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Segal-Bargmann coherent state transforms can be viewed as unitary maps from L2

spaces of functions (or sections of an appropriate line bundle) on a manifold X to
spaces of square integrable holomorphic functions (or sections) on XC. It is natural to
consider higher dimensional extensions of X based on Clifford algebras as they could
be useful in studying quantum systems with internal, discrete, degrees of freedom
corresponding to nonzero spins. Notice that the extensions of X based on the Grass-
mann algebra appear naturally in the study of supersymmetric quantum mechanics.
In Clifford analysis, the zero mass Dirac equation provides a natural generalization
of the Cauchy-Riemann conditions of complex analysis and leads to monogenic
functions. For the simplest but already quite interesting case of X = R, we introduce
two extensions of the Segal-Bargmann coherent state transform from L2(R,dx) ⊗ Rm

to Hilbert spaces of slice monogenic and axial monogenic functions and study
their properties. These two transforms are related by the dual Radon transform.
Representation theoretic and quantum mechanical aspects of the new representations
are studied. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4964448]

I. INTRODUCTION

Clifford analysis (see Refs. 2 and 9) has been developed to extend the complex analysis of
holomorphic functions to Clifford algebra valued functions, satisfying properties generalizing the
Cauchy–Riemann conditions.

On the other hand, in quantum physics, Clifford algebra or spinor representation valued func-
tions describe some systems with internal degrees of freedom, such as particles with spin.

Recall that the Segal-Bargmann transform,1,19,20 for a particle on R, establishes the unitary
equivalence of the Schrödinger representation with Hilbert space L2(R,dx), with (Fock space-like)
representations with Hilbert spaces, H L2(C,dν), of holomorphic functions on the phase space,
R2 � C which are L2 with respect to a measure ν. In the Schrödinger representation, the position
operator x̂Sch acts diagonally while the momentum operator is p̂Sch = i d

dx
. On the other hand, on

the Segal–Bargmann Hilbert spaceH L2(C,dν), it is the operator x̂SB + i p̂SB that acts as multiplica-
tion by the holomorphic function x + ip.

In Ref. 12, Hall has defined coherent state transforms (CSTs) for compact Lie groups
G which are analogs of the Segal-Bargmann transform. These CSTs correspond to applying
heat kernel evolution, e

∆
2 , followed by analytic continuation to the complexification GC of

G.13

We use the fact that, after applying the heat kernel evolution, the resulting functions are in
fact extendable to Rm+1 in two natural ways motivated by Clifford analysis. These will lead to two
generalizations of the CST, the slice monogenic CST, Us, and the axial monogenic CST, Ua, which
take values on spaces of Cm-valued functions on Rm+1, where Cm denotes the complex Clifford
algebra with m generators. One, Hs = Im Us, is a subspace of the recently introduced space of
square integrable slice monogenic functions,5 while the other,Ha = Im Ua, is a Hilbert space of, the
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more traditional in Clifford analysis, axial monogenic functions.2,9 We show that the two coherent
state transforms are related by the dual Radon transform Ř,

Ua = Ř ◦Us.

A possibly interesting alternative way of defining a monogenic CST would be through Fueter’s
theorem.11,17,15,16,18 It would be very interesting to relate such a transform with the one studied in
the present paper.

As in the case of the usual CST, the aim of these transforms is to describe the quantum states
of a particle in R with internal degrees of freedom parametrized by a Clifford algebra, through
slice/axial monogenic functions, thus making available, the powerful analytic machinery of Clifford
analysis. In Section V, we show that the operator x̂0 + i p̂0 has a simple action in both the slice and
axial monogenic representations.

II. PRELIMINARIES

A. Coherent state transforms (CSTs)

Let G be a compact Lie group with complexification GC. In 1994, Hall12 introduced a class
of unitary integral transforms on L2(G,dx), where dx is a Haar measure, to spaces of holomor-
phic functions on GC which are L2 with respect to an appropriate measure. These are known as
coherent state transforms (CSTs) or generalized Segal–Bargmann transforms. These transforms
were extended to groups of compact type, which include the case of G = Rn considered in the
present paper, by Driver in Ref. 10. General Lie groups of compact type are direct products of
compact Lie groups and Rn, see Corollary 2.2 of Ref. 10. For G = Rn these transforms coincide
with the classical Segal–Bargmann transform.1,19,20

We will briefly recall now the case G = R, which we will extend to the context of Clifford anal-
ysis in the present paper. The case of arbitrary groups of compact type is very interesting and will be
studied in a forthcoming work. Let ρt(x) denote the fundamental solution of the heat equation,

∂

∂t
ρt =

1
2
∆ ρt,

i.e.,

ρt(x) = 1
(2πt)1/2 e−

x2
2t ,

where ∆ is the Laplacian for the Euclidian metric and letH (C) denote the space of entire holomor-
phic functions on C. The Segal–Bargmann or coherent state transform

U : L2(R,dx) −→ H (C)
is defined by

U( f )(z) =

R

ρ1(z − x) f (x) dx =

=
1

(2π)1/2


R

e−
(z−x)2

2 f (x) dx, (2.1)

where ρ1 has been analytically continued to C. We see that the transform U in (2.1) factorizes
according to the following diagram.

(2.2)

A(R) is the space of (complex valued) real analytic functions on R with unique analytic continua-
tion to entire functions on C, C denotes the analytic continuation from R to C, and e

∆
2 ( f ) is the (real
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analytic) heat kernel evolution of the function f ∈ L2(R,dx) at time t = 1, which is the solution of




∂

∂t
ht =

1
2
∆ ht

h0 = f
, (2.3)

evaluated at time t = 1,

e
∆
2 ( f ) = h1.

Let A(R) ⊂ A(R) denote the image of L2(R,dx) by the operator e
∆
2 .

Theorem 2.1 (Segal–Bargmann). The transform (2.1)

(2.4)

is a unitary isomorphism, where z = x + iy ∈ C, x, y ∈ R and ν(y) = e−y
2
.

B. Clifford analysis

Clifford analysis has been developed to extend the complex analysis of holomorphic func-
tions to Clifford algebra valued functions, satisfying properties generalizing the Cauchy–Riemann
conditions.2,9 Let us briefly recall from Refs. 5 and 8, some definitions and results from Clif-
ford analysis. Let Rm denote the real Clifford algebra with m generators, e j, j = 1, . . . ,m, iden-
tified with the canonical basis of Rm ⊂ Rm and satisfying the relations eie j + e jei = −2δi j. We
have that Rm = ⊕m

k=0R
k
m, where Rkm denotes the space of k-vectors, defined by R0

m = R and Rkm =
spanR{eA : A ⊂ {1, . . . ,m}, |A| = k}. We see that, in particular, Rm is identified with the space of
1-vectors, Rm = R1

m, x =
m

j=1 x je j and Rm+1 is identified with the space, R≤1
m , of paravectors of the

form,

x⃗ = x0 + x = x0 +

m
j=1

x je j .

Notice also that R1 � C and R2 � H. The inner product in Rm is defined by

⟨u, v⟩ = ⟨

A

uAeA,

B

vBeB⟩ =

A

uAvA,

and therefore, x2 = −|x |2 = −⟨x, x⟩. The Dirac operator is defined as

∂x =

m
j=1

∂x je j,

and the Cauchy-Riemann operator as

∂x⃗ = ∂x0 + ∂x.

We have that ∂2
x = −

m
j=1

∂2

∂x2
j

and ∂x⃗∂x⃗ =
m

j=0
∂2

∂x2
j

.

Recall that a continuously differentiable function f on an open domain U ⊂ Rm+1, with values
on Rm or Cm = Rm ⊗ C, is called (left) monogenic on U if (see, for example, Refs. 2 and 9)

∂x⃗ f (x0, x) = (∂x0 + ∂x) f (x0, x) = 0.

For m = 1, monogenic functions on R2 correspond to holomorphic functions of the complex vari-
able x0 + e1x1.
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III. MONOGENIC EXTENSIONS OF ANALYTIC FUNCTIONS

A. Slice monogenic extension

Recall from Refs. 5 and 7 that a function f : U ⊆ Rm+1 → Rm is slice monogenic if, for any
unit vector ω ∈ Sm−1 = {x ∈ R1

m : |x | = 1}, the restrictions fω of f to the complex planes

Hω =
�
u + v ω, u, v ∈ R

	
,

are holomorphic,

(∂u + ω ∂v) fω(u, v) = 0, ∀ω ∈ Sm−1. (3.1)

Let SM(Rm+1) denote the space of slice monogenic functions on Rm+1. From the definition of
A(R) in diagram (2.2) and the Remark 3.4 of Ref. 4 (see also Proposition 2.7 in Ref. 6), one obtains
the following.

Theorem 3.1. The slice-monogenic extension map,

Ms : A(R) ⊗ Rm −→ SM(Rm+1)
Ms(h)(x0, x) = Ms(


A

hA eA)(x0, x) =

=

A

hA(x0 + x) eA B

A

e
x d

dx0 hA(x0) eA = (3.2)

=

A

∞
k=0

xk

k!
dkhA

dxk
0

(x0) eA,

is well defined and satisfies Ms(h)(x0,0) = h(x0),∀x0 ∈ R.

B. Axial monogenic extension and dual Radon transform

A monogenic function f (x0, x) is called axial monogenic (see Ref. 8, p. 322, for the definition
of axial monogenic functions of degree k) if it is of the form

f (x0, x) =

A

f A(x0, x) eA,

f A(x0, x) = BA(x0, |x |) + x
|x | CA(x0, |x |) , (3.3)

where BA,CA are scalar functions and the functions f A are monogenic. The monogenicity condi-
tion, ∂x⃗ f A = ∂x0 f A + ∂x f A = 0, then leads to the Vekua–type system for BA,CA, generalising the
Cauchy-Riemann conditions,

∂x0BA − ∂rCA =
m − 1

r
CA , ∂x0CA + ∂rBA = 0, r = |x |.

LetAM(Rm+1) denote the space of axial monogenic functions on Rm+1.
Axial monogenic functions are determined by their restriction to the real axis, f (x0,0). The

inverse map of extending (when such an extension exists) a real analytic function h on R to an axial
monogenic function on Rm+1 is called generalized axial Cauchy-Kowalevski extension and has been
studied by many authors (see, for example, Ref. 8).

Using the dual Radon transform to map slice monogenic functions to monogenic functions
as proposed in Ref. 3, we will factorize the axial monogenic extension into the slice monogenic
extension followed by the dual Radon transform. Let us first recall the definition of the dual Radon
transform. (See, for example, Ref. 14.)

Definition 3.2. The dual Radon transform of a smooth function f on Rm+1 is

Ř( f )(x0, x) =

Sm−1

f (x0,⟨x, t⟩t) dt . (3.4)
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It is known from Ref. 3 that Ř maps entire slice monogenic functions to entire monogenic functions.
Let us denote a function f ∈ A(R) and its analytic continuation to the complex plane Ht by the

same symbol, f . The following is a small modification of Theorem 4.2 in Ref. 8.

Theorem 3.3. The axial monogenic or axial Cauchy-Kowalevski extension map

Ma : A(R) ⊗ Rm −→ AM(Rm+1)
Ma(h)(x0, x) = Ma(


A

hAeA)(x0, x) =

=

A


Sm−1

hA(x0 + ⟨x, t⟩t) dt eA, (3.5)

where dt denotes the invariant normalized (probability) measure on Sm−1, is well defined, and
satisfies Ma(h)(x0,0) = h(x0),∀x0 ∈ R = R0

m.

Proof. From (3.2) and (3.4), we see that the map Ma in (3.5) factorizes to

Ma = Ř ◦ Ms . (3.6)

The fact that the image of this map is a subspace of the space of entire monogenic functions on
Rm+1 is a consequence of theorem A of Ref. 3. We still need to show that the functions Ma(h) are
axial monogenic for all h ∈ A(R) ⊗ Rm. Notice that the Taylor series of h, with center at any point
of R, has infinite radius of convergence. Using (3.2), Theorem 3.1, and the fact that for ω ∈ Sm−1

one has ω2k = (−1)k, we obtain

Ma(h)(x0, x)= Ma(

A

hA eA)(x0, x) =

=

A

Ř ◦ Ms(hA)(x0, x) eA=

A


Sm−1

∞
k=0

(⟨x,ω⟩ω)k
k!

h(k)
A
(x0)dω eA

=

A

*.
,

∞
j=0


Sm−1

(−1) j
(2 j)! h(2 j)

A
(x0)⟨x,ω⟩2 j + ω

(−1) j
(2 j + 1)! h(2 j+1)

A
(x0)⟨x,ω⟩2 j+1dω

)
eA,

and therefore,

Ma(h)(x0, x) =

A

*.
,

∞
j=0

(−1) j
(2 j)! h(2 j)

A
(x0)Cm,2 j |x |2 j + x

(−1) j
(2 j + 1)! h(2 j+1)

A
(x0)Cm,2 j+2|x |2 j+/

-
eA,

where

Cm,2 j =

 π

0
sinm−1(θ)cos2 j(θ) dθ.

This is of the form (3.3) which completes the proof. ■

We therefore get the following commutative diagram.

(3.7)

As an illustration let us consider the axial monogenic extension of plane waves ϕp, with
ϕp(x0) = ei px0. The axial monogenic extension of ϕp follows from Example 2.2.1 and Remark 2.1
of Ref. 8, where the axial monogenic extension of ex0 is given in terms of Bessel functions, by
taking k = 0 and replacing x by ipx in the expressions of Example 2.2.1 of Ref. 8.
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Proposition 3.4. The axial monogenic plane waves are given by

Ma(ϕp)(x0, x) = Γ(m
2
)
(

2i
p|x |

)m/2−1 (
Im/2−1(p|x |) + i

x
|x | Im/2(p|x |)

)
ei px0 , (3.8)

where Iα are the hyperbolic Bessel functions.

Proof. By representing, as in example 2.2.1 of Ref. 8, Ma(ϕp)(x0) in the form

Ma(ϕp)(x0, x) =
∞
j=0

cjx jBjei px0,

and expressing the monogenicity of the transform

(∂x0 + ∂x)
∞
j=0

cjx jBjei px0 = 0,

we obtain the following recurrence relation for the functions Bj(x0):
Bj+1(x0) = −ipBj(x0) − B′j(x0), B0(x0) = 1.

The solution is Bj(x0) = (−ip) j. Then we see that the transform is obtained by replacing x by ipx in
the expressions of Example 2.2.1 of Ref. 8. ■

Remark 3.5. From Theorem A of Ref. 3, Ř : SM(Rm+1) → AM(Rm+1) is an injective map. In
fact, from Corollary 4.4 of Ref. 3, we see that (non-zero) slice monogenic functions do not belong to
Ker Ř. �

Remark 3.6. Note that, as in Ref. 8, considering h ∈ A(R) ⊗ Cm, one also has

Ma(h)(x0, x) =

A


Sm−1

hA(x0 + i⟨x, t⟩)(1 − it) dt eA, (3.9)

which is equivalent to (3.5) and can be readily verified by expansion in power series. �

IV. CLIFFORD EXTENSIONS OF THE CST

The two extensions (3.2) and (3.5) give two natural paths to define coherent state transforms by
replacing the vertical arrow of analytic continuation in diagram (2.4).

We refer the reader interested in the representation theoretic and the quantum mechanical
meaning of the Hilbert spaces introduced in the present section to Section V.

A. Slice monogenic coherent state transform (SCST)

The slice monogenic CST is naturally defined by substituting the vertical arrow in diagram
(2.4) by the slice monogenic extension (3.2) leading to

(4.1)

where ∆0 =
d2

dx2
0
. Notice that even though the plane waves, ϕp(x0) = ei px0, are not in the Hilbert

space L2(R,dx0), they are generalized eigenfunctions of ∆0 with eigenvalue −p2, and therefore,

e
∆0
2 (ϕp)(x0) = e

∆0
2 ei px0 = e−

p2
2 ei px0 = e−

p2
2 ϕp(x0). (4.2)

On the other hand, since the plane waves ϕp ∈ A(R), we can use (3.2) to obtain the following very
simple result.
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Lemma 4.1. The slice monogenic plane waves are given by

Ms(ϕp)(x0) = Ms(ei px0) = ei p x⃗ =
(
cosh(p|x |) + i

x
|x | sinh(p|x |)

)
ei px0. (4.3)

Proof. From (3.2) we obtain

Ms(ϕp)(x0) = ei px0

∞
k=0

(ipx)k
k!

=

(
cosh(p|x |) + i

x
|x | sinh(p|x |)

)
ei px0.

■

Proposition 4.2. Let f ∈ L2(R,dx0) and

f (x0) = 1
√

2π


R

ei px0 f̃ (p) dp.

We have

Us( f )(x0, x) = 1
√

2π


R

e−
p2
2 ei p x⃗ f̃ (p) dp = (4.4)

=
1
√

2π


R

e−
p2
2 ei px0 cosh(p|x |) f̃ (p) dp + i

x
|x |

1
√

2π


R

e−
p2
2 ei px0 sinh(p|x |) f̃ (p) dp.

Proof. This result follows from Lemma 4.1, (3.2), and (4.2). ■

Consider the standard inner product on Cm. Our main result in this section is the following.

Theorem 4.3. The SCST, Us in Diagram (4.1), is unitary onto its image for the measure dνm on
Rm+1 given by

dνm =
2
√
π

1
V ol(Sm−1)

e−|x |2

|x |m−1 dx0dx,

where V ol(Sm−1) denotes the volume of the unit radius sphere in Rm, i.e., the map Us in the
diagram

(4.5)

is a unitary isomorphism, whereHs = Us(L2(R,dx0) ⊗ Cm) ⊂ SML2(Rm+1,dνm).
Proof. Let S(R) be the space of Schwarz functions on R. For f ,h ∈ S(R) ⊗ Rm, with f =

A f AeA,h =


A hAeA, we have

⟨Us( f ),Us(h)⟩ = 2
√
π

1
V ol(Sm−1)


A


R×Rm

�
e2i xp�

0 e−p
2

f̃ A(p)h̃A(p) e−|x |2

|x |m−1 dmxdp =

=
2
√
π

1
V ol(Sm−1)


A


R

e−p
2

f̃ A(p)h̃A(p) *
,


Rm

cosh(2|x |p) e−|x |2

|x |m−1 dmx+
-

dp =

=
2
√
π

1
V ol(Sm−1)


A


R

e−p
2

f̃ A(p)h̃A(p)
( ∞

0
cosh(2up)e−u2

du
)

dp =

=

A


R

f̃ A(p)h̃A(p) dp = ⟨ f ,h⟩.

From the density of S(R) ⊗ C in L2(R), we conclude that Us is unitary onto its image. ■
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Remark 4.4. For each complex plane Hω B {u + vω : u, v ∈ R} and for f ∈ L2(R,dx) ⊗ Cm,
f =


A f A eA, the map f → Us( f )�

Hω
coincides, for each component f A of f , with the Segal–

Bargmann transform, which is surjective to H L2(Hω,dν) and unitary for the measure dν = e−v
2
du

dv on Hω. �

B. Axial monogenic coherent state transform (ACST)

The axial monogenic CST is also naturally defined as the heat kernel evolution followed by the
axial Cauchy-Kowalevski extension

Ua = Ma ◦ e
∆0
2 ,

i.e., by substituting the vertical arrow in diagram (2.2) by the axial monogenic extension (3.5).

(4.6)

The following is an easy consequence of Theorem 4.3, (3.6), and Remark 3.5.

Theorem 4.5. Let Ha ⊂ AM(Rm+1) ⊗ C denote the image of L2(R,dx0) ⊗ Cm under Ua. The
restriction of the dual Radon transform toHs defines an isomorphism toHa.

The diagram

(4.7)

is commutative and its exterior arrows are unitary isomorphisms for the inner product onHa given
by ⟨·, ·⟩Ha

,

⟨F,G⟩Ha
=


Rm+1

(Ř)−1(F)(Ř)−1(G)dνm, (4.8)

where dνm was defined in Theorem 4.3.

Proof. The injectivity of Ř|Hs follows from Remark 3.5. From (3.6), we conclude that Ua =

Ř ◦Us which implies the surjectivity of Ř|Hs : Hs −→ Ha. Then, the inner product (4.8) is well
defined, the diagram (4.7) is commutative, and the exterior arrows are unitary isomorphisms. ■

Remark 4.6. As mentioned in the Introduction, a possibly interesting alternative way of defin-
ing a monogenic CST would be by replacing the dual Radon transform in (3.7) and in diagram (4.7)
by the Fueter mapping, ∆

m−1
2 , where ∆ =

m
j=0

∂2

∂x2
j

(see Refs. 11, 17, 15, 16, and 18). Notice how-

ever that the map ∆
m−1

2 ◦ Ms does not correspond to a monogenic extension of analytic functions
of one variable as the restriction to the real line does not give back the original functions. It leads
nevertheless to an interesting transform and it would be very interesting to relate it with Ua. �

V. REPRESENTATION THEORETIC AND QUANTUM MECHANICAL INTERPRETATION

Recall that the Schrödinger representation in quantum mechanics is the representation for
which the position operator x̂0 acts by multiplication on L2(R,dx0). The momentum operator is then
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given by

p̂0 = i
d

dx0
.

The CST from Section II A intertwines the Schrödinger representation with the Segal-
Bargmann representation, on which the operator x̂0 + i p̂0 acts as the operator of multiplication by
the holomorphic function x0 + ip0 (see Theorem 6.3 of Ref. 13),

�
U ◦ (x̂0 + i p̂0) ◦U−1� ( f )(x0,p0) = (x0 + ip0) f (x0,p0). (5.1)

We will prove now the analogous result that the slice monogenic CST intertwines the
Schrödinger representation with the representation on which x̂0 + i p̂0 acts as the operator of left
multiplication by the slice monogenic function x0 + x.

Proposition 5.1. The observable x0 + ip0 is represented in the slice monogenic representation
by the operator of multiplication by the slice monogenic function x0 + x, i.e.,

�
Us ◦ (x̂0 + i p̂0) ◦U−1

s

� ( f )(x0, x) = (x0 + x) f (x0, x), f ∈ Hs. (5.2)

Proof. We have Us = Ms ◦ e
∆0
2 . From the injectivity of the slice monogenic extension map Ms,

(5.2) is equivalent to (
e
∆0
2 ◦ (x0 −

d
dx0

) ◦ e−
∆0
2

)
( f )(x0) = x0 f (x0).

This follows from Theorem 6.3 of Ref. 13. ■

For the axial monogenic coherent state transform defining the axial monogenic representa-
tion, on the other hand, we have a more complicated representation of x0 + ip0 involving the
Cauchy-Kowalevski extension of the polynomials x j, j ∈ N0.

Recall, from Theorem 2.2.1 of Ref. 9, that the Cauchy-Kowalevski extension of x j is given by
the polynomial X ( j)

0 (x0, x), such that X ( j)
0 (0, x) = x j, where

X ( j)
0 (x0, x) = CK(x j) = µ

j
0|x | j

(
C(m−1)/2

j

(
x0

|x |
)
+

m − 1
m + j − 1

C(m+1)/2
j−1

(
x0

|x |
)

x
|x |

)
,

with

µ
2 j
0 = (−1) j(C(m−1)/2

2 j (0))−1, µ
2 j+1
0 = (−1) j m + 2 j

m − 1
(C(m+1)/2

2 j (0))−1

and the Gegenbauer polynomials

Cν
j (y) =

[ j/2]
i=0

(−1)i(ν) j−i
i!( j − 2i)! (2y)

j−2i,

where (ν) j = ν(ν + 1) · · · (ν + j − 1).
Proposition 5.2. Let f ∈ Ha be given by

f (x0, x) =
∞
i=0

X (i)
0 (x0, x) f i. (5.3)

The observable x0 + ip0 is represented in the axial monogenic representation by the following
operator:

�
Ua ◦ (x̂0 + i p̂0) ◦U−1

a

� ( f ) (x0, x) =
∞
i=0

(
2i + 1
2i + m

X (2i+1)
0 (x0, x) f2i + X (2i+2)

0 (x0, x) f2i+1

)
. (5.4)
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Proof. From Theorem 3.4 of Ref. 3, any entire axial monogenic function has an expansion of
the form (5.3). On the other hand, from equations (22) and (23) of Ref. 3, we obtain

�
Ř ◦ (x0 + x) ◦ Ř−1� (X2 j

0

)
=

2 j + 1
2 j + m

X2 j+1
0 ,

�
Ř ◦ (x0 + x) ◦ Ř−1� (X2 j+1

0

)
= X2 j+2

0 , j ∈ N0.

These identities together with Proposition 5.1 and the fact that Ua = Ř ◦Us prove (5.4). ■

Remark 5.3. On the axial monogenic representation, one does not expect to have operators
of multiplication by nontrivial functions as the product of monogenic functions is in general not
monogenic. The axial monogenic representation of x0 + ip0 given by (5.4) is in a sense the closest
one can get to such an operator as it maps the monogenic polynomial of order k, X k

0 = CK(xk), to a
scalar times the monogenic polynomial of order k + 1, X k+1

0 . �
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