space

H2(D) = {f : f is analytic in D, sup
0<r<1

∫ 2π

0

|f(reiθ)|2dθ <∞},

if and only if

∞∑
k=1

(1− |ak|) = ∞. (4)

The condition (4) is assumed in the classical study of TM systems in system identification.
One usually uses TM systems with prescribed parameters as poles. Different choices

of poles of a TM system give rise to different model structures, such as the classical FIR
models (Fourier) by setting all poles being zero, the Laguerre models [18, 42] by setting
all poles being equal to a fixed real number, the Kautz models [41] by setting all the poles
being equal to a fixed complex number and the generalized model by fixing at least 3
different poles [1, 14,25].

Classical identification methods present some limitations. Analysis of discrete-time
measurements with atypical samples (outliers) is neither easy nor immediate, and it is usu-
ally achieved by heuristic or even visual inspection methods [16]. In general terms, classical
methods require previous determination of model complexity or number of parameters in
the model, and they are quite sensitive to wrong order choices [17].

Frequency-domain identification by using AFD (Adaptive Fourier decomposition) is
a newly proposed model [22] that is based on [29, 37],. The novelty of AFD is to select
the parameters aks for the TM system according to the measurements of the transfer
function in a one-to-one manner based on the Maximal Selection Principle. Numerical
examples in [22] show that the frequency-domain identification algorithm by using AFD
has a better performance than the FIR and the Laguerre models. However, this method
also needs previous determination of model complexity.

In this paper, we offer another direct use of the Szegő kernel for system identification.
That is, the transfer function will be approximated by linear combinations of parameterized
Szegő kernels. In view of the Gram-Schmidt orthogonalization process on partial fractions,
our result is essentially again a TM system approximation. However, the latter is based on
an approach different from the traditional ones in using TM systems. We will use complex
SVM method for system identification.

Complex SVM, like real SVM, is based on statistical learning theory which seeks to
minimize upper bounds of the generalization error consisting of the sum of the training
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error and a confidence interval. This principle is different from the commonly used em-
pirical risk minimization (ERM) principle which only minimizes the training error. Based
on this, complex SVMs achieve better generalization performance than the learning algo-
rithms employing the ERM principle. As consequence, complex SVMs can usually achieve
better results. The use of robust cost functions in complex SVMs can decrease the effect
of outliers. Training SVM is equivalent to solving a linearly constrained quadratic pro-
gramming problem. In addition, in complex SVM the model complexity does not need to
be previously fixed, but depends on the given measurements.

In Section 2, we will formulate a complex generalization bound, being appropriate for
the complex SVM regression which will be proposed and developed in Section 3. Section
4 presents experiments with comparisons with important existing methods to test the
proposed complex SVM. In Section 5, conclusions are drawn.

2 GENERALIZATION BOUND

A generalization result for real-valued functions is as follows [33]. We fix a target
accuracy θ > 0 and 0 < γ ≤ θ. Consider a real-valued (hypothesis) function class F with
domain X. For a function g ∈ F and a training point (xi, yi) ∈ X × R, we define

ξ((xi, yi), g, θ, γ) = ξi = max{0, | g(xi)− yi | −(θ − γ)}.

This quantity is the amount by which |g(xi)− yi| exceeds θ − γ on the point (xi, yi) or 0
if g is within θ− γ of the targeted value. This is, in fact, the ε insensitive loss function [9]
given by

Lε(ei) =

{
0, |ei| ≤ ε,
|ei| − ε, ε ≤ |ei|,

(5)

with ε = θ − γ and ei = g(xi)− yi.
We can use other loss functions and apply to them the corresponding analysis. In

this section, we only consider the case using ε insensitivity cost function (5).
For a training set S = ((x1, y1), . . . , (xl, yl)), define the vector valued

ξ = ξ(S, g, θ, γ) = (ξ1, . . . , ξl).

Note that ξi > γ means the error of g on (xi, yi) is larger than θ.

Proposition 2.1 [33] Let F be the set of real-valued linear functionals on a real-Hilbert
space X that, in accordance with the Riesz representation theorem, is identical with the
space X itself. Fix θ ∈ R, θ > 0, and a probability distribution P on the space X × R. If
we restrict the inputs to the ball B(0, R) = {x ∈ X : ∥x∥ ≤ R}, then there is a constant
c such that with probability at least 1− δ over randomly drawn training sets S of size l and
for all γ, 0 < γ ≤ θ, the probability that a function g ∈ F with its representation w in X
has error larger than θ on a randomly chosen input is bounded by

ϵ(l, δ, γ) =
c

l

(
∥ w ∥22 R2+ ∥ ξ ∥21 log(1/γ)

γ2
log2 l + log

1

δ

)
. (6)
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In other words, with the notation

errP (g, θ) = P ({(x, y) ∈ X × R : |g(x)− y| ≥ θ}) ,

there holds

P l ({S : errP (g, θ)) ≤ ϵ(l, δ, γ)}) ≥ 1− δ, (7)

where P l is the product probability induced by P over (X × R)l.

There are other generalization bounds in terms of other norms of ξ [7, 33], but we
restrict ourselves to the above norms in this paper. The above proposition is a theoretical
foundation of the support vector regression for real-valued functions. Ignoring the loga-
rithmic factor of the quantity to be minimized to improve the generalization, the support
vector regression algorithm minimizes the quantity ∥w∥22R2 + C∥ξ∥21 and hence optimizes
the bound of Proposition 2.1.

We are able to prove a result of the same type for complex SVM regression algorithm.
Before we state our generalization bound theorem for complex Hilbert spaces and

complex functionals, we need some preparations. Let X be a complex Hilbert space and
g be a functional of X. The Reisz representation Theorem shows that g is induced by
an element of X, say w. That is g(x) =< x,w > . Let {e1, ..., en, ...} be an arbitrary
orthonormal basis of X. We define the “real” Hilbert space with respect to the basis as

xR =
∞∑
k=1

dkek,
∞∑
k=1

dk
2 <∞, dk ∈ R, k = 1, 2, ....

For any x ∈ X we have the decomposition

x =
∞∑
k=1

ckek =
∞∑
k=1

Re(ck)ek + i
∞∑
k=1

Im(ck)ek = xR + ixI , ck ∈ C.

We call the two infinite sums as the real and the complex parts of x, respectively. Similarly,
let w = wR + iwI . In such way, the role of w on X is split into four linear functionals on
XR :

g(x) = (⟨xR,wR⟩+ ⟨xI ,wI⟩) + i(⟨xR,−wI⟩+ ⟨xI ,wR⟩).
Let gR(x) = ⟨xR,wR⟩+⟨xI ,wI⟩, gI(x) = ⟨xR,−wI⟩+⟨xI ,wR⟩. Then g(x) = gR(x)+igI(x),
gR(x) and gI(x) are linear and real-valued.
For (xi, yi) ∈ X × C, set

ξ((xi, yi), g, θ/2, γ/2) = ξi = max{0, | gR(xi)− Re(yi)) | −(θ − γ)/2}

and
ξ∗((xi, yi), g, θ/2, γ/2) = ξ∗i = max{0, | gI(xi)− Im(yi) | −(θ − γ)/2}.

For a training set S, we define the corresponding real-vector valued

ξ = ξ(S, g, θ/2, γ/2) = (ξ1, . . . , ξl), ξ∗ = ξ∗(S, g, θ/2, γ/2) = (ξ∗1 , . . . , ξ
∗
l ).
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Note that gR(x) is a functional in the product space XR ×XR of the tensor type, that is

gR(x) = ⟨(xR, xI), (wR,wI)⟩ = ⟨xR,wR⟩+ ⟨xI ,wI⟩,

similarly,
gI(x) = ⟨(xR, xI), (−wI ,wR)⟩ = ⟨xR,−wI⟩+ ⟨xI ,wR⟩.

Then we have

Theorem 2.1 Let F be the set of complex-valued linear functionals on a complex-Hilbert
space X that, in accordance with the Riesz representation theorem, is identical with the
space X itself. Fix θ ∈ R, θ > 0, and a probability distribution P on the space X × C. If
we restrict the inputs to the ball B(0, R) = {x ∈ X : ∥x∥ ≤ R}, then there is a constant
c such that with probability at least 1− δ over randomly drawn training sets S of size l and
for all γ, 0 < γ ≤ θ, the probability that a function g ∈ F with its representation w in X
has error larger than θ on a randomly chosen input is bounded by

ϵ′(l, δ, γ) =
c

l

(
4(∥ w ∥22 R2 + (∥ ξ ∥21 + ∥ ξ∗ ∥21) log(2/γ))

γ2
log2 l + 2 log

2

δ

)
. (8)

In other words, with the notation

errP (g, θ) = P ({(x, y) ∈ X × C : |g(x)− y| ≥ θ}) ,

there holds

P l ({S : errP (g, θ)) ≤ ϵ′(m, δ, γ)}) ≥ 1− δ, (9)

where P l is the product probability induced by P over (X × C)l.

Proof. We observe that in the space X × C, ∀g ∈ F , we have

{|g(x)− y| > θ} ⊂ {|gR(x)− Re(y)| > θ/2} ⊂ {|gI(x)− Im(y)| > θ/2}.

Denote by P(XR×XR)×R the induced probability on (XR ×XR)×R from P on X ×C and

errP(XR×XR)×R(gR, θ, ξ) = P(XR×XR)×R({(x,Re(y)) ∈ (XR×XR)×R : |gR(x)−Re(y)| > θ}),

where ξ on the left-hand-side is used as slack variables. By Proposition 2.1, for some
c = cR in the relation (6) there holds, for |S| = l,

P l
(XR×XR)×R({S : errP(XR×XR)×R(gR, θ/2, ξ) > ϵgR,ξ,cR(l, δ/2, γ/2)}) < δ/2,

where the ϵgR,ξ,cR is defined similarly in (6) but here with the dependence of gR, ξ and cR.
Similarly, there holds

P l
(XR×XR)×R({S : errP(XR×XR)×R(gI , θ/2, ξ

∗) > ϵgI ,ξ∗,cI (l, δ/2, γ/2)}) < δ/2,
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Let c = max{cR, cI}. Then we have

P l
(XR×XR)×R({S : errP(XR×XR)×R(gR, θ/2, ξ) > ϵgR,ξ,c(l, δ/2, γ/2)}) < δ/2,

and
P l
(XR×XR)×R({S : errP(XR×XR)×R(gI , θ/2, ξ

∗) > ϵgI ,ξ∗,c(l, δ/2, γ/2)}) < δ/2.

Define
ϵ′(l, δ, γ) = ϵgR,ξ,c(l, δ/2, γ/2) + ϵgI ,ξ∗,c(l, δ/2, γ/2).

Since
errP (g, θ) ≤ errP(XR×XR)×R(gR, θ/2, ξ) + errP(XR×XR)×R(gI , θ/2, ξ

∗),

we have that the set

{(x, y) ∈ X × C : errP (g, θ) > ϵ′(l, δ, γ)}

is contained in the following

{(x,Re(y)) ∈ (XR × XR)× R : errP(XR×XR)×R(gR, θ/2, ξ) > ϵgR,ξ,c(l, δ/2, γ/2)}

∪{(x, Im(y)) ∈ (XR × XR)× R : errP(XR×XR)×R(gI, θ/2, ξ
∗) > ϵgI,ξ∗,c(l, δ/2, γ/2)}.

Therefore, on randomly chosen training sets S of cardiality l, for a ramdomly chosen input,
we have, in the product space,

P l
X×C({S : errP (g, θ) > ϵ′(l, δ, γ)}) ≤
P l
(XR×XR)×R({S : errPXR×XR)×R(gR, θ/2, ξ) > ϵgR,ξ,c(l, δ/2, γ/2)}) +

P l
(XR×XR)×R({S : errPXR×XR)×R(gI , θ/2, ξ

∗) > ϵgI ,ξ∗,c(l, δ/2, γ/2)}) < δ.

The desired result then follows. �

Remark 2.1 Ignoring the logarithmic factor of the quantity to be minimized to improve
the generalization, the complex support vector regression algorithm minimizes the objective
function ∥w∥22R2+C(∥ξ∥21+ ∥ξ∗∥21) in the input space X and hence optimizes the bound of
Theorem 2.1. This Theorem is a theoretical foundation for linear complex-valued support
vector machine. In the nonlinear setting, the input space should be the feature space and
minimizes the functional ∥w∥22R2 + C(∥ξ∥21 + ∥ξ∗∥21) in feature space.

3 SUPPORT VECTOR MACHINE FOR LTIS

Complex support vector machine can be used to approximate function by linear com-
binations of the parameterized reproducing kernels in complex reproducing kernel Hilbert
spaces. In this section, we will construct a complex SVM for frequency-domain identifica-
tion for LTIS.
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3.1 PROBLEM SETTING

Frequency-domain identification is based on a set of frequency-domain measurements.
Without loss of generality, it is assumed that a set of frequency-domain measurements
{Ek}Mk=1 are obtained from a single input, single output (SISO), discrete-time LTIS f(z)
in H2(D). It is further assumed that f(z) can be continuously extended to a region
containing the closed unit disc.

We introduce some notations here. Assume that the measurements {Ek}Nk=1 are set
to be

Ek = f(ejwk) (k = 1, 2, . . . , N) (10)

for the noiseless case; and,

Ek = f(ejwk) + vk (k = 1, 2, . . . , N) (11)

for the noised case, where wk = 2π(k−1)
N−1

and {vk} can be either a bounded sequence with
|vk| ≤ ϵ, ϵ > 0; or a zero mean stochastic process with a bounded covariance function.
The noise we deal with is considered to be of the same property. Since hks in (1) are real-

valued, we have f(ejt) = f(ej(2π−t)). Therefore, in practice one just needs to measure the
data for wk ∈ [0, π), and the rest in the interval [π, 2π) can be set to be their conjugates.

The followings are some properties in relation to the reproducing kernel Hilbert space
(RKHS) [2].

A RKHS is a Hilbert space of functions on some set X such that all evaluation
functionals, i.e., the maps f 7−→ f(x)(x ∈ X) , are continuous. In that case, by the Riesz
representation theorem, for each x ∈ X, there exists a unique function, called Kx, such
that

f(x) = ⟨f,Kx⟩, (12)

where ⟨·, ·⟩ denotes the inner product of the Hilbert space. We also write Kx(·) as K(·, x),
called parameterized reproducing kernel. K(·, ·) itself is the reproducing kernel of the
Hilbert space.

Note that ⟨f,Kx(·)⟩ = 0 for all x implies that f is identically zero. Hence the set of
functions {Kx(·) : x ∈ X} spans the whole RKHS. The dot product on the RKHS thus
only needs to be defined on {Kx(·) : x ∈ X} and can then be extended to the whole RKHS
by linearity and continuity.

From (12), it follows that in particular,

⟨Ky(·), Kx(·)⟩ = K(x, y) (13)

for all x, y ∈ X.
Reproducing kernel can be referred to as the Mercer kernel in the SVM community

[31]. The complex Hardy Space on the unit disc, H2(D), is, as well known, a RKHS with
the reproducing kernel, Szegő kernel [12],

K(y, x) =
1

1− xy
, (14)
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where x, y ∈ D.
The identification problem that we consider now can be stated as follows.
Frequency-domain identification problem: Given a set of noiseless or noise corrupted

frequency-domain measurements {Ek}Nk=1 for f ∈ H2(D). Find an M-linear combination
of parameterized Szegő kernels, fM(z) =

∑
k∈J

ψkK(z, zk) ∈ H2(D), z, zk ∈ D and |J | =

M (M ≤ N) to reconstruct the system approximately.

3.2 ALGORITHM

There are three steps in the proposed algorithm. First, we work out a function
f̃(z) ∈ H2(D) approximating the true function f(z) depending on the given measurements
{Ek}Nk=1. Then we choose n (n ≤ N) samples {(zm, ym)}nm=1 (zm ∈ D) satisfying ym =
f̃(zm) (m = 1, . . . , n.). Based on the n samples chosen in the second step, we construct
a complex SVM to get an approximating function to f̃(z) in the form of a finite linear
combination of parameterized Szegő kernels, as the third step.

3.2.1 CONSTRUCT f̃(z)

Assume that the system function f is complex analytic inside the unit disc and of finite
energy restricted to the unit circle. The first step is to construct by using data {Ek}Nk=1,
the first approximation f̃ , which is also analytic in the disc. By the same method as
in [22], f̃(z) is constructed by the Cauchy integral

f̃(z) =
1

2πj

∫ 2π

0

∑
k

Ekχk(w)

ejw − z
dejw, (15)

where χk = χ(wk,wk+1) is the indicator function. The above is identical with

1

2π

N∑
k=1

[f(ejwk) + vk]

∫ wk+1

wk

ejwdw

ejw − ejwk
≈

N∑
k=1

[f(ejwk) + vk]
(wk+1 − wk)

2π
ejwk ,

being a discrete approximation of the Cauchy integral of f(eiw) with the error, where
Ek = f(ejwk) + vk stands for the measurements with or without noise (in the latter case

vk = 0). It is easy to show that f̃(z̄) = f̃(z).

Remark 3.1 To get an approximating function f̃(z), use of the (15) can be avoided. Other
approximation methods can also work for this purpose, such as by polynomials according
to [13,26].

Usually, the difference between f and f̃ collects both the noise and the approximation
errors. The role of f̃ is to get the approximation values at the training points.
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Remark 3.2 It is noted that the inner product in the Hardy space H2(D) is given by an
integral over the boundary of the unit disc, viz., the unit circle:

⟨f, g⟩ = 1

2π

∫ 2π

0

f(eit)g(eit)dt.

The Hardy space functions, however, are defined inside the disc. The above representation
of inner product is based on the fact that a Hardy space function uniquely and isometri-
cally corresponds to an L2 -function: Its non-tangential limit on the boundary. Precisely
speaking, each f ∈ H2(D) has a non-tangential boundary limit function f̂ ∈ L2(∂D) such
that ∥f∥H2 = ∥f̂∥L2 (see, for instance, [12]); on the other hand, the Cauchy integral of
f̂ , C(f̂), being a Hardy space function, is identical with f. The last assertion is proved by
invoking the fact H(f̂) = −if̂ for boundary limits of the Hardy space function, where H(f̂)
is the Hilbert transform of f̂ , and the Plemelj theorem

lim
z→eit nontangentially

C(f̂)(z) =
1

2
f̂(eit) + i

1

2
H(f̂)(eit) = f̂(eit), a.e.,

as well as the fact that if two Hardy space functions have a.e. identical boundary limits,
then they have to be identical.

Based on the above relations, the definition of the reproducing kernel of the Hardy
space, K(q, p) = 1

1−p̄q
, may be extended to D× D̄, and even to D̄× D̄ in the sense that for

q, q̃ ∈ D̄,

⟨f,Kq̃⟩ = lim
q→q̃ nontangentially

⟨f,Kq⟩ = lim
q→q̃ nontangentially

f(q) = f(q̃), a.e.

Based on the above noted, in our SVM approach, we can use variables in both the unit disc
and on its boundary.

Remark 3.3 Although the algorithm assumes that the data is from a function in the Hardy
space, in practice, however, it will not be the case. Most data would be from functions in
the L2 space viz., from functions of finite energy. The theory and algorithm offered by
this paper are valid to data from L2 spaces as well. In fact, whenever the inner product is
used, or a discretization of the inner product calculation is involved, we have, due to the
orthogonality property between the two opposite Hardy spaces,

⟨f,Kq⟩ = ⟨f+, Kq⟩+ ⟨f−, Kq⟩ = ⟨f+, Kq⟩,

where f = f+ + f−, f+ and f− belong to, respectively, the so called Hardy spaces H+

and H−. If Kq is replaced by any other function in the Hardy space inside the disc, there
holds a similar result. As consequence, what we obtain in the end of the program is an
approximation to the Hardy space projection f+ of f, not to f itself. In the case a real-
valued function f of finite energy may be recovered by the relation

f = 2Ref+ − c0,

where c0 is the average of the function on the circle, or the 0-th Fourier coefficient of f.
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3.2.2 CHOOSE n POINTS FROM f̃(z) as training points

Choose n (n ≤ N) samples {(zm, ym)}nm=1 (zm ∈ D) satisfying ym = f̃(zm) (m =
1, . . . , n).

Remark 3.4 Selection of samples in Step 3.2.2 is with great flexibility. The n samples
can be taken evenly in the disc, which is commonly thought about. This thought is correct
and supported by experiments in Section 4. On the other hand, according to the uniqueness
theorem of analytic functions, if the function values of two analytic functions coincide at
z1, z2, . . . , zn, . . ., tending to a limit in the intersection of their analytic domains, then the
two functions have to be identical. Therefore, distributions of sampling points do not have
to be even in the disc.

3.2.3 SVM FOR LTIS

In this section, based on the n samples chosen in Section 3.2.2, we construct a complex
SVM to obtain an approximating function fM(z). In the following text, unless otherwise
stated, K stands for the Szegő kernel.

Given {(zm, ym),m = 1, . . . , n}, the problem consists of finding an approximating
function g that fits the data as follows:

ym = f̃(zm) = g(zm) + em (m = 1, . . . , n), (16)

where residuals {em} account for the approximation errors.
We start with a conventional SVM nonlinear regression [39]. We first map a given

point set {zm} to the set {Kzm(·)} in the higher dimensional space H2(D), i.e., the feature
space, by using the transformation Φ : D → H2 : zm → Φ(zm) = Kzm(·) = K(·, zm) ∈
H2(D). In H2(D), a linear bounded functional itself is given by a function in H2(D), that
is,

ym = f̃(zm) = g(zm) + em = ⟨Φ(zm),w⟩+ em (m = 1, . . . , n), (17)

where w ∈ H2(D) is to be determined.
In accordance with a variation of Theorem 2.1, to get an optimal generalization bound

is to minimize ∥w∥2 + C
n∑

m=1

Lε(em), where we define Lε(em) = LεR(em) + LεI(em) for

complex em, Lε(·) is the ε insensitive cost function, R(·) and I(·) represent real and
imaginary parts, respectively. ε is replacement of (θ − γ)/2 in Theorem 2.1.

In this formulation, we adopt a more general cost function [20,30], which additionally
considers a quadratic cost zone, called ε-Huber cost function, given by

Lε(em) =


0, |em| ≤ ε,
1
2r
(|em| − ε)2, ε ≤ |em| ≤ eC ,

C(|em| − ε)− 1
2
rC2, eC ≤ |em|,

(18)

where eC = ε + rC, ε is an error-tolerance parameter for the training samples, r and C
are free parameters that control the shape of the cost function.
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By suitable choices of free parameters ε, r, C, the ε-Huber cost function can be adapted
to different kinds of noise. The choice of C is absorbed in the choice of parameters ε, r, C.
The primal problem is

min
1

2
∥w∥2 +

n∑
m=1

Lε(em). (19)

Define
ξm = max{0,R(em)− ε},

ξ∗m = max{0,R(−em)− ε},

ζm = max{0, I(em)− ε},

ζ∗m = max{0, I(−em)− ε},

Then we have

LεR(em) = LεR(em)χ+(R(em)) + LεR(em)χ−(R(em)), (20)

where χ+ = χ(0,+∞) and χ− = χ(−∞,0), for m = 1, . . . , n.
If R(em) > 0, the cost function can be written in the new notation as

LεR(em) =


0, ξm = 0,
1
2r
ξ2m, 0 ≤ ξm ≤ rC,

Cξm − 1
2
rC2, rC ≤ ξm.

(21)

Therefore,

LεR(em)χ+(R(em)) =
1

2r
ξ2mχ[0,rC](ξm) + (Cξm − 1

2
rC2)χ(rC,+∞)(ξm).

Similarly,

LεR(em)χ−(R(em)) =
1

2r
ξ∗2mχ[0,rC](ξ

∗
m) + (Cξ∗m − 1

2
rC2)χ(rC,+∞)(ξ

∗
m).

There is a similar representation for LεI(em). Therefore, we have

Lε(em) =LεR(em) + LεI(em)

=
1

2r
ξ2mχ[0,rC](ξm) + (Cξm − 1

2
rC2)χ(rC,+∞)(ξm)

+
1

2r
ξ∗2mχ[0,rC](ξ

∗
m) + (Cξ∗m − 1

2
rC2)χ(rC,+∞)(ξ

∗
m)

+
1

2r
ζ2mχ[0,rC](ζm) + (Cζm − 1

2
rC2)χ(rC,+∞)(ζm)

+
1

2r
ζ∗2m χ[0,rC](ζ

∗
m) + (Cζ∗m − 1

2
rC2)χ(rC,+∞)(ζ

∗
m).

12



Then we can give the primal problem (19) as (this is an extension of linear OFDM-SVM [11]
to nonlinear LTIS SVM scenarios)

min
1

2
∥w∥2 + 1

2r

n∑
m=1

ξ2mχ[0,rC](ξm) +
n∑

m=1

(Cξm − 1

2
rC2)χ(rC,+∞)(ξm)

+
1

2r

n∑
m=1

ξ∗2mχ[0,rC](ξ
∗
m) +

n∑
m=1

(Cξ∗m − 1

2
rC2)χ(rC,+∞)(ξ

∗
m)

+
1

2r

n∑
m=1

ζ2mχ[0,rC](ζm) +
n∑

m=1

(Cζm − 1

2
rC2)χ(rC,+∞)(ζm)

+
1

2r

n∑
m=1

ζ∗2m χ[0,rC](ζ
∗
m) +

n∑
m=1

(Cζ∗m − 1

2
rC2)χ(rC,+∞)(ζ

∗
m)

(22)

constrained to

R(ym − ⟨Φ(z),w⟩) ≤ ε+ ξm,

R(−ym + ⟨Φ(z),w⟩) ≤ ε+ ξ∗m,

I(ym − ⟨Φ(z),w⟩) ≤ ε+ ζm,

I(−ym + ⟨Φ(z),w⟩) ≤ ε+ ζ∗m,

ξm, ξ
∗
m, ζm, ζ

∗
m ≥ 0, (23)

for m = 1, . . . , n.
The key idea is to construct a Lagrangian function from the primal functional and

the corresponding constraints by introducing a Lagrangian multiplier (or dual variable)
for each constraint of the primal problem. It can be shown that this function has a
saddle point with respect to the primal and dual variables at the solution. For details,
see e.g. [19, 21]. By including linear constraints (23) in (22), the Lagrangian function is
obtained:
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L =
1

2
∥w∥2 + 1

2r

n∑
m=1

ξ2mχ[0,rC](ξm) +
n∑

m=1

(Cξm − 1

2
rC2)χ(rC,+∞)(ξm)

+
1

2r

n∑
m=1

ξ∗2mχ[0,rC](ξ
∗
m) +

n∑
m=1

(Cξ∗m − 1

2
rC2)χ(rC,+∞)(ξ

∗
m)

+
1

2r

n∑
m=1

ζ2mχ[0,rC](ζm) +
n∑

m=1

(Cζm − 1

2
rC2)χ(rC,+∞)(ζm)

+
1

2r

n∑
m=1

ζ∗2m χ[0,rC](ζ
∗
m) +

n∑
m=1

(Cζ∗m − 1

2
rC2)χ(rC,+∞)(ζ

∗
m)

−
n∑

m=1

(λmξm + λ∗mξ
∗
m)−

n∑
m=1

(ηmζm + η∗mζ
∗
m)

+
n∑

m=1

αm[R(ym − ⟨Φ(z),w⟩)− ε− ξm] +
n∑

m=1

α∗
m[R(−ym + ⟨Φ(z),w⟩)− ε− ξ∗m]

+
n∑

m=1

βm[I(ym − ⟨Φ(z),w⟩)− ε− ζm] +
n∑

m=1

β∗
m[I(−ym + ⟨Φ(z),w⟩)− ε− ζ∗m].

(24)

The lagrangian multipliers are constrained to

α(∗)
m , β(∗)

m , λ(∗)m , η(∗)m ≥ 0 (α(∗) stand for α and α∗). (25)

We should also notice

ξ(∗)m , ζ(∗)m ≥ 0. (26)

The following additional constraints must also be fulfilled:

αmα
∗
m = 0, βmβ

∗
m = 0. (27)

Besides this, the Karush-Kuhn-Tucker (KKT) conditions [39] yield

λmξm = 0, λ∗mξ
∗
m = 0, and ηmζm = 0, η∗mζ

∗
m = 0. (28)

We have to minimize functional (24) with respect to the primal variables and then
maximize it with respect to the dual variables under the constraints (25), (26), (27) and
(28). To take the partial derivative, we employ the rules of Wirtinger′s Calculus for the
complex variables on complex RKHS’s as described in [3]. We have

∂L

∂w∗ =
1

2
w − 1

2

n∑
m=1

αmΦ(zm) +
1

2

n∑
m=1

α∗
mΦ(zm) +

j

2

n∑
m=1

βmΦ(zm)−
j

2

n∑
m=1

β∗
mΦ(zm).
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If the gradient is set to be zero, we obtain

w =
n∑

m=1

ψmΦ(zm) =
n∑

m=1

ψmKzm(·), (29)

where ψm = (αm − α∗
m)− j(βm − β∗

m).
For the real variables, we compute the gradients in the traditional way. If the gradients

of Lpd with respect to ξ
(∗)
m and ζ

(∗)
m are set to be zero, they yield the constraints

λm + αm = C, (30)

ηm + βm = C,

λ∗m + α∗
m = C,

η∗m + β∗
m = C,

for ξm, ξ
∗
m ∈ [0, rC], and the constrains

λm + αm =
1

r
ξm, (31)

ηm + βm =
1

r
ζm,

λ∗m + α∗
m =

1

r
ζ∗m,

η∗m + β∗
m =

1

r
ζ∗m,

for ζm, ζ
∗
m ∈ [rC,+∞).

Let
G(u, v) = ⟨Φ(zu),Φ(zv)⟩. (32)

Substituting equations (30), (31) and (29) into equation (24) yields the dual optimization
problem

max −1

2
ΨH(G+ rI)Ψ +R(ΨHy)− (α+α∗ + β + β∗)1ε, (33)

being constrained to
0 ≤ α(∗), β(∗) ≤ C, (34)

where Ψ = [ψ1, . . . , ψn], I and 1 are the identity matrix and the all-ones column vector,

respectively, α(∗) = [α
(∗)
1 , . . . , α

(∗)
n ]T , y = [y1, . . . , yn]

T .
Note that (33) is a quadratic form and real-valued. It represents a natural extension

of the dual functional in SVM real regression for complex-valued problems. Optimizing
(33) with respect to {α}, {α∗}, {β}, {β∗}, the final solution is expressed as

g(z) =
n∑

m=1

ψmK(z, zm) =
n∑

m=1

ψm
1

1− zmz
. (35)
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As in the usual SVM framework, by letting ε > 0, we have only a subset of the Lagrange
multipliers being nonzero, and thus we obtain the following sparse solution.

g(z) =
n∑

m=1

ψm
1

1− zmz
=

∑
m∈J

ψm
1

1− zmz
, (36)

where J = {m : ψm ̸= 0}. Obviously, |J | ≤ n.
Note that the obtained coefficients ψm may be complex numbers. In order to obtain

an approximation with real coefficients, we use the conjugate poles {zm} and coefficients
{ψm} to obtain a function g∗(z), viz,

g∗(z) =
∑
m∈J

ψm
1

1− zmz
. (37)

For each index m,

ψm
1

1− zmz
+ ψm

1

1− zmz

is a rational function of real coefficients, the sum

fM(z) =
1

2
(g(z) + g∗(z)) (M = 2|J |) (38)

is thus a rational function of real coefficients of the degree at most M = 2|J |. fM , in
particular, satisfies fM(z) = fM(z).

It can be proved that fM has twice generalization bounds as g, that is

Corollary 3.1 Let g ∈ F be a function satisfying Theorem 2.1. Then there is a constant
c such that with probability at least 1− δ over randomly drawn training sets S of size l and
for all γ, 0 < γ ≤ θ, the probability that the function fM defined by (38) has error larger
than θ on a randomly chosen input is bounded by

2ϵ′(l, δ, γ) =
2c

l

(
4(∥w∥22R2 + (∥ξ∥21 + ∥ξ∗∥21) log(2/γ))

γ2
log2 l + 2 log

2

δ

)
, (39)

where ξ and ξ∗ are defined by g.

Proof. We observe that in the space X × C,

{(z, y) : |fM(z)− y| > θ} ⊆ {(z, y) : |g(z)− y| > θ} ∪ {(z, y) : |g∗(z)− y| > θ}.

Denote by PX×C the probability on X × C and

errPX×C(g, θ) = PX×C({(z, y) ∈ X × C : |g(z)− y| > θ}).

Since
|g∗(z)− y| = |g∗(z)− y| = |g(z̄)− ȳ|,
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there holds
errPX×C(g, θ) = errPX×C(g

∗, θ).

By Theorem 2.1, for some c in the relation (6) there holds, for |S| = l,

P l
X×C({S : errPX×C(g, θ) > ϵ′g,c(l, δ, γ)}) < δ,

where the ϵg,c is defined as the same as in (8) but here with the dependence of g and c.
Since

errPX×C(fM , θ) ≤ errPX×C(g, θ) + errPX×C(g
∗, θ),

we have that the set

{(z, y) ∈ X × C : errPX×C(fM , θ) > 2ϵ′g,c(l, δ, γ)}

is contained in the union of the two sets

{(z, y) ∈ X × C : errPX×C(g, θ) > ϵ′g,c(l, δ, γ)}
∪{(z, y) ∈ X × C : errPX×C(g

∗, θ) > ϵ′g,c(l, δ, γ)}.

Therefore, on randomly chosen training sets S of cardinality l, for a randomly chosen
input, we have, in the product space,

P l
X×C({S : errP (fM , θ) > 2ϵ′g,c(l, δ, γ)})

≤ P l
X×C({S : errPX×C(g, θ) > ϵ′g,c(l, δ, γ)})

+P l
X×C({S : errPX×C(g

∗, θ) > ϵ′g,c(l, δ, γ)}) < 2δ.

The desired result then follows. �

Remark 3.5 Researchers have developed methods to improve efficiency and quality of
support vector machine by selecting samples and significant support vectors. For instance,
the method given by [6] is to select samples {(zm, ym)}nm=1 based on the properties of the
kernel function. The method proposed by [15] is to select the representative support vectors
to obtain a simpler model which avoids the over-fitting problem.

Remark 3.6 We have been working on Szegő kernel in the proposed algorithm. In fact,
the method is applicable to other complex reproducing kernel. For instance, it is applicable
to the Bergman kernel if we want to approximate functions in the Bergman spaces.

4 EXAMPLE

In this section, we evaluate the performance of the proposed complex SVM algorithm
by comparing it with other methods. The results are compared with Core-AFD (Adaptive
Fourier Decomposition) method given by [29] in the noise corrupted case and the noiseless
case. We adopt the example used in [22,24], i.e.,

f(z) =
z3(0.0247z + 0.355)

(1− 0.9048z)(1− 0.3679z)
. (40)
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The function f(z) is assumed to be the true system function which is usually unknown.
Given m = 600 measurements of (40) in the interval [0, π) corresponding to a half circle.
We have N = 2m points on the full circle. The frequency responses of FIR model, Laguerre
model, Core-AFD method and our method are compared in Figure 1, Figure 2, Figure 3
and Figure 4, respectively. In the noise corrupted case, we assume that the measurements
are sampled with added Gaussian noise with SNR= 20. Figure 1 shows the frequency
response of 4th order, 7th order and 19th order FIR model, respectively. Even the 19th
order FIR model can not give satisfactory result. Figure 2 shows the frequency response
of 4th order, 7th order and 10th order Laguerre model with a = 0.3879, a = 0.9048, a =
0.7165, respectively. Figure 3 and Figure 4 show the frequency response of 7th Core-AFD
and our proposed method in the noise free case and Gaussian noise corrupted case.

In the proposed algorithm, we first get an approximation f̃ of f(z) by using the
measurements. The role of f̃ is to assert the data of the training points. Then we choose
600 samples {(zi, yi)} evenly which satisfy yi = f̃(zi) as training data.
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Figure 1: Frequency response of FIR model.
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Figure 2: Frequency response of Laguerre model.

In Step 3, the free parameters are explored. According to C ∈ (1, 102), rC ∈
(10−4, 0.5), ε ∈ (0, 1), we set C = 10, r = 0.1, ε = 0.002. After using the proposed
algorithm, we use the orthogonal least-squares method proposed by [15] to select the
representative support vectors to improve the generalization capability of support vector
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z1 z2 z3 z4 z5 z6 z7
Without noise 0.9000 0.589 -0.12i -0.54i 0.98 0.12+0.3i 0.999i
With noise 0.175 0.29 0.4199 0.8999 0.147i -0.1i 0.12i

Table 1: The selected support vectors in both cases.

machine. We select 7 representative support vectors. Then we obtain rational approxima-
tion of f̃(z). We can see that the proposed method is better than the Core-AFD for this
example.
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Figure 3: Without noise
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Figure 4: With noise

Remark 4.1 The reasons of comparison with AFD lay on the facts that they both are of
the rational approximation kind; and AFD has been well accepted as an effective method.
There are other types of AFD developed by Qian et al., for instance, the Cyclic AFD [38]
and Unwending AFD [37]. Further comparisons show that they all have their respective
merits. In the noiseless data case, the Cyclic AFD and Unwending AFD have better
performance than the proposed algorithm. However, the running time of the proposed
algorithm is the shortest. In the noise corrupted data case, the Cyclic AFD does not
perform with adequate stability since it is heavily dependent on the initial value. The
proposed algorithm has a stable performance on the noise corrupted data. The Unwending
AFD is theoretically advanced, but it requires accurate computation of Hilbert transform.
This reduces its effectiveness at the present time. The proposed algorithm is better to treat
data with noise, which has a generalization bound result available for error estimation and
has a shorter running time.

5 CONCLUSIONS

We discuss generalization bounds for learning complex-valued data which are a the-
oretical foundation of complex support vector regression machine. A complex support
vector machine based on the Szegő kernel is formulated and is subsequently used in the
frequency domain identification problem of discrete linear time-invariant system (LTIS).
To conclude, compared with existing methods, the newly proposed method has the ad-
vantage in terms of stability, fast computation and the generalization bound estimation.
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