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Adaptive Fourier tester for
statistical estimation
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Based on Takenaka–Malmquist (TM) system, a new nonparametric estimator for probability density function is proposed.
The TM estimation method is completely different from the existent density estimation methods in that the estimator
depends on an approximate system with poles in a complex plane. Compared with the classic Fourier estimator, the
TM estimator will offer more flexibility and adaptivity for real data due to the poles and nonlinearity of the phase of
TM system. We compare the TM estimator with kernel, wavelet, and spline estimators by simulations. It shows that the
introduced TM estimator is a more promising method than the existing and commonly used methods. Copyright © 2016
John Wiley & Sons, Ltd.
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1. Introduction

There have been many discussions about probability density estimations. M. Rosenblatt [1] applied the kernel method to estimate the
density function. After Rosenblatt, many researchers studied this problem by the kernel method, such as E. Parzen [2] and S. Kumar [3].
Other estimation methods of density functions were also developed, for example, orthogonal series methods, interpolation methods,
and the approach of characteristic functions. For details, see S. C. Schwartz [4], G. Walter [5], and J. Blum and V. Sursala [6]. G. Walter
and J. Blum [7] studied the density function by delta sequences. N. Hjort and M. Jones [8] proposed a local kernel-smoothed likelihood
function to estimate the density function.

In this paper, we study the probability density estimation by using the Takenaka–Malmquist (TM) systems. The TM systems, includ-
ing the Laguerre and the two-parameter Kautz systems, are natural generalizations of the half-Fourier system. They have enjoyed a
long-term development with ample applications in applied mathematics [9–12] and engineering, including control theory and signal
processing [13–15]. From the point of view of approximation, the TM systems compare favorably with Fourier system, spline systems,
and wavelet system because they can offer more flexibility and adaptivity due to the parameters in structure of the TM systems. Com-
pared with other systems, the biggest advantage of the TM systems lies in the nonlinearity of phase functions; that is, when we write
the atoms of the TM systems in the polar form, the corresponding phase functions are nonlinear functions. In language of signal pro-
cessing, the TM systems have the form of amplitude modulation and frequency modulation and can offer adaptive approximation
for transient signals. Then based on the TM systems, we construct the probability density estimators in the contexts of both unit disk
D D fjzj < 1g and the upper half plane CC D fz : Imz > 0g. Such estimators are more appropriate and effective for nonlinear and
non-stationary process.

This paper is organized as follows. Section 2 introduces the TM systems and investigates their approximation. Section 3 focuses on
the design and approximation of probability density estimators from the TM systems. Based on observation data from a density, an
algorithm for adaptive choices of parameters in the TM estimators is proposed. Section 4 is devoted to numerical simulation about our
estimators. The Appendix contributes to the case of the upper half plane.
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2. Takenaka–Malmquist system and approximation

The TM systems are closely related to the Hardy space Hp.D/ on the unit disk D. Here, we say f 2 Hp.D/, 0 < p <1, if

sup
r2.0,1/

1

2�

Z �
��

jf .rei� /jpd� D kfkp
Hp.D/ <1.

For p D1, we say f 2 H1.D/ if f is a bounded analytic function on D and we write

kfkH1.D/ D sup
z2D
jf .z/j.

The Hardy space Hp.@D/ on the unit circle @D D fz : jzj D 1g consists of the non-tangential boundary limits of the related holomorphic
Hardy space functions inside the open unit disk. For the same p, the two types of Hardy spaces are isometrically isomorphism. In the
case p D 2, as a reproducing kernel Hilbert space, H2.D/ is equipped with the inner product

hf , giD D
1

2�

Z �
��

f .ei� /g.ei� /d� , f , g 2 H2.D/.

The TM systems are natural generalizations of the half-Fourier system. There are two parallel contexts for the TM system theory, namely
the unit disk and the upper-half complex plane. We first introduce the case of the unit disk. The upper half plane case will be discussed
in the Appendix. For a given parameter sequence fang

1
nD0 � D, the corresponding TM system feng

1
nD0 is

en.z/ D

p
1 � janj2

1 � anz
Bn,D.z/, z 2 D, n 2 ZC, (2.1)

where Bn,D denotes the nth Blaschke product on the unit disk

Bn,D.z/ D
n�1Y
jD0

z � aj

1 � ajz
.

Here, for n D 0, we adopt the convention
�1Y

jD0

D 1. Throughout this paper, we set N D f1, 2, : : :g and ZC D N [ f0g.

The case an D 0, n 2 N corresponds to the half-Fourier system that gives rise to classical Fourier analysis. It is an important result in
classical Fourier analysis that in all Lp.@D/ (or Hp.@D//, 1 < p < 1, the Fourier system (or the half-Fourier system) is a Schauder basis
(see, for instance, [16]). It is well known that, under the condition

X
n2Z

.1 � janj/ D 1, feng
1
nD0 is an orthonormal base of the Hilbert

space H2.@D/. Furthermore, in [17], it is proven that feng
1
nD0 is a Schauder base for the Banach space Hp.@D/ for p 2 .1,1/.

Denote by H the circular Hilbert transform for f 2 Lp.@D/. Then for any f 2 Lp.@D/, one obtains the decomposition f D fC C f�

with fC D 1
2 .f C iHf / 2 Hp.@D/ and f� D 1

2 .f � iHf / 2 Hp.@.C n D//. We call fC circular analytic signal and f� circular conjugate
analytic signal. Both of them can be extended to be analytic functions in Hp.D/ and Hp.C nD/, respectively. For simplicity, we will use
the same notation fC or f� for the analytic functions in the respective regions and their corresponding boundary values.

We need to revisit some results about approximation order of the partial sum sequence based on the TM systems, the importance
of which lies in that the mean square error of the TM system estimator (see next section) is dominated by the variance of the estimator
and the approximate rate of the partial sum sequence.

For any function f analytic in the unit disk, set

Ln,Df .z/ D
nX

kD0

ckek.z/, z D reix 2 D (2.2)

with ck D
R �
��

f .eit/ek.eit/dt. The operator Ln,D has the integral representation

Ln,Df .z/ D

Z
j�jD1

f .�/Kn,D.z, �/
d�

i�
, z D reix

with the kernel Kn,D.z, �/ D
nX

kD0

ek.�/ek.z/ D
1

1 � N�z

�
1 � Bn,D.z/Bn,D.�/

�
by applying the Christoffel–Darboux formula.

For real variable- and complex-valued function having Fourier expansion f .x/ D
1X

kD�1

ckeikx , the corresponding partial sum operator

Sn,D is defined by the symmetric sum

Sn,Df .x/ D
nX

kD�n

ckek.x/, x 2 Œ�� ,��. (2.3)
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Q. CHEN ET AL.

For simplicity, we use ek.x/ instead of ek.eix/, the non-tangential limit of the TM atom defined in (2.1). For k > 0, set e�k D ek.x/. The
integral representation of the partial sum operators is in the succeeding text:

Sn,Df .x/ D

Z �
��

f .t/Dn,D.x, t/dt, (2.4)

where Dn,D.x, t/ D Kn,D.eix , eit/C Kn,D.eix , eit/ � K0,D.eix , eit/. It can be checked that

Dn,D.x, t/ D
sin
�

x�t
2 C �n.x, t/

�
2� sin

�
x�t

2

� ,

where �n.x, t/ D
nX

kD1

.�an.x/ � �an.t// and �an is the indefinite integral of the periodic Poisson kernel pan.t/ D
1�janj

2

1�2janjcos.t�tan /Cjanj2
with

the parameter an D janj exp.itan/. In particular, when all parameters are zero, Dn.x, t/ is just the usual Dirichlet kernel

Dn.x � t/ D
sin
�

nC 1
2

�
.x � t/

2�
�

1
2 .x � t/

� D
1

�

 
1

2
C

nX
kD1

cos k.x � t/

!
.

Now, we turn to the approximation behavior of the operator Sn,D . The approximation of Sn,D is closely related to that of Ln,D , which
was investigated in [18, 19].

Define by B0H1 the space that any element is analytic in D, is continuous in D, and has finite variation V.f / D 1 at the boundary @D.
Generally, f 2 BrH1 means that f is analytic in D, f .p/, 1 � p � r, is continuous on @D, and f .r/ 2 B0H1. Russian mathematician Pycak
established the following proposition:

Proposition 2.1
Suppose that f 2 BrH1 for some nonnegative integer r and !.f .r/, t/ D O.t˛/ for some ˛ 2 .0, 1/. Then there exists some suitable
parameter vector a D .a0, : : : , an�1/ such that

max
jzj�1
jf .z/ � Ln,Df .z/j � C

ln3 n

nrC1
, (2.5)

where C is only dependent on ˛ and !.f , t/ is the continuous modulus of f defined by !.f , t/ D sup
h2Œ0,t�,�2Œ�� ,��

jf .ei.�Ch// � f .ei� /j.

To apply the complex approximation (2.5) to that of a real variable signal, we need the following lemma.

Lemma 2.2
Set a0 D 0. Suppose that f 2 L2.@D/. Then

Sn,Df .x/ � f .x/ D 2Re
h

Ln,DfC.z/ � fC.z/
i

zDeix
. (2.6)

Proof
This identity can be obtained by involving Cauchy integral equation and the identities hfC, eki D hf�, e�ki for any integer k and
hfC, eki D 0 for k < 0.

Combing this lemma with Pycak’s proposition, an estimation for pointwise approximation of Sn,D is established in the succeeding
text.

Theorem 2.3
Suppose that a0 D 0, f 2 L2.�� ,�/, fC 2 BrH1, and !..fC/.r/, t/ D O.t�/ for some � 2 .0, 1/. Then there exists some suitable
parameter vector a D .a0, : : : , an�1/ such that

max
x2Œ�� ,��

jSn,Df .x/ � f .x/j � C
ln3 n

nrC1
(2.7)

where C is only dependent of �.

As for the approximation order of Sn,D in the sense of L2-norm, Plancherel theorem indicates that it depends on the decaying rate of
the Fourier coefficients. Recall that the order of the nth Fourier coefficient of any twice continuously differentiable function in L2.�� ,�/

is O
�

1
jnj2

�
(see corollary 2.4, p. 42 of [20]). This result was generalized by A. Bultheel and P. Carrette in 2003 as follows (see [21]).

Proposition 2.4
Assume that a0 D 0 and f is Kth continuously differentiable function with periodic 2� with K � 3, then decaying order of the
generalized Fourier coefficients hf , eni is O.n�.K�1//.

Applying Proposition 2.4 to the operator Sn,D , the following result holds.

Copyright © 2016 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016, 39 3478–3495
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Theorem 2.5
Assume that a0 D 0 and suppose that f is third continuously differentiable. Then

kSn,Df � fk2
2 D O

�
n�1

�
. (2.8)

Proof
This is a direct consequence from Proposition 2.4 and the identity kSn,Df � fk2

2 D
P
jkj�nC1 jckj

2.

3. Takenaka–Malmquist estimators

Suppose that X is a random variable having density q 2 L2.R/ with compact support Œ�� ,��. Let X1, X2, � � � , XN be the i.i.d. samples
from X . Define the TM estimators by

Oqn,N.x/ :D
nX

kD�n

Ockek.x/, x 2 Œ�� ,��, n 2 ZC, (3.9)

where

Ock D
1

2�N

NX
jD1

ek.Xj/, k 2 Z. (3.10)

We give a brief explanation why we prefer the estimators (3.9). Any L2-function f can be approximated by the sequenceXn

kD�n
ckek.�/, where ck is the generalized Fourier coefficient, that is, the inner product of f and ek . In our case, the density function is

unknown and only finite observation data are given. For retrieval of the density, we design the empirical inner Ock instead of ck and then
construct the specific estimators (3.9).

3.1. Properties of Takenaka–Malmquist estimators

This section investigates some statistical properties of TM estimators. The following theorem states that the estimator Oqn,N is an
asymptotically unbiased estimator of the density function q.

Theorem 3.1
For the estimator Oqn,N, as n, N!1 and n

N ! 0, we have

1. limn!1 Oqn,N.x/ D q.x/, 8x 2 Œ�� ,��; and
2. Var.Oqn,N.x// D O

�
n
N

�
D o.1/.

The next theorem describes the approximation order of Oqn,N in the sense of L2-norm convergence.

Theorem 3.2

Suppose that a0 D 0 and
nX

kD�n

.1 � jakj/
�1 D O.n/. If the density function q is compactly supported in Œ�� ,��, q.��/ D q.�/ and

third continuously differentiable, then

E
�
kOqn,N � qk2

2

�
D O

�
1
p

N

�
with n D

p
N. (3.11)

The following two theorems discuss some auxiliary statistic errors of Oqn,N instead of norm error, that is, E
�
.Oqn,N.x/ � q.x//2

�
and

E
�
�
˚

x : j Oqn,N.x/ � q.x/j > �
��

. Here, � is the usual Lebesgue measure. About the mean square error, we have the following theorem.

Theorem 3.3
Assume that a0 D 0. Suppose that the density function q satisfies the conditions in Theorem 2.3 with r > 0. Then

E
�
Oqn,N.x/ � q.x/

�2
D O

�
1
p

N

�
, n D

p
N.

About the quantity E
�
�
˚

x : j Oqn,N.x/ � q.x/j > �
��

, we have the following result.

Theorem 3.4

Suppose that a0 D 0 and
nX

kD�n

.1 � jakj/
�1 D O.n/. If the density function q is compactly supported in Œ�� ,��, q.��/ D q.�/ and

third continuously differentiable, then

E
�
�
˚

x : j Oqn,N.x/ � q.x/j > �
��
D O

�
1
p

N

�
with n D

p
N. (3.12)
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Proof of Theorem 3.1

Proof

(1) Note that

E.Ock/ D
1

2�
E.ek.X1// D

1

2�

Z �
��

ek.x/q.x/dx D ck D< q, ek >

and

E.Oqn,N.x// D
nX

kD�n

E.Ock/ek.x/ D
nX

kD�n

ckek.x/, x 2 Œ�� ,��.

It follows from Theorem 2.3 that as n!1,

lim
n!1

Sn,D q.x/ D lim
n!1

1X
kD�1

ckek.x/ D q.x/, x 2 Œ�� ,��.

Then

lim
n!1

E.Oqn,N.x// D q.x/, x 2 Œ�� ,��.

(2) By direct calculation, we obtain

Var.Oqn,N.x// D Var

"
nX

kD�n

Ockek.x/

#
D Var

2
4 NX

jD1

 
nX

kD�n

1

2�N
ek.x/ek.Xj/

!35

D NVar

 
nX

kD�n

1

2�N
ek.x/ek.X1/

!

� NE

 
nX

kD�n

1

2�N
ek.x/ek.X1/

!2

D
1

4�2N

Z �
��

 
nX

kD�n

ek.x/ek.t/

!2

q.t/dt

D
1

4�2N

Z �
��

D2
n.x, t/q.t/dt,

where Dn.x, t/ D
nX

kD�n

ek.x/ek.t/. Then we have

Var.Oqn,N.x// �
1

4�2N
kqk1kDn.x, �/k2

2.

It is easily shown that kDn.x, �/k2
2 � n. Then it holds that

Var.Oqn,N.x// D O
� n

N

�
D o.1/, x 2 Œ�� ,��.

Proof of Theorem 3.2

Proof
The outline of our proof is as follows. By Cauchy–Schwartz inequality, we have

E
�
kOqn,N � qk2

2

�
� 2E

�
kOqn,N � qnk

2
2

�
C 2kqn � qk2

2,

where qn D Sn,D q. On one hand, by noting that the second term kqn � qk2
2 in the previous inequality is just the L2-norm error of the

partial sum operator Sn,D and using Theorem 2.5, we know that kqn � qk2
2 D O

�
1
n

�
. On the other hand, it suffices to conclude (3.11) if

we prove that

E
�
kOqn,N � qnk

2
2

�
D O

� n

N

�
. (3.13)

The proof about the estimation for the quantity E
�
kOqn,N � qnk

2
2

�
is a little complicated. We offer the detail in the succeeding text.

Copyright © 2016 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016, 39 3478–3495
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Q. CHEN ET AL.

By Fubini theorem and the finite additivity of integral, we have

E
�
kOqn,N � qnk

2
2

�
D E

 
1

2�

Z �
��

j

nX
kD�n

.Ock � ck/ek.x/j
2dx

!

D
1

2�
E

0
@Z �
��

nX
kD�n

nX
jD�n

ek.x/ej.x/
�
Ock Ocj � ck Ocj � Ockcj C ck Ocj

�
dx

1
A

D
1

2�

Z �
��

nX
kD�n

nX
jD�n

ek.x/ej.x/E
�
Ock Ocj � ck Ocj � Ockcj C ck Ocj

�
dx

D
1

2�

nX
kD�n

nX
jD�n

E
�
Ock Ocj � ck Ocj � Ockcj C ck Ocj

� Z �
��

ek.x/ej.x/dx.

Applying the orthonormality of the system fekg and the fact E.Ock/ D ck , it follows

E
�
kOqn,N � qnk

2
2

�
D

nX
kD�n

�
E
�
jOckj

2
�
� jckj

2
�

. (3.14)

Now, we calculate E
�
jOckj

2
�
. By the definition of Ock , we have

E
�
jOckj

2
�

D E

0
@ 1

4�2N2

NX
jD1

NX
lD1

ek.Xj/ek.Xl/

1
A

D
1

4�2N2

NX
jD1

NX
lD1

E
�

ek.Xj/ek.Xl/
�

D
1

4�2N2

NX
jD1

E
�
jek.Xj/j

2
�
C

1

4�2N2

NX
j,lD1,j¤l

E
�

ek.Xj/ek.Xl/
�

D
1

4�2N
E
�
jek.X/j

2
�
C

1

4�2N2

NX
j,lD1,j¤l

E
�

ek.Xj/
�

E .ek.Xl//

D
1

4�2N
E
�
jek.X/j

2
�
C

1

4�2N2
j

NX
jD1

E
�

ek.Xj/
�
j2 �

1

4�2N2

NX
jD1

jE
�

ek.Xj/j
2
�

D
1

4�2N
E
�
jek.X/j

2
�
C

1

4�2
jE .ek.X// j

2 �
1

4�2N
jE .ek.X// j

2.

Using the fact E.ek.X// D 2� Nck for k D �n, : : : , n, it follows

E
�
jOckj

2
�
� jckj

2 D
1

4�2N
E
�
jek.X/j

2
�
�

1

N
jckj

2. (3.15)

Combing (3.14) and (3.15), we have

E
�
kOqn,N � qnk

2
2

�
D

nX
kD�n

�
1

4�2N
E
�
jek.X/j

2
�
�

1

N
jckj

2

�
. (3.16)

Noting that E
�
jek.X/j2

�
D

Z �
��

1 � jakj
2

j1 � Nakeixj2
q.x/dx, which has lower bound 1�jakj

1Cjakj
and upper bound 1Cjakj

1�jakj
, it gives

E
�
kOqn,N � qnk

2
2

�
�

1

N

1

4�2

nX
kD�n

1C jakj

1 � jakj
�

1

N

nX
kD�n

jckj
2,

and hence,

E
�
kOqn,N � qnk

2
2

�
�

1

2�2N

nX
kD�n

.1 � jakj/
�1.

Finally, we conclude that

E
�
kOqn,N � qnk

2
2

�
D O

� n

N

�
D O

�
1
p

N

�
.
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Proof of Theorem 3.3

Proof
This estimation can be obtained from (2.7) and Theorem 3.1 by setting n D

h
N

1
2

i
and noting the boundedness of ln3 n

nr for any positive
integer r.

Proof of Theorem 3.4

Proof
By Chebyshev’s inequality for measure-theoretic statement, we know that

E
�
�
˚

x 2 Œ�� ,�� : j Oqn,N.x/ � q.x/j > �
��

� E

�
1

�2

Z �
��

j Oqn,N.x/ � q.x/j2dx

�
D

2�

�2
E
�
kOqn,N � qk2

2

�
.

By Theorem 3.2, the estimation (3.12) follows.

3.2. Some adjustments

Because the TM estimator Oqn,N defined in (3.9) is designed for densities supported in the specific interval Œ�� ,��, some adjustment
measurements are adopted for more general density functions supported in more general subset E � R.

Suppose that f 2 L2.R/ is a function supported in E � R and assume that there exists a bijection

M : t! g.t/, t 2 E

such that M maps E to Œ�� ,��, where g is a differentiable univariate real-valued function. The estimator for f can be designed by

Ofn,N.t/ D jg
0.t/j

nX
kD�n

Ofkek.g.t//, t 2 E (3.17)

with

Ofk D
1

2�N

NX
jD1

ek.g.Xj//. (3.18)

Here, X1, X2, � � � , XN are the i.i.d. samples from the random variable X , which has the density f . We remark that Ofn,N.t/ is not a pure
composition of Oqn,N , not only the weighted jg0j but also the difference between Ock in (3.10) and Ofk in (3.18). In the two important cases
with E D R and E D Œa, b�, we take

g.t/ D 2 arctan t, t 2 R

and

g.t/ D �
2t � a � b

b � a
, t 2 Œa, b�,

respectively.

3.3. Algorithm for adaptive choice of parameters

We have known that the continuous TM random estimator Oqn,N can approximate the density function q with approximation order 1p
N

when n D O.
p

N/. But, the presupposition is that the parameter vector Ea D .a1, : : : , an/ should be given beforehand. This issue is
particularly important in numerical simulation. We hope to choose the unknown parameter vectors Ea from the samples f.xj , yj/, j D
1, : : : , Ng. This can be performed under the principle of maximal coefficient existing in the algorithm theories including matching
pursuit (MP), greedy algorithm (GA), and compressed sensing.

The essence of MP (GA) is to obtain a locally optimal choice at each stage with the hope of finding a global optimum. Both MP
and GA are based on continuous atoms. Let us explain briefly the common idea in MP and GA. In order to represent a sparse signal
f 2 L2.R/ in terms of a fixed dictionaryˆI D f�m : m 2 Igwith I some index set, whereˆI is dense in L2.R/, we hope to choose a subset
ƒ � I such that the cardinality ƒ of is as small as possible and

P
j2ƒhf ,�ji�j can approximate f with higher precision. In the case of

orthonormal basis, the maximal coefficient principle is easy to understand, which naturally requires the maximization of coefficients
step by step, that means, the first coefficient hf ,�1i from sup

�j2ˆI

jhf ,�jij, the second coefficient hf ,�2i from sup
�j2ˆInf�1g

jhf ,�jij, and so on.

The compressed sensing is a discrete version of MP and GA.
Applying the strategy of maximal coefficient principle to the construction of Ea appearing in the system fekg in terms of the samples
f.xj , yj/ : j D 1, : : : , Ng, there is a modification compared with the conventional case. Let us taste the difference. In the conventional
case, the greedy task mainly emphasizes on the choice of atoms because the atom system (including parameters if available) is given
in advance. In our case, only the type of atoms is known, but the parameters are unknown. Our emphasis lies in the construction of
parameters in terms of samples.

Set4 D [N
jD1U.eixj , ı/, the union of the N open neighborhoods at the points eixj : j D 1, : : : , N on the unit circle. Our algorithm is in

the succeeding text.

Copyright © 2016 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016, 39 3478–3495
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Q. CHEN ET AL.

Algorithm for finding Ea

Step 1. Set

y.1/j D yje
�ixj , j D 1, : : : , N.

Find a1 by

a1 D arg sup
a2Dn4

j

NX
jD1

y.1/j

p
1 � jaj2

1 � ae�ixj
j2

Step 2. Set

y.2/j D y.1/j

e�ixj � Na1

1 � a1e�ixj
, j D 1, : : : , N.

Find a2 by

a2 D arg sup
a2Dn4

j

NX
jD1

y.2/j

p
1 � jaj2

1 � ae�ixj
j2

Step k (k D 1, 2, : : : , n/. Set

y.k/j D y.k�1/
j

e�ixj � Nak�1

1 � ak�1e�ixj
, j D 1, : : : , N.
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Figure 1. Boxplots of root mean square error (from left to right: Takenaka–Malmquist, wavelet, local linear, and spline).
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Q. CHEN ET AL.

Find ak by

ak D arg sup
a2Dn4

j

NX
jD1

y.k/j

p
1 � jaj2

1 � ae�ixj
j2.

For k D 1, 2, : : : , n, denote y.k/ D
�

y.k/1 , : : : , y.k/N

�
and call it the kth samples vector of Y .

About the previous algorithm, two points need to be addressed. Firstly, the sequence y.1/, : : : , y.n/ can be obtained iteratively by

y.k/ D y.k�1/diag
�
	ak�1 .e

ix1/, : : : , 	ak�1 .e
ixN /
�

(3.19)

where the 	a is the Möbius transform 	a.z/ D
z�a

1�Naz and a0 D 0. Secondly, a basic pursuit algorithm can be formulated in the succeeding
text: for a given complex-valued vector .t1, t2, : : : , tN/ 2 CN, find Oa 2 D by

Oa D arg sup
a2Dn4

j

NX
jD1

tj

p
1 � jaj2

1 � ae�ixj
j2. (3.20)

Note that all steps in our algorithm depend on the problem (3.20). To solve it, define the function f by

f .a/ D j
NX

jD1

tj

p
1 � jaj2

1 � ae�ixj
j2. (3.21)

About the existence of the maximum, we have the following theorem.
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Figure 2. Boxplots of root mean square error (from left to right: Takenaka–Malmquist, wavelet, local linear, and spline).
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Q. CHEN ET AL.

Theorem 3.5
The function f defined in (3.21) arrives at its maximum in D n 4.

Proof
On one hand, as a continuous function in the closed set ND n 4, f has a maximum. On the other hand, lima!z f .a/ D 0 for all z 2
@D n feixj : j D 1, : : : , Ng. We therefore conclude the desired result.

4. Simulation

We consider the following regression model:

Yt D f .Xt/C Et

with f being an unknown function. For given samples .Xk , Yk/, k D 1, : : : , n, we are to estimate f .Xk/, k D 1, : : : , n. The precision is
measured by root mean square error (RMSE) defined by

RMSE D n�
1
2

vuut nX
kD1

ŒOf .Xk/ � f .Xk/�
2.

Specifically, we consider some examples that have been studied by Anestis Antoniadis and Jeremie Bigot [22].
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Figure 3. Original (green), Takenaka–Malmquist (blue), wavelet (black), local linear (cyan), and spline (magenta).
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Q. CHEN ET AL.

Blocks:

f1.x/ D
11X

jD1

1

2
hj

�
1C sgn.x � tj/

�
with .hj : j D 1, : : : , 11/ D .0.1, 0.13, 0.15, 0.23, 0.25, 0.40, 0.44, 0.65, 0.76, 0.78, 0.81/ and .tj : j D 1, : : : , 11/ D

.4,�5, 3,�4, 5,�4.2, 2.1, 4.3,�3.1, 2.1,�4.2/.
Blip:

f2.x/ D
�

0.32C 0.6x C 0.3e�100.x�0.3/2
�

IŒ0,0.8�.x/C
�
�0.28C 0.6x C 0.3e�100.x�1.3/2

�
I.0.8,1�.

Here, I.a,b/ stands for the indicator function of the interval .a, b/.
Wave:

f3.x/ D 0.5C 0.2 cos.4�x/C 0.1 cos.24�x/.

Time-shifted sine:
f4.x/ D 0.3 sinf3�Œg.g.g.g.x////C x�g C 0.5,

where g.x/ D .1 � cos.�x//=2.
Angles:

f5.x/ D .2x C 0.5/IŒ0,0.15�.x/C .�12.x � 0.15/C 0.8/I.0.15,0.2�.x/C

0.2I.0.2,0.5�.x/C .6.x � 0.5/C 0.2/I.0.5,0.6�.x/C

.�10.x � 0.6/C 0.8/I.0.6,0.65�.x/C .�5.x � 0.65/C 0.3/I.0.65,0.85�.x/C

.2.x � 0.85/C 0.2/I.0.85,1�.x/.
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Figure 4. Original (green), Takenaka–Malmquist (blue), wavelet (black), local linear (cyan), and spline (magenta).
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Q. CHEN ET AL.

Table I. Here, A > B means method A performs better
than B; A � B means methods A and B have similar per-
formance (the difference of root mean square errors of A
and B is at 10�3 level).

Block TM > wavelet > local linear > spline
Blip TM�wavelet� local linear > spline
Wave TM�wavelet� local linear > spline
Time-shifted sine Local linear > wavelet > TM� spline
Angles Wavelet� local linear > TM > spline

TM, Takenaka–Malmquist.

Table II. Here, A > B means method A performs better
than B; A � B means methods A and B have similar per-
formance (the difference of root mean square errors of A
and B is at 10�3 level).

Block TM > wavelet > local linear > spline
Blip TM�wavelet� local linear� spline
Wave TM�wavelet� local linear� spline
Time-shifted sine TM�Wavelet� local linear > spline
Angels TM > wavelet� local linear > spline

TM, Takenaka–Malmquist.

For simulation, we suppose that X is an equally spaced on Œ0, 1�, Et 	 N .0, 0.5/. For each of the previous examples, we adopt the TM
method, the wavelet method, the local linear method, and the spline method with sample size N D 64, 512, respectively. Set the repeat
time to 100. We denote the TM method by ‘TM’, the wavelet method by ‘W’, the local linear method by ‘LL’, and the spline method by ‘S’.
To compare the performance, we need to calculate the RMSE for each estimation.

For the TM method with N D 64, we choose n to be 8, 3, 3, 4, 4 with respect to the order of the previous examples of density function.
Similarly, we choose n to be 20, 3, 4, 10, 10 when N D 512. We first show boxplots of RMSE (from left to right: TM, W, LL, and S) of
each subfigure in Figures 1 and 2. Figures 3 and 4 show the original function of each example (green curve) and results with median
performance from TM (blue curve), W (black curve), LL (cyan curve), and S (magenta curve).

In the succeeding text is our simulation results with sample size N D 64.
From previous illustrations, we see that each method has its pluses and minuses. We conclude it in Table I.
In the case of ‘Blocks’, the performance of the TM method is much better than those of the other methods. In the cases of ‘Blip’ and

‘Wave’, the performances of the TM method, the wavelet method, and the local linear method are similar, and the performance of the
spline method is the worst. For the cases of ‘Time Shifted Sine’ and ‘Angles’, the performances of the TM method and the spline method
are similar and both of them are a little bit worse than those of the wavelet and the local linear methods.

In the succeeding text is our simulation results with sample size N D 512.
Similarly, we conclude it in Table II.
In the case of ‘Blocks’, the performance of the TM method is still the best. For the cases of ‘Blip’ and ‘Wave’, all the tested methods

behave well. Unlike the results with N D 64, the performances of the TM method are better than those of the other methods for the
cases of ‘Time Shifted Sine’ and ‘Angles’.

It is noticeable that for all the tested methods, the experimental results with N D 512 are obviously better than those for N D 64.
Comparatively, however, the improvement for the TM method is extraordinary. We note that the TM estimator performance in the
experiments may be improved because the way of selecting the involved parameters can be further developed.

Appendix A: The upper half plane case

There is a parallel theory of estimators based on the TM systems on the upper half plane. For the purpose of completeness of our
theory, this section investigates this topic. In the aspect of numerical implementation, the TM estimator in the case of the upper half
plane has no superior compared with the estimator in the case of the unit disk. Two reasons cause a bad approximation accuracy when
the truncation strategy is adopted. One is the infinity of the support of the estimator on the upper half plane and the other is the wide
scope of the parameters’ distribution.

For the upper half plane case, we say f 2 Hp.CC/, 0 < p <1, if f is analytic on CC and

sup
y>0

Z 1
�1

jf .x C iy/jpdx D kfkp
Hp.CC/

<1.

Copyright © 2016 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016, 39 3478–3495
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Q. CHEN ET AL.

When p D 1, we write f 2 H1.CC/ for the bounded analytic functions on CC, and we give H1.CC/ the norm
kfkH1.CC/ D sup

w2CC
jf .w/j. The relation between f 2 Hp.CC/ and their non-tangential boundary limits on R is the same as the unit

disk case. H2.CC/ is equipped with the inner product

hf , giCC D

Z 1
�1

f .t/g.t/dt, f , g 2 H2.CC/.

For a given parameter sequence f
ng
1
nD0 � CC, the corresponding TM system fˇng

1
nD1 in the upper half plane case is

ˇn.w/ D

q
1
�

Imf–ng

w � 
n

Bn,CC.!/, w 2 CC, n 2 ZC, (A1)

where the Blaschke product on the upper-half plane is defined by

Bn,CC.!/ D

n�1Y
jD0

w � 
j

w � 
j

.

Under the condition
1X

kD0

p
Im.–k/

1C j
kj2
D1, fˇng is an orthonormal base of the Hilbert space H2.CC/.

A.1. Approximation order of partial sum in the case CC

For a density function f 2 L2.R/, we can expand it in terms of the orthonormal basis fˇkg as

f .x/ D
X
k2Z

dkˇk.x/, x 2 R

with

dk D hf ,ˇki D

Z 1
�1

f .x/ˇk.x/dx.

The partial sum operator is defined by

Sn,CC f .x/ D
nX

kD�n

dkˇk.x/, x 2 R. (A2)

It is necessary to investigate the order of Sn,CC f converging to f in different measures. As we know, no related literatures are available
about this topic. Our approach is to use the Caley transform.

We remark that the Caley transform

w D �.z/ :D i
1 � z

1C z

is a conformal mapping from D to CC and its inverse mapping is

z D
i � w

wC i
: CC ! D.

An important fact is that Caley transform is an isomorphism between H1.D/ and H1.CC/. Moreover, � is an isometry from H1.D/
to H1.CC/ that maps one of the two type of TM systems to the other, that is,

ˇn.�.z// D
1

2
p
�

ei˛.1C z/en.z/, (A3)

where ei˛ D 1Can
j1Canj

.�i/
n�1Y
jD0

�.1C aj/

1C aj
.

Similarly to the unit disk case, we need to investigate the one-sided partial sum of the half system (A1)

Ln,CC f .w/ D
nX

kD0

hf ,ˇkiˇk.w/. (A4)

Copyright © 2016 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016, 39 3478–3495
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Q. CHEN ET AL.

By combing the transform t D i 1�ei�

1Cei� with the identity (A3), a direct calculation gives

hf ,ˇki D

Z 1
�1

f .t/ˇk.t/dt

D

Z �
��

f

 
i

1 � ei�

1C ei�

!
ˇk

�
i

1 � ei�

1C ei�

�
d

 
i

1 � ei�

1C ei�

!

D

Z �
��

f

 
i

1 � ei�

1C ei�

!
1

2
p
�

ei˛.1C ei� /ek.ei� /
2ei�

.1C ei� /2
d�

D
1
p
�

e�i˛

Z �
��

f
�

i 1�ei�

1Cei�

�
1C ei�

ek.ei� /d�

D 2
p
�e�i˛hg, eki

where g.z/ D f.�.z//
1Cz . Then

Ln,CC f .w/ D
nX

kD0

2
p
�e�i˛hg, eki

1

2
p
�

ei˛.1C z/en.z/

D .1C z/Ln,Dg.z/.

Hence,

Ln,CC f .w/ � f .w/ D .1C z/ .Ln,Dg.z/ � g.z// . (A5)

We therefore establish the version in the upper-half plane of Pycak’s result.

Proposition A.1
Suppose that f 2 H1.CC/, f.k.z//

1Cz 2 BrH1 for some nonnegative integer r, and !
�

d
dz

f.k.z//
1Cz , t

�
D O.t�/ for some � 2 .0, 1/. Then

there exists some suitable parameter vector 
 D .
0, : : : ,
n�1/ such that

max
w2C
jLn,CC f .w/ � f .w/j � C

ln3 n

nrC1
, (A6)

where C is only dependent on �.

Proof
This is a consequence of (2.5) and (A5).

A parallel result of Lemma 2.2 can be established as follows.

Lemma A.2
Suppose that 
0 D i. Then for any f 2 L2.R/, it holds

Sn,CC f .x/ � f .x/ D 2Re
h

Ln,CC fC.x/ � fC.x/
i

. (A7)

Proof
The proof is the same as that of 2.2 by changing ek to ˇk .

A pointwise approximation order for Sn,CC is therefore concluded below.

Theorem A.3
Suppose that
0 D i, fC 2 H1.CC/, fC.k.z//

1Cz 2 BrH1 for some nonnegative integer r and!
�

d
dz

fC.k.z//
1Cz , t

�
D O.t�/ for some� 2 .0, 1/.

Then there exists some suitable parameter vector 
 D .
0, : : : ,
n�1/ 2 Cn such that

jSn,CC f .x/ � f .x/j � C
ln3 n

nrC1
(A8)

for any x 2 R, where the constant C is only dependent on �.

To discuss the approximation order in L2-norm sense, we need to estimate the decaying rate of the Fourier coefficients hf ,ˇki for
functions in L2.R/.

Lemma A.4
Assume that 
0 D i and f 2 L2.R/ is Kth continuously differentiable function with K � 3, then the decaying order of the generalized
Fourier coefficients hf ,ˇni is O

�
1

nK�1

�
.

Copyright © 2016 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016, 39 3478–3495

3
4

9
1

 10991476, 2016, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

m
a.3795 by C

ochrane M
acao, W

iley O
nline L

ibrary on [20/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Q. CHEN ET AL.

Proof
Noting that the operator T : H2.CC/! H2.D/ defined by

T f .z/ D
2i�

1
2 f
�

i 1�z
1Cz

�
.1C z/

, z 2 D (A9)

is an isomorphism and an isometry between H2.CC/ and H2.D/, we confirm that

f
�

i 1�ei�

1Cei�

�
1C ei�

2 L2.�� ,�/.

Recalling that (see the calculation between (A4) and (A5))

hf ,ˇki D

Z 1
�1

f .t/ˇk.t/dt D

Z �
��

f
�

i 1�ei�

1Cei�

�
1C ei�

ek.ei� /d� ,

noting that
f
�

i 1�ei�

1Cei�

�
1Cei� is 2� periodic and Kth continuously differential and recalling Proposition 2.4, we obtain that jhf ,ˇnij D O

�
1

nK�1

�
.

The following theorem indicates that the L2-approximation order of Sn,CC is O.n�1/.

Theorem A.5
Assume that 
0 D i. Suppose that f 2 L2.R/ is third continuously differentiable. Then

kSn,CC f � fk2
2 D O.n�1/. (A10)

Proof
This is a direct consequence from Plancherel theorem and Lemma A.4.

A.2. Estimator in the case CC

For i.i.d. samples X1, X2, : : : , XN from the random variable X with density p supported in R, define the TM system estimator by

Opn,N.x/ :D
nX

kD�n

Odkˇk.x/, x 2 R (A11)

where the Fourier coefficients Odk are random variable

Odk :D
1

N

NX
jD1

ˇk.Xj/. (A12)

The following theorem shows that Opn,N is the asymptotically unbiased estimator of p.

Theorem A.6

Assume that 
0 D i and
nX

kD�n

.Im.
k//
�2 D O.n/. Suppose that the density function p satisfies the conditions in Theorem A.3 with

r > 0. Then for TM estimator Opn,N, as n, N!1 and n
N ! 0, we have

(i) lim
n!1

Opn,N.x/ D p.x/, 8x 2 R; and

(ii) Var.Opn,N.x// D O
�

n
N

�
D o.1/.

Proof

(i) By (A2) and (A11), we obtain that E. Odk/ D dk and correspondingly E.Opn,N/ D Sn,CCp. By Theorem A.3, we have that, for x 2 R,

lim
n!1

E
�
Opn,N.x/

�
D lim

n!1
Sn,CCp.x/ D p.x/.
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Q. CHEN ET AL.

(ii) To estimate Var.Opn,N.x//, we first need to investigate E. Odk � dk/
2. A direct calculation gives rise to

E. Odk � dk/
2 D E

�
Od2

k

�
� d2

k

D E

0
@ 1

N

NX
jD1

ˇk.Xj/

1
A

2

� d2
k

D
1

N2

NX
jD1

E
	
ˇ2

k .Xj/


C

1

N2

NX
jD1

X
`¤j

E
	
ˇk.Xj/ˇk.X`/



� d2

k

D
1

N2

NX
jD1

E
	
ˇ2

k .Xj/


C

1

N2

NX
jD1

X
`¤j

EŒˇk.Xj/�EŒˇk.X`/� � d2
k

D
1

N2

NX
jD1

E
	
ˇ2

k .Xj/


C

1

N2

NX
jD1

X
`¤j

d2
k � d2

k

D
1

N2

NX
jD1

E
	
ˇ2

k .Xj/


C

1

N2
.N2 � N/d2

k � d2
k

�
1

N2

NX
jD1

E
	
ˇ2

k .Xj/



.

Combining this with the inequality

jˇk.x/j �

r
1

�
.Im.
k//

� 1
2 , (A13)

it follows

E. Odk � dk/
2 �

1

N2

NX
jD1

Z 1
�1

p.xj/ˇ
2
k .xj/dxj �

1

�

1

N

1

Im.
k/
. (A14)

For simplicity, we denote pn D Sn,CCp. Noting that the variance of the estimator Opn,N can be written as

Var.Opn,N.x// D EŒOpn,N.x/ � E.Opn,N.x//�
2

D EŒOpn,N.x/ � pn.x/�
2

D EŒ
nX

kD�n

. Odk � dk/ˇk.x/�
2

D

nX
kD�n

ˇ2
k .x/E. Odk � dk/

2 C

nX
kD�n

nX
`¤k

ˇkˇ`.x/EŒ. Odk � dk/. Od` � d`/�

D

nX
kD�n

ˇ2
k .x/E. Odk � dk/

2,

taking into account (A13) and (A14), we obtain the estimation for the variance of Oqn,N

V.Opn,N.x// �
1

N

1

�2

nX
kD�n

.Im.
k//
�2 . (A15)

Finally, (ii) can be concluded from the increasing requirement of the parameter sequence 
.

Remark

The condition
nX

kD�n

.Im.
k//
�2 D O.n/ is automatically met in one parameter case.

About the mean square error of the estimator Opn,N, we have the following corollary.

Corollary A.7
The mean square error of Opn,N satisfies

E
�
Opn,N.x/ � p.x/

�2
D O

�
1
p

N

�
, n D

p
N.
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Q. CHEN ET AL.

Proof
Recall that the mean square error of Opn,N is dominated by the variance of the estimator Opn,N and the approximation rate of the partial
sum Sn,Cp, that is,

EŒOpn,N.x/ � p.x/�2 D V.Opn,N.x//C jSn,Cp.x/ � p.x/j2.

Combining this with (A8) and (A15), we conclude that

E
�
Opn,N.x/ � p.x/

�2
� C

ln n3

nrC1
C

1

N

1

�2

nX
kD�n

.Im.
k//
�2

� C

�
1

n
C

n

N

�
D O

�
1
p

N

�
.

Regarding the approximation order of the estimator Opn,CC in the sense of L2-norm, we have the following theorem for the quantity
E
�
kOpn,N � pk2

2

�
.

Theorem A.8

Suppose that 
0 D i and
nX

kD�n

.Im.–n//
�1 D O.n/. If the density function p 2 L2.R/ is third continuously differentiable, then

E
�
kOpn,N � pk2

2

�
D O

�
1
p

N

�
with n D

p
N. (A16)

Proof
By Theorem A.5 and the triangle inequality, we are left to show that

E
�
kOpn,N � pnk

2
2

�
D O

�
1
p

N

�
. (A17)

The proof of (A17) is the same as the periodic case, just by changing ek to ˇk and some modification of constant multiplication. For
convenience of readers, we offer the outline in the succeeding text. Firstly, using the same technique as (3.14), we obtain

E
�
kOpn,N � pnk

�
D

nX
kD�n

�
E.j Odkj

2/ � jdkj
2
�

. (A18)

Secondly, a similar approach as (3.15) leads to

E
�
j Odkj

2
�
� jdkj

2 D
1

N
E
�
jˇk.X/j

2
�
�

1

N
jdkj

2. (A19)

Thirdly, combing (A18) and (A19), we have

E
�
kOpn,N � pnk

2
2

�
D

nX
kD�n

�
1

N
E
�
jˇk.X/j

2
�
�

1

N
jdkj

2

�
. (A20)

Fourthly, direct calculating gives the estimation of E
�
jˇk.X/j2

�
E
�
jˇk.X/j

2
�
D

Z
R

p.x/jˇk.x/j
2dx D

Z
R

p.x/
1

�

Im.–n/

jx � N
nj2
dx

�
1

�
.Im.–n//

�1.

Finally, combing this with (A20) and the assumption on 
n, it gives

E
�
kOpn,N � pnk

2
2

�
�

1

N

nX
kD�n

1

�
.Im.
n//

�1 �
1

N

nX
kD�n

jdkj
2

D
O.n/

N
D O

�
1
p

N

�
.

The proof of this theorem is completed.

Regrading the quantity E
�
�
˚

x 2 R : j Opn,N.x/ � p.x/j > �
��

, we have the following corollary.
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Q. CHEN ET AL.

Corollary A.9

Suppose that 
0 D i and
nX

kD�n

.Im.
n//
�1 D O.n/. If the density function p 2 L2.R/ is third continuously differentiable, then

E
�
�
˚

x 2 R : j Opn,N.x/ � p.x/j > �
��
D O

�
1
p

N

�
with n D

p
N. (A21)

Proof
By Chebyshev’s inequality for measure-theoretic statement, we know that

E
�
�
˚

x 2 R : j Opn,N.x/ � p.x/j > �
��
� E

 
1

�2

Z
fx2R:jOpn,N.x/�p.x/j>	g

jOpn,N.x/ � p.x/j2dx

!

�
1

�2
E
�
kOpn,N � pk2

2

�
.

By Theorem A.8, we can conclude (A21).
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