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In this paper, we study the Fefferman-Stein decomposition of Q4 (R™) and give an
affirmative answer to an open problem posed by Essén et al. (2000). One of our
main methods is to characterize the structure of the predual of Q(R™) by the
micro-local quantities. This result indicates that the norm of the predual space of
Qa(R™) depends on the micro-local structure in a self-correlation way.
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1. Introduction

In this paper, we give a wavelet characterization of the predual of Q-space Q,(R™) without using a family

of Borel measures. By this result, we obtain a Fefferman—Stein type decomposition of Q. (R™). Let Ry be the

unit operator and R;,i = 1,...,n, be the Riesz transforms, respectively. In 1972, in the celebrated paper [5],

C. Fefferman and E. M. Stein proved the following result.

Theorem 1 ([18], Theorem B). If f € BMO(R"™), then there exist go,...,gn € L®(R™) such that, modulo
constants, | = Yo Rigs and "o 193]l < C|lf | mnco-
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The importance of the Fefferman—Stein decomposition lays in two aspects. On the one hand, there is
a close relation between the d-equation and the Fefferman-Stein decomposition. On the other hand, this
decomposition helps understand better the structure of BMO(R™) and the distance between L (R™) and
BMO(R™). Due to the mentioned two points, the Fefferman—Stein decomposition of BMO(R™) has been
studied extensively by many researchers since 1970s. We refer the reader to Jones [6,7] and Uchiyama [18]
for further information. In the latest decades, the Fefferman—Stein decomposition is also extended to other
function spaces, for example, BLO, C° and VMO, see [1,14] and the references therein.

As an analogy of BMO(R"™), @Q-spaces own a similar structure and many common properties. It is
natural to seek for a Fefferman—Stien type decomposition of @-spaces. For the @Q-spaces on the unit disk,
Nicolau-Xiao [12] obtained a decomposition of @, (9D) similar to the Fefferman—Stein’s result for BMO(OD)
(see [12], Theorem 1.2). On Euclidean space R™, Essen—Janson-Peng—Xiao [4] introduced Q. (R™) as a
generalization of @Q,(9D). For a € (—00,00), Qo (R™) is defined as the space of all the measurable functions
with

- [f(z) = f(y)I?
sup |I[2/™ 1/ dzdy < oo, 1.1
I d rJr |z -yt Y 1)

where the supremum is taken over all cubes I with the edges parallel to the coordinate. They studied Q, (R™)
systemically and listed the Fefferman—Stein decomposition of Q,(R™) as one of the open problems.

Problem 1.1 (//, Problem 8.3]). For n > 2 and « € (0,1). Give a Fefferman—Stein type decomposition for
Qa(R").

In this paper, we will give an affirmative answer to this open problem. Generally speaking, there are two
methods to obtain the Fefferman—Stein decomposition of BMO(R™). The method of Fefferman—Stein [5] is
to split BMO-functions involving an extension theorem based on the Hahn-Banach theorem. In [18], A.
Uchiyama gave a constructive proof of Theorem 1. In this paper, using wavelets, we study the micro-local
structure of P*(R™), which is the predual of Q,(R™). As an application, we obtain a Fefferman—Stein type
decomposition of Q,(R™).

For the Fefferman—Stein decomposition of Q,(R™), the difficulties are two-fold.

(1) For a function f in P*(R"),0 < a < n/2, the higher frequency part and the lower frequency part make
different contributions to the norm || f|| po. That is to say, each P*(R") has special micro-local structure.
As far as we know, there are little results on such structure of P*(R™).

(2) For any function f, the Riesz transforms may cause a perturbation on all the range of its frequencies.
To obtain the Fefferman—Stein type decomposition, we need to control the range of the perturbation.

To overcome the above two difficulties, on the one hand, we analyze the micro-local structure of functions
in P*(R™). Such micro-local structure can help get a wavelet characterization of P*(R™) without involving
a group of Borel measures. On the other hand, we use the classical Meyer wavelets to control the range of
the perturbation.

In Section 2, we will give the definition of wavelet basis {¢§,k}(e,j,k)€ 4, - 1t is well-known that a function
g can be written as a sum

g(x) =Y gi(x), where g;(z) =) g5, 5. (x).
J e,k

Let g be a function in Besov spaces or Triebel-Lizorkin spaces. Roughly speaking, the norms of g can be
determined by the [?(L?)-norm or LP(19)-norm of {g;}, respectively (see [10,17]). For g € P*(R"),0 < a < %,
the situation becomes complicated and we cannot use the above approaches. In Section 3, we introduce the
micro-local quantities with levels to study the structure of functions in P*(R"™).
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Let g = Ze’j,k 95,95 € P (R™). For any dyadic cube @, we take the localization of g on @Q as

gq(z) = Z g;k‘@;k(x>

Q;.kCQ

Then we restrict the range of frequency by limiting the index j:

gro(r) = > 5.6 L5 1(). (1.2)
Qj,CQ:—log, |Q<nj<nt—log, |Q|
We obtain three micro-local quantities about g; o by using some basic results in analysis. See Section 3 for
details.

In Section 4, applying the above micro-local analysis of functions in P*(R"), we give a new wavelet
characterization of this space. As the predual of Q,(R™), P*(R™) has been studied by many authors. One
method is to define the space P*(R™) by a family of Borel measures. See Wu—Xie [20] for n = 1 and
Yuan-Sickel-Yang [24] for arbitrary spatial dimension. This idea can result in wavelet characterization of
the predual space; but the predual space with the induced norm is a pseudo-Banach space. Dafni-Xiao [3]
used a method of Hausdorff capacity to study P*(R™). L. Peng and Q. Yang defined P*(R™) by the atoms
(see [13,21]). By these methods, P*(R"™) are Banach spaces; but these authors did not consider the wavelet
characterization of P*(R"™). However, the micro-local structure of P*(R™) has not been considered in the
above literatures and we cannot apply them to consider the Fefferman—Stein decomposition.

Compared with the former results of [8,13,21,24], our result has the following advantage. Let f € P*(R™).
Our wavelet characterization indicates clearly that different frequencies exert different influences to the P®-
norm of f. See Theorems 3.4 and 4.2. To obtain a Fefferman—Stein type decomposition of Q. (R™), we need
such a wavelet characterization of P*(R"™).

In Section 5, by the characterization obtained in Section 4 and the properties of the Meyer wavelets
and Daubechies wavelets, we characterize P®(R"™) associated with the Riesz transforms, see Theorem 5.8.
Applying this result and the duality between P*(R™) and Q,(R"™), we obtain a Fefferman—Stein type
decomposition for Q,(R™).

We point out that our definition of Q,(R™) is different from the one introduced in [4]. In [4], the scope
of « is restricted to (0,min{1,n/2}) to make Q,(R™) non-trivial, while the scope in our definition can be
relaxed to (0,7n/2). More importantly, when o € (0, min{1,n/2}), our definition is equivalent to the one
in [4]. So the Fefferman—Stein type decomposition obtained in Section 5 gives a positive answer to the open
problem proposed in [4].

2. Preliminaries

In this section, we present preliminaries on wavelets, functions and operators which will be used in the
sequel.

2.1. Wavelets and classical function spaces

In this paper, we use real-valued tensor product wavelets; which can be the regular Daubechies wavelets
or the classical Meyer wavelets. Define the set of n-tuples

{0,1}" = {e:(el,@,...,en), ¢ =0 or 1,i:1,2,...,n}.

Set E, = {0,1}"\ {(0,0,...,0)}. Let ¢° and {®,e € E,,} be the scale function and the vector-valued
wavelet functions, respectively. If @€ is a Daubechies wavelet, we assume there exist m > 8n and M € N
such that
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(1) & € Cy([-2M,2M]"), Ve € {0, 1}™;
(2) @€ has the vanishing moments up to the order m — 1, Ve € E,,.

For further information about wavelets, we refer to [10,19,21].
For j € Z and k = (ky, ko, ..., k,) € Z™, we denote by Q; x the dyadic cube [],_,[277ky,277 (ks + 1)] and
set 2 = {Qm,j €Z.kc Z”}. Let A, = {(e,j,k),e € E,jeZke Z"}. For e € {0,1}", j € Z,k € Z",

denote @5, (z) = 20m/2 ¢ (27 — k). The following result is well-known.

Lemma 2.1 (/10)). {@;k, (e,4,k) € An} is an orthogonal basis in L*(R™).

Let f5), = (f. 95;), Ve € {0,1}" and k € Z". By Lemma 2.1, any L?-function f has a wavelet
decomposition

flx) = Z fik @5 ().
(e,4,k)EAL

We recall some knowledge on Sobolev spaces and Hardy spaces. For 1 < p < oo, we denote by p’ the
conjugate index of p, that is, 1/p + 1/p’ = 1. For a function space A, we denote by A’ the dual space of
A. For the Sobolev spaces W™P(R"),1 < p < oo,r € R, it is well-known that (W"?(R™))" = W2 (R")
(see [10,17,21] for the details).

Let x be the characteristic function of the unit cube [0, 1]”. We have the following wavelet characterizations
of Sobolev spaces and Hardy space, see [10,21,22]:

Proposition 2.2. (i) Let 1 <p < oo and |[r| <m. g=3" ;pea, 95k P € WP(R") if and only if

1
. . b
So 2P k)| <o
(e.,k)€4n
(i) 9= 2(cjpyen, 956 Pk € HY(R™) if and only if
nj| € j %
(> 29iguPx@ —h)7| | <o

(€,5,k)EAL

2.2. Q-spaces

We know that Q,(R™) = BMO(R") for o < 0. Further, It is easy to see that the Q-spaces defined in (1.1)
are trivial for @ > 1. In fact, for &« > 1 or o > n/2, there are only constants in Q,(R™) by the definition
invoking (1.1).

To get rid of the restriction a > 1, we introduce a new definition which is non-trivial for 1 < a < 7. For
a € R, denote by

fua =107 | (=221
the mean value of (—A)*/2f on the cube Q. For a € R, let
1/2
Bual =10 (1017 [ 1-)721w) ~ fugPir)

The Q-spaces Q,(R") and Q% (R™) are defined as follows.
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Definition 2.3. Let o € [0,n/2].

(i) Qa(R™) is defined as the set of all measurable functions f with

sup By, o f < o0,
Q

where the supremum is taken over all cubes Q.
(i) Q%(R™) is defined as the set of all measurable functions f € Q,(R"™) with

lim B, =0,
o, Baaf

lim Baof =0,
o Baof

where the supremum and the limit are taken over all cubes Q.

Remark 2.4. If o = n/2, Q,/2(R") = B;/z’Q(R"). For 1 < a < n/2, the Q-spaces in Definition 2.3 are
non-trivial. Further, for other indices «, the corresponding @, (R™) coincide with those defined in [4]. So
Qo (R™), defined in Definition 2.3, is a generalization of @-spaces defined in (1.1).

For [af <m, Q € 2 and f =3 ;1 en, [5rPjp let

Caf = QU2 (3 2552
Q;kCQ

By (i) of Proposition 2.2, we get the following wavelet characterization of @Q-spaces, cf [24]:

1/2

Proposition 2.5. Let 0 < o < m/2.
(i) f= E(e,j,k)e/ln f5 2951 € Qa(R™) if and only if

sup Cqu,qf < oo.
Qen

(ii) f = Z(e,j,k)e/ln f;,k ¢J€',k € Qg(Rn) if and only if

sup Co,qf < 00,
QeN

lim Coof =0, .
Qen,|Ql—0 of (2.1)
lim C =0.
e iBie Coa]

By Propositions 2.2 and 2.5, we may identify a function

9= Z 9§,k¢§,k

(€.3,k)€An

with the sequence {9§,k}(e,j,k)e/1n-

2.3. Calderon—Zygmund operators

Now we introduce some preliminaries on Calderén—Zygmund operators, see [10,16]. For x # y, let K (-, ")
be a smooth function such that
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C

agB S —————5
1920y Kz y)| < T — mmarema

Via + 8] < No, (2.2)

where Ny is a large enough constant.
A linear operator T is said to be a Calderén—Zygmund operator in CZO(Ny) if

(1) T is continuous from C*(R") to (C1(R™))’;
(2) There exists a kernel K(-,-) satisfying (2.2) and for ¢ suppf,

Tf(a) = [ Klo)fw)dy
(3) Tx* =T*z* = 0,Ya € N and |a| < Np.

Remark 2.6. The values of K(-,-) in (2.2) have not been defined for © = y. According to Schwartz kernel
theorem, the kernel K(-,-) of a linear continuous operator 7' is only a distribution in S’(R?").

Let {@;Vk}(éwj’k)e 4, be a sufficient regular wavelet basis. We denote

’

a;:z,j/,k’ = <K(7 ')7 ¢j€,k‘() @;”,k’(')>v (Evja k)v (elvj/, k/) € Ap.

Lemma 2.7 ([10)). (i) Let T € CZO(Ny). For all (¢,j,k) and (¢',5', k') € Ay, the coefficients a;:z’j,7k,
satisfy that

(2.3)

9-i 4 9-7 )n+N0

< CQ—\j—j'\(N/2+No)< _ : : _
< 279 4279 + k277 — k277

|05 g1 ke

(11) If {a‘;:;’j’,k’}(E,j,k),(e’,j’,k’)e/ln satisﬁes (23), then

K(z,y) = > a3 o ke D56 (2) D51 1 (y)
(€,4,k),(€',57 k") EAR
in the sense of distributions. Further, for any 0 < & < Ny, we have T € CZO(Ny — §).
At the end of this subsection, we list a variant result about the continuity of Calderéon-Zygmund operators

on Sobolev spaces (see also [11]).
For all (e, 4, k) € A, denote

e _ €€’ ¢
9k = kg0 k95 k'
(€',§' k") €N

‘We have

Lemma 2.8. Let |r| < s <m and 1 < p < co. For (e,5,k), (¢,7,k') € Ay, if

/ . — _ .
‘a;:; § k/| < CQ_U—J |(n/2+s)( 2 +9 |) |

29 + 273" + k279 — k277
then

. . /2 . . p/2
S 2 Px@la k) de<c [ (N 20 gs P - k) de,
(€aj7k)e/1” (eaj7k)e/1n
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2.4. Generalized Hardy spaces

Peng—Yang [13] and Yang [21] used atoms to define the predual of Q,(R™). See also [2] and [23]. Below
we introduce the standard atoms, the wavelet atoms and the generalized Hardy spaces related to Q. (R™):

Definition 2.9. Let 0 < oo < n/2.

(i) A distribution g is an («, 2)-atom on a cube @ if
(1) I(=2)72g|lz= < |Q|71/2Fo/m,
(2) supp g C Q,
(3) [2Pg(z)dz =0,V|B| < |al.
(ii) A distribution f belongs to a Hardy space P*(R™) if f(z) = 3, c7 Augu(z), where {A\,}uez € I* and
{g.} are («,2)-atoms.

Definition 2.10. Given 0 < a < n/2.

(i) A distribution g = ZeeEn,Qj,ch 955 D5 1. 1s a (o, 2)-wavelet atom on a dyadic cube @Q if

S e, ) < g

(e,5,k)EA,

(ii) A distribution f belongs to a Hardy space PS(R™) if f(z) = Y
{gu} are («,2)-wavelet atoms.

wez Mugu(z), where {\, }uez € ' and

The following results were obtained by Peng—Yang [13] and Yang [21], respectively.
Proposition 2.11. Let 0 < a < n/2.

(i) P(R™) = PR(R™).
(ii) Let T € CZO(Ny). Then T is bounded on P*(R™).

For o = n/2, define P"/2(R") = B;"™*?(R"). Applying the same ideas in [13-15,24], we have the
following duality relation.

Proposition 2.12. Let 0 < a < n/2.

(i) (P(R"))" = Qa(R");
(ii) (Qa(R™)" = P(R").

3. Micro-local quantities for P*(R™)

For the spaces P®(R"™), we can see that P*(R") = H*(R") and P? (R") = B;%’Q(R”). It is well known
that the norms of PY(R") and P%(R") depend only on the LP(I?)-norms of function series {f; = Q;f}jez
for p = 1 and p = 2, respectively. For the case 0 < a <

n
2
we use wavelets to analyze the micro-local structure of P*(R™). First, we present a theorem on conditional

the situation is complicated. In this section,

maximum value in Section 3.1. Then we consider the micro-local quantities in Section 3.2.
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3.1. Conditional mazimal value for non-negative sequence

For u € N, denote

{Au,n {0’17""21171}’”;

GUJL = {(67571)),6 € Enao S S S U,V € As,n}-

Definition 3.1. For j € Z, k € Z", t € N, let gt = {¢5,, 9:51u}(c,su)ec,.,, e a sequence. We call
351 = 951625k u) (csu)eq,,, @ non-negative sequence if gi , satisfies

v (6? Sau) € Gt,na g;+s,25k+u = 0. (31)

For a non-negative sequence Q; &> we find the maximum value of the following quantities:
Tf;,k’g;,k = Z f;,kgj',ka (3~2)
(e,s,u)EGt,"

where the non-negative sequence f;)k = {f;+s,2skr+u}(€7$7u)€Gt,n satisfies the following Zogsgt 2" restricted
conditions

2" N (fr i atiera) S1o Vue din
eck,
gni+e=D Z 225a(f;+t—1+s,2s(2t—1k+u)+v)2 <1, Vu€ A1
(€,5,0)EG1,n
2n(j+t*2) Z 228a(f;+t_2+s,28(2f—2k+u)+v)2 <1, VYue At—Q,n; (33)
(E,S,U)EGL’,H
o S 17 ’
p Y et <1
(€,5,0)EG,n

There exist (2" — 1) "<, 2" elements in Gy ,. We can see that f}, is a sequence, where the number
of nonnegative terms is at most (2" —1)> ..., 2™°

Definition 3.2. For j € Z, k € Z", t € N, we say f . = {f{ oenput(eswea,., € Fy if i is a non-negative
sequence satisfying (3.3).
We have
Theorem 3.3. Let 0 < a < n/2 and t > 0. For any non-negative sequence §;k = {054 s.2ktut (e.5,u)€Gy 5
there exists at least one sequence ff, = {f5,  seprut(csu)ec,.,, € F}y such that
T = maXxX Tfjf at

t ~t t .
I3 0095 8 t t H0 95,k
5 Sk

Proof. The (2" — 1) . ., 2" variables {f5, s.p\}(e.suyeq,,, of the sequence ff, are restricted in a
closed domain, so the conclusion is obvious. [

3.2. Micro-local quantities in P*(R™)

From Proposition 2.12, we know that (Q%(R"))" = P*(R"). To prove a function g € P%(R"), we only
need to consider sup(f, g), where the supremum is taken over all f € Q° with [ fllgo < 1. However, by this
method, we cannot know the micro-local structure of g in details.
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To avoid this difficulty, we introduce a new method. Let
g(x) = Z 9571@ ¢§,k(x)~
(e,5,k)EAR

We localize g by restricting its wavelet coefficients g5, such that @;, C . Then we limit the range of
frequencies and analyze its micro-local information. For this purpose, we analyze the function g; g defined
n (1.2). For such a g, the number of (e, j, k) such that g5, # 0 is at most (2" —1) 3 ;- ., 2"°. We study
micro-local functions g; o in P*(R™) and obtain three kinds of micro-local quantities.

Forallt,j € Z,k € Z™ and t > 0, we consider the series

g;,k: = {g;+s,25k+v7€ € Enao <s< t,U € As,n}-

Denote
g;,k:(x) = Z g]E'+sﬁ2Sk:+u ¢]6‘+s725k:+u(‘r)' (34)
(€,8,u)EG,n

Since the correspondence between the sequences g; . and the function g} () is one-to-one, in the notation-
wise, we sometimes do not distinguish them.
For simplicity, we suppose that our functions are real-valued. Let

f(z) = Z ;,k ¢;,k($)§

(€,5,k)EAL

g(w) = Z g§,k ¢;k($)

(e:3,k)EAR
If (f,g) and Z(e’j’k)e/ln 5 1951, are well defined, then we have
Trg = ([, 9) = Z f5195 k- (3.5)
(e:3,k)€An
To compute Max||f|| o <1 Tf,gt according to (3.5), we can restrict f to the function
a Js
;JC = Z f;-Q-S,ZSk-&-u ¢,7€‘+s,28k+u
(€,8,u)EGt,n

with || lgo < 1. The number of (e, j, k) such that f5, # 0 is at most (2" —1) 35, 2"*. Applying (3.5),

we transfer the problem to finding out the supremum under an infinite number of constraint conditions to a

maximal value problem on Y’ _, 2™ restricted conditions on the series of quantities s 2ok tut () €G-
Based on Theorem 3.3, we begin to consider the micro-local quantities of g; p in P(R™).

Theorem 3.4. Suppose that 0 < a < n/2 andt > 0. Let gt ;. be the function defined by (3.4) and ||gt ;.[|p~ > 0.

(i) There exists a function

t t re €
Sfj,k: - E : ijj+s,25k+u ¢j+s,25k+u
(€,8,u)EGt,n

with ||S5f1 i llQo <1 such that

— t re t
Trat, = E Sifivs2sktu G2kt

max
fllgo <1
H HQQ (E,S,u)GGt,n
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(ii) There exists a positive number P;g;-’k which is defined by the absolute values of the wavelet coefficient

of g5 such that

P}Q;’,k = ||9;',k||PC‘ = 7.9t = TSI gt e

max
<1
1£llgg <

(ili) There exists a sequence {Q%g5  Yeer, such that 37 cp Q%95 PS5, has the same norm in P*(R™) as g5,

does.

Proof. For g7, = {954 2ertut(es.u)€Gins 56t Gk = {19545 20k4ul} (e.5,0) €6, - Denote
gk _
G;J = {(E,S,U) € Gt,n,g§+s,25k+u 7 O}'

For fjt7k($) = Z(e7svu)€Gt,n f;+s,25k+u ¢16‘+s,25k+u(x)’ define

- —
f§,g _ ‘fj§+s,25k+u| : |g§+s,25k+u| g;+s,25k+u’ (63 S,U) € Gt,n,
Jts2ktu 0, (€,s,u) & Gyin.
We denote by Fi7F the set
t . gt _ 29 t
{ et F@) = 3 F pese Pk (@) and [ £l < 1}.
(€,8,u)EG,n
By (ii) of Proposition 2.5, we have
gk g

By Proposition 2.5, the condition ||JE;,1¢||Q3 < 1is equivalent to (3.3). Further, for fixed gt ,, due to (3.5),
if (¢,5,u) € Gy and (e,5,u) ¢ G47F, then the coefficients ff, .;,, make no contribution to T gt
’ 3809,

Hence we get

max Tft

max 7ft at
it t,5,k
j,kEFg

~t = .
R LEFY 95

According to Theorem 3.3, there exists at least one sequence

- _ .
fiw ={fiss2onruteswec., € Fip
such that

Tr ~ = mMax Tgt gzt . 3.7
f;vkag;')k ft EFt f k’g]tk ( )

Let Sfjt,k(x) = Z(e,s,u)GGt,n ng]§+s,2sk+u ¢J€'+s,25k+u($)’ where

~ [ - — .
St _ f;+s,25k+u|gj€'+s,25k+u‘ g§+s725k+u, V(E, S U) S Gt,na
j+s,25k+u 0, V(e,s,u) & Gip.

According to (3.5) and (3.6), Sf}, satisfies (i).
Let Pfg}, = TG . According to the last equality in (3.6), Pfg, is defined by the absolute values of
95k
the wavelet coefficients of g’ .- According to (3.5)(3.7), Pfg!, satisfies (ii).
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Denote
2072 Pigl if D 195l =0;
Qt‘ge' k= 1/2 <
793, . - .
2"/2”3}9;»,;@(2 |9§,k|2) G I D lg5al #0.
ecE, ecby,

Applying (ii) of Proposition 2.5 again, we know that {Qz-g;’k}eep;n satisfies the condition (iii). O
Remark 3.5. For a« = 0 and a = n/2, if we deal with Pjtg;’-’k in a similar way, then:

(i) For a = 0, according to the wavelet characterization of H'(R") in [10], Plg} . is equivalent with

2n(j+s) € |2 (2j+s 95 _ ) 1/2
|g]+s,25k+u X u
(€,8,u)EG¢,n

Lt

, 1/2
(i) For a = n/2, P{gt, can be written as (Z(e,s,u)ect,n 2_"J|g;)k|2)

However, for 0 < o < n/2, P/g}, cannot be expressed in an explicit way. Luckily, the three parts

t
{ng;k}eEEna
t t
Sfj,k - Z ij;+s,25k+u ¢;+s,25k+u7 (3.8)
(evsvu)EGt,n
t ot
Pi9jk

indicate the micro-local characters in both the frequency structure and the local structure.

In the rest of this paper, the quantities defined by (3.8) will be used repeatedly. Micro-local quantities
reveal the global information of functions in P*(R™). In Section 4, this idea will be used to get the wavelet
characterization of P®(R™) by a group of L!-functions defined by the absolute values of wavelet coefficients.
Such wavelet characterization does not involve the action of a group of Borel measures.

4. Wavelet characterization of P*(R™)

For s€ Z and N € N, let
05N = {Q e 27" < Q| < 2<N—S>"}.
For 0 <t < N,m € Z",Q = Qs—N,m, define

Do =2 ={@ € 2: 27" <|QI <2479",.Q' C Quwn}-

We can see that 2%V = [ QNN For s € Z and N € N, we define

mezZn “4s,m
9£N7m($)= Z 951 P5 () (4.1)
Qj,kEQ:,];nN
and

gsn(@) = Y gy m(@). (4.2)

mezn

For g =3 imean, 95k L5 € PY(R"), let AF = {(e,j,k‘) €An g5y # O}.
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Let {f;’/} be the sequences such that

o — Fotlgs k)~ 5 (e, k) € A9
" 0, (.5, k) & A9

We denote by Q%9 the set

{£:0@="> rifou@ and |flgy <1}.

(e,5,k)EAL
By (3.5), we have
Sup Tfg = SUD Tfg- (4.3)
Ifllgo <1 feQd?

We prove first an approximation lemma for P*(R").

Lemma 4.1. For g =3 i 1yea, 955 P55 € P(R"), let

gs,n(z Z gg Nom(T

|m|<2m

J>

For arbitrary 6 > 0, there exist s and N such that ||g — §s | p= < 9.

Proof. For any 0 < 0 < [|g||p« /8, according to Proposition 2.11, there exists {\, }uen, € I' and a group of
(a, 2)-wavelet atoms {a,} such that g(z) =", cy, Auau(r) and

IS Il = gl

ueN

< /8.

Further there exists an integer N5 > 0 such that

> Pl <978 (4.4)

u>Ns

Now, for u = 1,..., Ns, we consider the atoms
w@= > R
(Evjvk)eAnan,kCQu
Since
. 1/2
3 2-%ieas2) < QY
(67j’k)€An:Qj,kCQu

there exists an integer N5 > 0 such that

( > rziojat) < O jq, e, (15)

_ ) ~ 16[|g/ pe
(€,4,k)€EA,Q;,kCQu,j>Ns
Since 1 < u < Ny, there exists an integer js € Z such that

U @uc U Qim (4.6)

1<u<Ns |m|<2n
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Foru=1,...,Ns,let bu(®) = 3 (i t)eA0.Q50CQui<Ns a3y 95 (x). According to (4.4) and (4.5), we know
that ' -

H Z Auly e <4/8;
u>Ns (4.7)
Z Au(@y — by) pa <9 Z [Aul/16]|gll P < d/8.

1<u<Nj 1<u<Ns

Let
g5(@) = ) Muau+ Y Alaw—b)= Y gind5,(x).
u>Ns 1<u<Ns (e,4,k)EA,,
Then ||gs||pe < 6/4. Let
g1,5(x) = Z 9;2 P ()

(€3:k)€An,i>Ns,Q;kC ) Qjsm
|m|<2m™

and gz,5(z) = gs(x) — g1,5(z). According to (4.3), we have ||g1 s||po < /4 and ||g2.5||po < §/4. Take s = Ny
and N = s — js. Let
Gs,N(z) = g1,6(7) + Z Auby ().
1<u<N;

According to the above construction process, §, v satisfies the condition of Lemma 4.1. [
Given 0 <t < N, m € Z" and Q = Qs—nN,m- If t =0, we denote
€,8,t,N — 0’ =7> 53
g;’,ka .] = S.
Let t > 1. For Q;g; i defined in Theorem 3.4, we denote

0, j>s—t
,8,t, N .
gt = Qg5 T=5—1;

g;,kv ] <s—t.

Let gs.¢,n(2) =320 ik g;:Z’t’N P5 ). (x). We define
) , 1/2
Pawg@ = (Y 2l Px@ie — k)
€,Q; reNN j<s—t
and
, , 1/2
18,0, N
Qung=|( X gV -n)
€,Q; kENSN j=s—1t
For t = N, we have
QS;N’NgéVfN,m = ||PS7N,Ng£/;N,mHL1' (48)

Now we prove a wavelet characterization without involving Borel measures.

Theorem 4.2. If 0 < o < n/2, then

P (R" :{ : in ||P }
(R") =19 sezlngNOg%glNH s.t. N9l < oo
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Proof. According to (4.3) and Lemma 4.1, V§ > 0, there exists 75 > 0 such that for s > 75, N > 25, we have

lgs,v = gllpe + Y g nmllpe <6 (4.9)
|m|>2n
and
g—n Jax g N mllpe — 8 < |lgs,nllpe < Z 9 Nl P + 6, (4.10)
- |m|<2n

where g5 v and gSN_N7m are defined by (4.1) and (4.2).
By (4.8) and Theorem 3.4, we have

9N NmllPe = Qsn NI N = 1PN NN NIt (4.11)
Furthermore, we have
lgs,t.n Ml pe < [|gse,nllmr = [[Pse,ngllza- (4.12)

According to (4.9)—(4.12), the proof of Theorem 4.2 is complete. [

5. A Fefferman—Stein type decomposition of the Q-spaces

In this section, by Theorem 4.2, we give a Fefferman—Stein type decomposition of Q,(R™). In [4], the
authors proved that Q. (R™) C BMO(R™). Equivalently, we can obtain

Proposition 5.1. If 0 < a < n/2, H'(R") C P*(R™).

Further, for the proof of Theorem 5.7 below, we need some special properties of the Daubechies wavelets.
Except for Theorem 5.7, we use the classical Meyer wavelets throughout Sections 5 and 6. The support of
the Fourier transform of the classical Meyer wavelet in [10] satisfies the following conditions

(5.1)

{ __supp 0 [—4m /3,47 /3];
supp ¢! C [-8n/3,87/3]\ (—27/3,27/3).

For tensor product Meyer wavelets satisfying (5.1), V(e, j, k), (¢/,5', k') € A, and |j — j'| > 2, we have

(Ri®S ), 05,y =0, Vi=1,...,n. (5.2)

5.1. Adapted L' and L™ spaces

For g(z) = >_(c s kyea, 951 P (x) and j € Z, denote

Q@)= > g5 % (). (5.3)
€€y, keLn
For s € Z and N € N, we set
P ng(x) = Z 5.1 P5 k(). (5.4)

e,s—N<j<s,k
For all integers t =0, ..., N, denote
Tsl,t,Ng(m) = Z 9§,k ‘p;',k(x)

e,s—t<5<s,k
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and

T2ovg(@) = Y g5xPkl):

e€,s—N<j<s—t,k

By Theorem 4.2, we introduce spaces P®(R™).

Definition 5.2. Let a € [0,n/2). We say that g € P*(R") if

inf (|7} o« + || T2 :
S od Te e ngllee T gl ) < oo

The space P*(R™) is not really new. In fact,

Theorem 5.3. (i) If a =0, then P°(R™) = P°(R") = H'(R").
(ii) If 0 < @ < n/2, then P*(R™) = P*(R™).

Proof. PO(R") = H'(R") is known, so (i) is evident. Now we consider the cases 0 < a < n/2.If g € P*(R"),
then || Ps nvg|lpe < ||g||pa. Further

ot (T2 wollpe + 1781 ngllan) < ITon wgllpe = [ Pongllpe.

Hence

inf (|| o« + || T2 < .
S o (e gl + 1T ngll) < llglle

Conversely, if g € P*(R™), we have
1Ps,ngllpe < T3y nollpe + IT2) ngllpe
< Ty nollpe + T2 ngllan-

Hence
|Panglles < inf (1T wollpe + 172 wolin).
According to (4.9), g € P*(R™). O
For g € P*(R"™), we can deduce from Theorem 5.3 that the P®-norm of g is equivalent to

s 1 2
e od (T nglles +1Ter ngll ).

which implies that for 0 < a < n/2, the high-frequency part Tsl,t’ ng and the low-frequency part T, 52,15, N
make different contributions to the norm. Now we use such property to construct L''*(R™) and L°*(R")
which will be adapted to the Fefferman—Stein type decomposition of Q. (R™).

Let f(z) =3 jmean, [5xP5 k(@) For s,t, N € Z and 0 <t < N, we denote

Ps,Nf(x) = Z f;kéje,k(x)a

€,s—N<j<s,k

Ssl,t,Nf(x) = Z f;k é;,k(x)a

e,5—t<j<s,k
Sf,t,Nf(Z') = Z f;,k ij(x)
€,s—N<j<s—t,k

The spaces L1*(R™) and L>*(R") are defined as follows.
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Definition 5.4. Let f(z) = > ; pyea, fix @5 (@) and g(z) =32 vyea, 956 P51 (2)-

(i) We say that g € LV(R") if

e (T8 gl + 172 vl ) < oo

(ii) We say that f € L°>*(R") if

sup - sup (|82 fllo. + 153 flle~) < oc.
s€Z,NeNOZt<N

By Proposition 5.1 and Theorem 5.3, we have
Theorem 5.5. Given 0 < a < n/2.
(i) Po(R™) C LY Q(R”)y
(i) Loo%(R") = Qa(R™) L (R™);
(iii) (Lb*(R™M))" = Lo (R™).

Remark 5.6. For the case a = 0, we have:

(i) PO(R") = H'(R") and Qo(R") = BMO(R");
(i) LYO(R™) = L'(R™) and L®O(R™) = L®(R™).

Now, we use the Daubechies wavelets to prove that L*(R"™) & Q,(R™). We know that there exist some
integer M and a Daubechies scale function #° € C2([—2M 2M]") satisfying

m |n+1 (y —2M*le)dy <0, e=(1,1,...,1). (5.5)

Theorem 5.7. Let ¢(x) = &% (x — 2M*1e) and let f be defined as
z)= > 2x). (5.6)
je2N

If 0 <a<n/2, then f € L*(R"™) and Ri(f) & L>(R™), that is, L=*(R") & Qq(R™).

Proof. For j,j' € 2N with j # j/, the supports of #(27.) and &(27"-) are disjoint. Hence the above f in (5.6)
27 J7FJ

belongs to L>°(R™). The same reasoning gives Y,y o, #(2%7-) € L>*(R") for any j' € N.

Now we compute the wavelet coefficients of f in (5.6). For (¢/,5', k") € A,, let f;,',k, =(f, &5 k,> We
divide the proof into two cases: j/ < 0 and j' > 0.

For j/ < 0, since supp f C [-3-2M 3.2M]" we know that f;;k, =0 for |K'| > 22M+5 For |k/| < 22M+5

we have

[f ] < €212 / |f(a)ldw < 0272,
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For j' > 0, by orthogonality of the wavelets, we have

£ =<f, k>:< a2V, @;fwk,>.

JEN,25>5"
By the same reasoning, for the case j° > 0, we know that if |k'| > 22M+5  then f;’/k’ — 0. Since
Y ienajsy P(2%9:) € L if [K'] < 22MF5 e have
5l <€ [185 p@)ds < c2n2

By the above estimates and (i) of Proposition 2.5, we conclude that f € Q,(R™), that is, f € Q,(R™) N
L>(R™).

Since ¢° € Ci2([—2M 2M]")| we know that
¢ = ¢O(- —2MFle) € O3 ([2M,3 - 2M™).

Further, if [x| < 2M~1 and y € [2M,3 - 2M]", then |z — y| > 2M~!. Hence R; & is smooth in the ball
{x: |o| <2M-1}

Applying (5.5), there exists a positive § > 0 such that for |z| < §, Ry ¢(z) < Cp/2 < 0. By a dilation,
we can see that Ry #(2%z) < Cp/2 < 0 for 2% |z| < 6. Hence Ry f ¢ L (R"). O

5.2. Fefferman—Stein decomposition of Q. (R™)

Fefferman—Stein [5] used the Riesz transformations and the L! norm to characterize Hardy space H*(R™):
Theorem 2. g € H'(R") if and only if

CRiesz(9) = ”g”Ll(R”) + Z HRig”Ll(R") < 00.

i=1

Theorem 2 gives rise to the Fefferman—Stein decomposition of BMO(R™). The following theorem extends
Theorem 2 to P*(R™). If a = 0, Theorem 5.8 becomes Theorem 2, so we omit the proof of this case. The
proof for the cases 0 < o < n/2 is rather long. So we only state this result here and postpone the proof to
Section 6. For 0 < o < n/2 and a function g, denote

Copiess(9) = gl + sup  min Z{II LonRigllp, + 112, v Rigll }-
sE

Theorem 5.8. If 0 < oo < n/2, then g € P*(R") if and only if

Ca,Riesz(g) < 0. (57)

If Theorem 5.8 holds, by Theorem 5.7, we could obtain a Fefferman—Stein type decomposition of @, (R™)
using Fefferman—Stein’s skill in [5]. This result solves Problem 1.1 (Problem 8.3 in [4]).

Theorem 5.9. If 0 < «a < n/2, then f € Qu(R™) if and only if f(z) = 3 ocic, Rifi(z), where
fi € Qa(R™) N L=(R™).
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Proof. By the continuity of the Calderon—Zygmund operators on the (-spaces, we know that if f; €
Qo (R™) (N L°(R™), then

Y Rifi € Qua(R").

0<i<n

Now we prove the converse result. Let

B = {(go,gh...,gn) 1 g; € Ll’a(R")J = 0,...,n}.
The norm of B is defined as

n
H(go7gl7 s >gn)HB = Z ”giHLl’a'

We define
S = {(907917"'7971) €B: 9i = Rig(%i = 0,1,...,’]7,}.
S is a closed subset of B. By Theorem 5.8, The mapping

g0 — (90, R190, - - - s Rngo)

defines a norm preserving map from P*(R"™) to S. Hence the set of continuous linear functionals on P(R")
is equivalent to the set of continuous linear functionals on S. The continuous linear functionals on S can
extend to a continuous linear functionals on B preserving the same norm. We know that the dual space of
LYYR™) @ - @ LYY(R") is L®*(R") @ --- & L= (R").

For f € Q.(R™), f defines a continuous linear functional I on P*(R™) and also on S. Hence there exist
fi € L=>*(R"),i=0,1,...,n, such that for any gy € P*(R"),

1) = [ @)
fO diﬂ + Z z 190( )d
fo(@)go(x)da — Z/ go(z)dx.

Hence f(z) = fo(z) — X0, Ri(fi)(z). O

Triebel-Lizorkin spaces F&)q are introduced in [17], Besov—Morrey spaces and Triebel-Lizorkin—-Morrey

Rn

spaces are introduced in [24]. These spaces play an important role in harmonic analysis and non-linear
problems, see [9] etc. Since Fefferman—Stein decomposition of BMO(R™) plays an important role in harmonic
analysis, we propose the following open problems:

Remark 5.10. (1) In dimension n, how to give a Fefferman—Stein type decomposition for Triebel-Lizorkin
spaces F0:4?
o0

(2) More generally, for other Besov—Morrey spaces or Triebel-Lizorkin—Morrey spaces, whether there is
also a Fefferman—Stein type decomposition?

6. The proof of Theorem 5.8

At first, we prove that
g € P*(R") = g satisfies (5.7). (6.1)
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By (ii) of Proposition 2.11, the fact g € P*(R™) implies that
Rige P*R"), i=1,...,n.

By (i) of Theorem 5.5, we obtain that g satisfies (5.7).
The proof of the converse of (6.1) is cumbersomeness and we will complete it in Section 6.2. Next, as a
preliminary, we give the following lemma.

6.1. A lemma

Lemma 6.1. For g(x) = > (. ; v)en, 951 Pjx(x) and arbitrary j € Z, denote gj(x) =3 cp, rezn 951 P 1 (2)

and denote g;(x) = >, <; gj(x). For 0 <o < 5, we have

(i) g5l < Cllgllzr
(i) max{|gllpe, g —Gsllpe } < lglpe < 13;0pe + g = Gjlpe.
(iti) [lgjllpe < CligllLra-

Proof. (i) Applying (ii) of Proposition 2.2 and the orthogonality of {@;k}, we have

) , 1/2
losll < €| (22 2 Has @50 —R) |
e€E, ke
DM DIELEIUR WINCEED!
ecE, kezm
< Cliglr.

(ii) P*(R™) is a Banach space, hence we have
lgllpe < 1g;llpe +1lg — Gill pe-
To prove the first inequality of (ii), denote
Gy = {(e.. k) € Au,g5 5 # 0}
For f(z) =3 jmen, f5xPjx(z), define

fef _ {|f]6,k| : |g§,k 71@7 (67j7k) € G!];
» Oa (67j7k) gGg

We denote by Fj, the set

{1 1@ = 3 o) and [ flog <1}

(e,5,k)€Gy
Define
i(l'): Z |f;,k|q§]€',k($)

(€,5,k)EAL
and

g@) = > lg5ul ¥ lx).

(€,5,k)€As
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By (ii) of Proposition 2.5, we have

SUp  Tfg = SUP Tfg = SUD Tfy = SUDP Tfg. (6.2)
HfHQg§1 fng ing T HfHQ0<1

Hence we have

max{|gllpe, g = gsllp=} < lgllpe.

(iii) By the definition of the L1'*-norm of g, for s € Z, N € N with s — N < j < s, there exists jy such

that 0 < jo < N and
H Z g']l Po +H Z g']l Ll

s—jo<j'<s s—N<j'<s—jo

<|lgllzre-

If j < s — jo, we apply (i) to get the desired assertion. If j > s — jy, we apply (ii) to get the desired
assertion. [

6.2. The proof of the converse part
For the proof of the converse of (6.1), it is sufficient to prove that Vs; € Z, Ny > 1 and g¢s, v, (z) =

Ps, n,9(x) defined in (5.4), we have

Hgsl,N1 ||P‘x < CO&,Riesz(gsl,Nl)- (63)
Owing to (5.2), there exists {9;’11}(e,j,k)e/1n such that for i =1,2,...,n,
Rigs, v, () = > 95k 05 1 (@) (6.4)
(€,4,k)EAN, 81— N1 —1<j<s1+1

Due to (6.4), to estimate the L*-norm of R;gs, n,,i = 0,1,...,n, it is sufficient to consider s = s; + 1
and N = N; + 2. For such s and N, there exist ¢ v and t! N such that

170 Gorsllpe + 1T 240 Ngsl,mnu—o%(ustNgsl,Nlnpwn 2 gl ) (65)

Z{n R e+ T2 s v Rige )

1<i<n

= mNZ (RTE gor v e + I RT2, s v 1 (6.6)
<i<n

We divide the proof into three cases.
Case 1: tg,N = t;N. Let @; be the projection operators defined by (5.3). We divide the function g, n,
into two functions
Gs1,Ny (ZC) = g;,N('r) + gg,N(x)a
where
an@ =Y Qigum(@)
J2s—td
and

gg,N(‘r) = Z ngs17N1 ((E)

. 0
]<S—tS‘N
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By (6.5), we have g7 y € L'(R™). By Lemma 6.1,

Q57t21N71981,N1 + QS*tSYN*Q-gleVl € Hl(Rn)
and
giN - (Qs—tS,N—lgshJ\H + Qs—tg,N—Q‘gsth) € L'(R™).
Further, for i = 1,...,n, we have

Tsz,tin,NRigsth (x) = Tf,tin,NRi [giN(x) + Qs—tnggsth (l‘)}
= Tit;NWRi [QE,N(UE) - (sttg,Nflgsl,Nl (z) + sttgnyzgs],Nl (33))
+ (sttngflgsl,Nl (z) + Qs—10  —2951,\1 (93)) + Qo0 Gs1,M: (f)}
= Rif9? 5 (@) = (Qutt <1900, () + Qucso 90,3 (@) )]
+T52,ti7N,NRi [Qs—tg’N—lgSth (@) + Qs—po  —2951.8, (w)}
+ Titi,N,NRiQs—tgyNgsl,Nl ().

Hence, by (6.7), fori =1,...,n,

IT" = R, [QE,N - (Qs—tg_’N—lgsth + Qs—tS’N—2gsl,N1)} + ijl NyNRiQs—tg’Ngsth € Ll(Rn>-

By (5.2), there exists {T;7’,i}(€7j,k)€,1n such that

I'(z) = R, [gf,N(x) - (sttS’Nflgsth (%) + Qs—0 | —29s1.3, (1‘))}
= > 7 95 (@)
(€, k)EAR,G<s—t0 =2
and
RiQs-  9or.mi(7) = > TIPS (2)-
(e,j,k)EAn,sftgnylgjgsfthJrl

For arbitrary L°° function

and jy € Z, denote the operator

Pjh(z) = (hlx), 85, () B, . (2).

kezn

We can see that P;,h € L>(R"). In fact, by the fact

[(h, @) )| < C27m90/2,

we can get

|Pioh(x)] < C Y 27028 ()|
kezm
<C Y [8020x — k)|
keZm

<C.
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Let

ho(z) = Ps—tS’N—2h(I) = Z R @5 1 ().

(€.5,k)EAn,j<s—0 =2
Hence hg € L°(R™). Further, because I1* € L'(R"),

[(I", k)| = [(I', ho)]
= [(IT", ho)]
< |1 1] ho]l o

The last estimate implies that for i = 1, ..., n, the functions
I'=Ri[g2n = (Quoro <1903 + Quceo —20sm, )| € L'(RY),
This fact and (6.12) imply that
gon — (sttS,Nflgsth + sttg,ngsl,Nl) € H'(R").

By (6.7), we get gg’N € HY(R™). Further, we have 9;,1\7 € P*(R"™). Applying (6.5), we get gs, n, € P*(R™).
Case 2: ] y >t y. For this case, we decompose g, n, as

gs1.N, () = g;,N(x) + gg,N(fﬂ) + 93,N($)7

where
g;,N(x) = Z ngs1,N1 (JJ),
JZs—tl
g2 n(x) = > Q;9s1,3, ()
sftgyN§j<sft;N
and

gg,N(x) = Z ngSlle (CE)

; 0
]<sfts1N

We know that
T2 wRigom (@) = T2 Ril 0w (@) + 02 n(0) + Quonr g0rni(0)].
Then for h(z) = Ze,s—N§j<s—t2,N,k RS 1, 5 i (x) with [|A]|Le < 1, we know that
(2w Rigem W) = (R B). (69)
By (6.5), g y € L'(R™). This fact implies that
Qs—tS’N—lgsl,Nl + Q50 —29s1,N, € HY(R"). (6.10)
Owing to (6.9) and (6.10), for ¢ =0, ..., n, we have

R; |:g§,N - (sttS,NflgSth + sttg,N72gS1,N1):| € Ll(Rn)

Hence we obtain

gi’,N - (Qs—tgyN—lgsth + Qs—tS,N—Qgsl,N1> € H'(R™).
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So we have g2 \ € H'(R"). Since
9;71\1(%) + gf,N € P*(R"),

we have g, N, € PY(R").
Case 3: tg N < t;, ~- We decompose g, ,n, into three functions

gs1,N, (2) = g;,N(x) + g?,N(x) + 9?,1\7(90)»

where
gs N Z QJ9517N1 )
Jj=>s— ts,
gg,N(Z) - Z ngslle (’JI)
sft;yN§j<sft2’N
and
gg,N(x) = Z ngSIle (LU)
j<s—t_};’N
For i =1,...,n, we know that

Ts%ti,N,NRigsl,Nl (3?) = Ts%ti’N,NRi [gg,N(m) + Qs—t;Ngle\ﬁ (.’13):|
=R |:g§,N(x) - <Q57ti,N71‘gs1,N1 (.T) + stti’N72gS1,N1 (J?)):I
+ ng,t;’N,NRi {Qs—ti‘N—lgslle () + Qs—t;N—2981,N1 (.’L‘):|
+ Titi,N,NRiQs—t;Ngle\ﬁ (.’1?)
Define the function h;, i = 1,2, 3,4, as

h () = > hS, 95 (),

6,87N§j<87t1 —2,k

ho(w) = Y B B5(a),

e,j:sft;N72,k

ha(@)= Y W),

e,j:sft;Nfl,k

ha(@) = Y B %),

e,j:sfti IN2L

where the sequences {h;;},z =1,2,3,4, are four arbitrary sequences satisfying ||h;||z~ < 1. We consider

/Tf,t; N Pigs Ny (2)hi(z)d.
By (6.6) and the definition of ¢} 5, we have

gin(@) + g2y € L'(R™). (6.11)

Hence

gf,N - (Qs—ti,N—lgsl,Nl + Qs—t;,N—Qgsth) el (6.12)
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and
Qs—pt  —i9si. N, € H'(R™), i=0,1,2. (6.13)
Similar to Case 1, by (5.2), the fact that

T2, NRigs, v, € LYR™), i=1,...,n,

sbs N

implies that for ¢t =1,...,n,

R; [Qiz\r - (Qs—t;N—lgsl,Nl + Qs—t;N—Qgsl,Nl)} € Ll(Rn)~

Therefore we have
QS,N - (QS—tin—lgsl,Nl + Qs—t;N—zgsl,Nl) € Hl(Rn)~

Hence g3 y € H'(R™).

Fori=1,...,n, we have

Tl

NRigo N (@) =Ty yR; {gi,N(ﬂf) + 92 n(@) + Qs—t2 19818, ()|

1
s N te N

So the conditions
Tsl,té N7NRi |:gi,N =+ giN + QS,t;Nflgsl,Nl} = PO‘(R'”), 1= 1, e,

and g} € P*(R") imply

Tsl,t; N,NRi [gg,N + Qs—t;N—lgsl,Nl} S PQ(RH)
Fori=1,...,n, we have

Tl w92 (@) + Qe 100w (@)] = Ri[g2 (@) = Quir 200, v, (@)

Y N>

+ Tsl,ti N,NRi [Qs—tLN—2gsl,N1 (SL') + Qs—t;N—lgSLNl ($) .

Applying (6.13), we obtain
R; {gg,N - stti’Nflgslle} € PQ(RH)

Hence g2 y — Qs_tl,N_Qgsl,Nl € P*(R™), that is, gs,,n, satisfies (6.12) and (6.13). By (6.5) and (6.6),
gs n € P*(R") and g3 y € H'(R™). Putting together, we complete the proof of (6.3).
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