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In this paper, we study the Fefferman-Stein decomposition of Qα(Rn) and give an
affirmative answer to an open problem posed by Essén et al. (2000). One of our
main methods is to characterize the structure of the predual of Qα(Rn) by the
micro-local quantities. This result indicates that the norm of the predual space of
Qα(Rn) depends on the micro-local structure in a self-correlation way.
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1. Introduction

In this paper, we give a wavelet characterization of the predual of Q-space Qα(Rn) without using a family
of Borel measures. By this result, we obtain a Fefferman–Stein type decomposition of Qα(Rn). Let R0 be the
unit operator and Ri, i = 1, . . . , n, be the Riesz transforms, respectively. In 1972, in the celebrated paper [5],
C. Fefferman and E. M. Stein proved the following result.

Theorem 1 ([18], Theorem B). If f ∈ BMO(Rn), then there exist g0, . . . , gn ∈ L∞(Rn) such that, modulo
constants, f =

n
j=0Rigi and

n
j=0 ∥gj∥L∞ ≤ C∥f∥BMO.
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The importance of the Fefferman–Stein decomposition lays in two aspects. On the one hand, there is
a close relation between the ∂̄-equation and the Fefferman–Stein decomposition. On the other hand, this
decomposition helps understand better the structure of BMO(Rn) and the distance between L∞(Rn) and
BMO(Rn). Due to the mentioned two points, the Fefferman–Stein decomposition of BMO(Rn) has been
studied extensively by many researchers since 1970s. We refer the reader to Jones [6,7] and Uchiyama [18]
for further information. In the latest decades, the Fefferman–Stein decomposition is also extended to other
function spaces, for example, BLO, C0 and VMO, see [1,14] and the references therein.

As an analogy of BMO(Rn), Q-spaces own a similar structure and many common properties. It is
natural to seek for a Fefferman–Stien type decomposition of Q-spaces. For the Q-spaces on the unit disk,
Nicolau–Xiao [12] obtained a decomposition of Qp(∂D) similar to the Fefferman–Stein’s result for BMO(∂D)
(see [12], Theorem 1.2). On Euclidean space Rn, Essen–Janson–Peng–Xiao [4] introduced Qα(Rn) as a
generalization of Qp(∂D). For α ∈ (−∞,∞), Qα(Rn) is defined as the space of all the measurable functions
with

sup
I
|I|2α/n−1


I


I

|f(x)− f(y)|2

|x− y|n+2α dxdy <∞, (1.1)

where the supremum is taken over all cubes I with the edges parallel to the coordinate. They studied Qα(Rn)
systemically and listed the Fefferman–Stein decomposition of Qα(Rn) as one of the open problems.

Problem 1.1 ([4, Problem 8.3]). For n ≥ 2 and α ∈ (0, 1). Give a Fefferman–Stein type decomposition for
Qα(Rn).

In this paper, we will give an affirmative answer to this open problem. Generally speaking, there are two
methods to obtain the Fefferman–Stein decomposition of BMO(Rn). The method of Fefferman–Stein [5] is
to split BMO-functions involving an extension theorem based on the Hahn–Banach theorem. In [18], A.
Uchiyama gave a constructive proof of Theorem 1. In this paper, using wavelets, we study the micro-local
structure of Pα(Rn), which is the predual of Qα(Rn). As an application, we obtain a Fefferman–Stein type
decomposition of Qα(Rn).

For the Fefferman–Stein decomposition of Qα(Rn), the difficulties are two-fold.

(1) For a function f in Pα(Rn), 0 < α < n/2, the higher frequency part and the lower frequency part make
different contributions to the norm ∥f∥Pα . That is to say, each Pα(Rn) has special micro-local structure.
As far as we know, there are little results on such structure of Pα(Rn).

(2) For any function f , the Riesz transforms may cause a perturbation on all the range of its frequencies.
To obtain the Fefferman–Stein type decomposition, we need to control the range of the perturbation.

To overcome the above two difficulties, on the one hand, we analyze the micro-local structure of functions
in Pα(Rn). Such micro-local structure can help get a wavelet characterization of Pα(Rn) without involving
a group of Borel measures. On the other hand, we use the classical Meyer wavelets to control the range of
the perturbation.

In Section 2, we will give the definition of wavelet basis {Φϵj,k}(ϵ,j,k)∈Λn . It is well-known that a function
g can be written as a sum

g(x) =

j

gj(x), where gj(x) =

ϵ,k

gϵj,kΦ
ϵ
j,k(x).

Let g be a function in Besov spaces or Triebel–Lizorkin spaces. Roughly speaking, the norms of g can be
determined by the lp(Lq)-norm or Lp(lq)-norm of {gj}, respectively (see [10,17]). For g ∈ Pα(Rn), 0 < α < n2 ,
the situation becomes complicated and we cannot use the above approaches. In Section 3, we introduce the
micro-local quantities with levels to study the structure of functions in Pα(Rn).
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Let g =

ϵ,j,k g

ϵ
j,kΦ

ϵ
j,k ∈ Pα(Rn). For any dyadic cube Q, we take the localization of g on Q as

gQ(x) =

Qj,k⊂Q

gϵj,kΦ
ϵ
j,k(x).

Then we restrict the range of frequency by limiting the index j:

gt,Q(x) =:


Qj,k⊂Q:− log2 |Q|≤nj≤nt−log2 |Q|

gϵj,kΦ
ϵ
j,k(x). (1.2)

We obtain three micro-local quantities about gt,Q by using some basic results in analysis. See Section 3 for
details.

In Section 4, applying the above micro-local analysis of functions in Pα(Rn), we give a new wavelet
characterization of this space. As the predual of Qα(Rn), Pα(Rn) has been studied by many authors. One
method is to define the space Pα(Rn) by a family of Borel measures. See Wu–Xie [20] for n = 1 and
Yuan–Sickel–Yang [24] for arbitrary spatial dimension. This idea can result in wavelet characterization of
the predual space; but the predual space with the induced norm is a pseudo–Banach space. Dafni–Xiao [3]
used a method of Hausdorff capacity to study Pα(Rn). L. Peng and Q. Yang defined Pα(Rn) by the atoms
(see [13,21]). By these methods, Pα(Rn) are Banach spaces; but these authors did not consider the wavelet
characterization of Pα(Rn). However, the micro-local structure of Pα(Rn) has not been considered in the
above literatures and we cannot apply them to consider the Fefferman–Stein decomposition.

Compared with the former results of [8,13,21,24], our result has the following advantage. Let f ∈ Pα(Rn).
Our wavelet characterization indicates clearly that different frequencies exert different influences to the Pα-
norm of f . See Theorems 3.4 and 4.2. To obtain a Fefferman–Stein type decomposition of Qα(Rn), we need
such a wavelet characterization of Pα(Rn).

In Section 5, by the characterization obtained in Section 4 and the properties of the Meyer wavelets
and Daubechies wavelets, we characterize Pα(Rn) associated with the Riesz transforms, see Theorem 5.8.
Applying this result and the duality between Pα(Rn) and Qα(Rn), we obtain a Fefferman–Stein type
decomposition for Qα(Rn).

We point out that our definition of Qα(Rn) is different from the one introduced in [4]. In [4], the scope
of α is restricted to (0,min{1, n/2}) to make Qα(Rn) non-trivial, while the scope in our definition can be
relaxed to (0, n/2). More importantly, when α ∈ (0,min{1, n/2}), our definition is equivalent to the one
in [4]. So the Fefferman–Stein type decomposition obtained in Section 5 gives a positive answer to the open
problem proposed in [4].

2. Preliminaries

In this section, we present preliminaries on wavelets, functions and operators which will be used in the
sequel.

2.1. Wavelets and classical function spaces

In this paper, we use real-valued tensor product wavelets; which can be the regular Daubechies wavelets
or the classical Meyer wavelets. Define the set of n-tuples

{0, 1}n =

ϵ = (ϵ1, ϵ2, . . . , ϵn), ϵi = 0 or 1, i = 1, 2, . . . , n


.

Set En = {0, 1}n \ {(0, 0, . . . , 0)}. Let Φ0 and {Φϵ, ϵ ∈ En, } be the scale function and the vector-valued
wavelet functions, respectively. If Φϵ is a Daubechies wavelet, we assume there exist m > 8n and M ∈ N
such that
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(1) Φϵ ∈ Cm0 ([−2M , 2M ]n), ∀ϵ ∈ {0, 1}n;
(2) Φϵ has the vanishing moments up to the order m− 1, ∀ϵ ∈ En.

For further information about wavelets, we refer to [10,19,21].
For j ∈ Z and k = (k1, k2, . . . , kn) ∈ Zn, we denote by Qj,k the dyadic cube

n
s=1[2−jks, 2−j(ks+ 1)] and

set Ω =

Qj,k, j ∈ Z, k ∈ Zn


. Let Λn =


(ϵ, j, k), ϵ ∈ En, j ∈ Z, k ∈ Zn


. For ϵ ∈ {0, 1}n, j ∈ Z, k ∈ Zn,

denote Φϵj,k(x) = 2jn/2Φϵ(2jx− k). The following result is well-known.

Lemma 2.1 ([10]).

Φϵj,k, (ϵ, j, k) ∈ Λn


is an orthogonal basis in L2(Rn).

Let f ϵj,k = ⟨f,Φϵj,k⟩, ∀ϵ ∈ {0, 1}n and k ∈ Zn. By Lemma 2.1, any L2-function f has a wavelet
decomposition

f(x) =


(ϵ,j,k)∈Λn

f ϵj,kΦ
ϵ
j,k(x).

We recall some knowledge on Sobolev spaces and Hardy spaces. For 1 < p < ∞, we denote by p′ the
conjugate index of p, that is, 1/p + 1/p′ = 1. For a function space A, we denote by A′ the dual space of
A. For the Sobolev spaces W r,p(Rn), 1 < p < ∞, r ∈ R, it is well-known that (W r,p(Rn))′ = W−r,p′(Rn)
(see [10,17,21] for the details).

Let χ be the characteristic function of the unit cube [0, 1]n. We have the following wavelet characterizations
of Sobolev spaces and Hardy space, see [10,21,22]:

Proposition 2.2. (i) Let 1 < p <∞ and |r| < m. g =


(ϵ,j,k)∈Λn g
ϵ
j,kΦ

ϵ
j,k ∈W r,p(Rn) if and only if 

(ϵ,j,k)∈Λn

22j(r+n/2)|gϵj,k|2χ(2j · −k)
 1

2

Lp
<∞.

(ii) g =


(ϵ,j,k)∈Λn g
ϵ
j,kΦ

ϵ
j,k ∈ H1(Rn) if and only if 

(ϵ,j,k)∈Λn

2nj |gϵj,k|2χ(2j · −k)
 1

2

L1
<∞.

2.2. Q-spaces

We know that Qα(Rn) = BMO(Rn) for α < 0. Further, It is easy to see that the Q-spaces defined in (1.1)
are trivial for α ≥ 1. In fact, for α ≥ 1 or α > n/2, there are only constants in Qα(Rn) by the definition
invoking (1.1).

To get rid of the restriction α ≥ 1, we introduce a new definition which is non-trivial for 1 ≤ α ≤ n2 . For
α ∈ R, denote by

fα,Q = |Q|−1

Q

(−∆)α/2f(x)dx

the mean value of (−∆)α/2f on the cube Q. For α ∈ R, let

Bα,Qf = |Q|α/n

|Q|−1


Q

|(−∆)α/2f(x)− fα,Q|2dx
1/2
.

The Q-spaces Qα(Rn) and Q0
α(Rn) are defined as follows.
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Definition 2.3. Let α ∈ [0, n/2].

(i) Qα(Rn) is defined as the set of all measurable functions f with

sup
Q
Bα,Qf <∞,

where the supremum is taken over all cubes Q.
(ii) Q0

α(Rn) is defined as the set of all measurable functions f ∈ Qα(Rn) with
lim
|Q|→0

Bα,Qf = 0,

lim
|Q|→∞

Bα,Qf = 0,

where the supremum and the limit are taken over all cubes Q.

Remark 2.4. If α = n/2, Qn/2(Rn) = Ḃn/2,22 (Rn). For 1 ≤ α ≤ n/2, the Q-spaces in Definition 2.3 are
non-trivial. Further, for other indices α, the corresponding Qα(Rn) coincide with those defined in [4]. So
Qα(Rn), defined in Definition 2.3, is a generalization of Q-spaces defined in (1.1).

For |α| < m, Q ∈ Ω and f =


(ϵ,j,k)∈Λn f
ϵ
j,kΦ

ϵ
j,k, let

Cα,Qf = |Q|α/n−1/2
 
Qj,k⊂Q

22jα|f ϵj,k|2
1/2
.

By (i) of Proposition 2.2, we get the following wavelet characterization of Q-spaces, cf [24]:

Proposition 2.5. Let 0 ≤ α ≤ n/2.

(i) f =


(ϵ,j,k)∈Λn f
ϵ
j,kΦ

ϵ
j,k ∈ Qα(Rn) if and only if

sup
Q∈Ω
Cα,Qf <∞.

(ii) f =


(ϵ,j,k)∈Λn f
ϵ
j,kΦ

ϵ
j,k ∈ Q0

α(Rn) if and only if


sup
Q∈Ω
Cα,Qf <∞,

lim
Q∈Ω, |Q|→0

Cα,Qf = 0,

lim
Q∈Ω, |Q|→∞

Cα,Qf = 0.
(2.1)

By Propositions 2.2 and 2.5, we may identify a function

g =


(ϵ,j,k)∈Λn

gϵj,kΦ
ϵ
j,k

with the sequence {gϵj,k}(ϵ,j,k)∈Λn .

2.3. Calderón–Zygmund operators

Now we introduce some preliminaries on Calderón–Zygmund operators, see [10,16]. For x ̸= y, let K(·, ·)
be a smooth function such that
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|∂αx ∂βyK(x, y)| ≤ C

|x− y|n+|α|+|β| , ∀|α|+ |β| ≤ N0, (2.2)

where N0 is a large enough constant.
A linear operator T is said to be a Calderón–Zygmund operator in CZO(N0) if

(1) T is continuous from C1(Rn) to (C1(Rn))′;
(2) There exists a kernel K(·, ·) satisfying (2.2) and for x ̸∈ suppf ,

Tf(x) =

K(x, y)f(y)dy;

(3) Txα = T ∗xα = 0,∀α ∈ Nn and |α| ≤ N0.

Remark 2.6. The values of K(·, ·) in (2.2) have not been defined for x = y. According to Schwartz kernel
theorem, the kernel K(·, ·) of a linear continuous operator T is only a distribution in S′(R2n).

Let {Φϵj,k}(ϵ,j,k)∈Λn be a sufficient regular wavelet basis. We denote

aϵ,ϵ
′

j,k,j′,k′ =

K(·, ·),Φϵj,k(·)Φϵ

′

j′,k′(·)

, (ϵ, j, k), (ϵ′, j′, k′) ∈ Λn.

Lemma 2.7 ([10]). (i) Let T ∈ CZO(N0). For all (ϵ, j, k) and (ϵ′, j′, k′) ∈ Λn, the coefficients aϵ,ϵ
′

j,k,j′,k′

satisfy that

|aϵ,ϵ
′

j,k,j′,k′ | ≤ C2−|j−j
′|(n/2+N0)

 2−j + 2−j′

2−j + 2−j′ + |k2−j − k′2−j′ |

n+N0
. (2.3)

(ii) If {aϵ,ϵ
′

j,k,j′,k′}(ϵ,j,k),(ϵ′,j′,k′)∈Λn satisfies (2.3), then

K(x, y) =


(ϵ,j,k),(ϵ′,j′,k′)∈Λn

aϵ,ϵ
′

j,k,j′,k′Φ
ϵ
j,k(x)Φϵ

′

j′,k′(y)

in the sense of distributions. Further, for any 0 < δ < N0, we have T ∈ CZO(N0 − δ).

At the end of this subsection, we list a variant result about the continuity of Calderón–Zygmund operators
on Sobolev spaces (see also [11]).

For all (ϵ, j, k) ∈ Λn, denote

g̃ϵj,k =


(ϵ′,j′,k′)∈Λn

aϵ,ϵ
′

j,k,j′,k′g
ϵ′

j′,k′ .

We have

Lemma 2.8. Let |r| < s ≤ m and 1 < p <∞. For (ϵ, j, k), (ϵ′, j′, k′) ∈ Λn, if

|aϵ,ϵ
′

j,k,j′,k′ | ≤ C2−|j−j
′|(n/2+s)

 2−j + 2−j′

2−j + 2−j′ + |k2−j − k′2−j′ |

n+s
,

then   
(ϵ,j,k)∈Λn

2j(n+2r)|g̃ϵj,k|2χ(2jx− k)
p/2
dx ≤ C

  
(ϵ,j,k)∈Λn

2j(n+2r)|gϵj,k|2χ(2jx− k)
p/2
dx.
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2.4. Generalized Hardy spaces

Peng–Yang [13] and Yang [21] used atoms to define the predual of Qα(Rn). See also [2] and [23]. Below
we introduce the standard atoms, the wavelet atoms and the generalized Hardy spaces related to Qα(Rn):

Definition 2.9. Let 0 ≤ α < n/2.

(i) A distribution g is an (α, 2)-atom on a cube Q if
(1) ∥(−∆)−α/2g∥L2 ≤ |Q|−1/2+α/n,
(2) supp g ⊂ Q,
(3)

xβg(x)dx = 0,∀|β| ≤ |α|.

(ii) A distribution f belongs to a Hardy space Pα(Rn) if f(x) =

u∈Z λugu(x), where {λu}u∈Z ∈ l1 and

{gu} are (α, 2)-atoms.

Definition 2.10. Given 0 ≤ α < n/2.

(i) A distribution g =

ϵ∈En,Qj,k⊂Q g

ϵ
j,kΦ

ϵ
j,k is a (α, 2)-wavelet atom on a dyadic cube Q if

 
(ϵ,j,k)∈Λn

2−2jα|gϵj,k|2
1/2
≤ |Q|α/n−1/2.

(ii) A distribution f belongs to a Hardy space Pαw (Rn) if f(x) =

u∈Z λugu(x), where {λu}u∈Z ∈ l1 and

{gu} are (α, 2)-wavelet atoms.

The following results were obtained by Peng–Yang [13] and Yang [21], respectively.

Proposition 2.11. Let 0 ≤ α < n/2.

(i) Pα(Rn) = Pαw (Rn).
(ii) Let T ∈ CZO(N0). Then T is bounded on Pα(Rn).

For α = n/2, define Pn/2(Rn) =: Ḃ−n/2,22 (Rn). Applying the same ideas in [13–15,24], we have the
following duality relation.

Proposition 2.12. Let 0 ≤ α ≤ n/2.

(i) (Pα(Rn))′ = Qα(Rn);
(ii) (Q0

α(Rn))′ = Pα(Rn).

3. Micro-local quantities for Pα(Rn)

For the spaces Pα(Rn), we can see that P 0(Rn) = H1(Rn) and P n2 (Rn) = Ḃ−
n
2 ,2

2 (Rn). It is well known
that the norms of P 0(Rn) and P n2 (Rn) depend only on the Lp(l2)-norms of function series {fj = Qjf}j∈Z
for p = 1 and p = 2, respectively. For the case 0 < α < n

2 , the situation is complicated. In this section,
we use wavelets to analyze the micro-local structure of Pα(Rn). First, we present a theorem on conditional
maximum value in Section 3.1. Then we consider the micro-local quantities in Section 3.2.
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3.1. Conditional maximal value for non-negative sequence

For u ∈ N, denote 
Λu,n = {0, 1, . . . , 2u − 1}n;
Gu,n = {(ϵ, s, v), ϵ ∈ En, 0 ≤ s ≤ u, v ∈ Λs,n}.

Definition 3.1. For j ∈ Z, k ∈ Zn, t ∈ N, let g̃tj,k = {gϵj+s,2sk+u}(ϵ,s,u)∈Gt,n be a sequence. We call
g̃tj,k = {gϵj+s,2sk+u}(ϵ,s,u)∈Gt,n a non-negative sequence if g̃tj,k satisfies

∀ (ϵ, s, u) ∈ Gt,n, gϵj+s,2sk+u ≥ 0. (3.1)

For a non-negative sequence g̃tj,k, we find the maximum value of the following quantities:

τft
j,k
,g̃t
j,k

=


(ϵ,s,u)∈Gt,n

f tj,kg̃
t
j,k, (3.2)

where the non-negative sequence f tj,k = {f ϵj+s,2sk+u}(ϵ,s,u)∈Gt,n satisfies the following


0≤s≤t 2ns restricted
conditions 

2n(j+t)

ϵ∈En

(f ϵj+t,2tk+u)2 ≤ 1, ∀u ∈ Λt,n;

2n(j+t−1)


(ϵ,s,v)∈G1,n

22sα(f ϵj+t−1+s,2s(2t−1k+u)+v)
2 ≤ 1, ∀u ∈ Λt−1,n;

2n(j+t−2)


(ϵ,s,v)∈G2,n

22sα(f ϵj+t−2+s,2s(2t−2k+u)+v)
2 ≤ 1, ∀u ∈ Λt−2,n;

· · · ≤ 1, · · · ;
2nj


(ϵ,s,v)∈Gt,n

22sα(f ϵj+s,2sk+v)2 ≤ 1 .

(3.3)

There exist (2n − 1)


0≤s≤t 2ns elements in Gt,n. We can see that f tj,k is a sequence, where the number
of nonnegative terms is at most (2n − 1)


0≤s≤t 2ns.

Definition 3.2. For j ∈ Z, k ∈ Zn, t ∈ N, we say f tj,k = {f ϵj+s,2sk+u}(ϵ,s,u)∈Gt,n ∈ F tj,k if f tj,k is a non-negative
sequence satisfying (3.3).

We have

Theorem 3.3. Let 0 ≤ α < n/2 and t ≥ 0. For any non-negative sequence g̃tj,k = {gϵj+s,2sk+u}(ϵ,s,u)∈Gt,n ,
there exists at least one sequence f̄ tj,k = {f̃ ϵj+s,2sk+u}(ϵ,s,u)∈Gt,n ∈ F tj,k such that

τf̄t
j,k
,g̃t
j,k

= max
ft
j,k
∈F t
j,k

τft
j,k
,g̃t
j,k
.

Proof. The (2n − 1)


0≤s≤t 2ns variables {f ϵj+s,2sk+u}(ϵ,s,u)∈Gt,n of the sequence f tj,k are restricted in a
closed domain, so the conclusion is obvious. �

3.2. Micro-local quantities in Pα(Rn)

From Proposition 2.12, we know that (Q0
α(Rn))′ = Pα(Rn). To prove a function g ∈ Pα(Rn), we only

need to consider sup⟨f, g⟩, where the supremum is taken over all f ∈ Q0
α with ∥f∥Q0

α
≤ 1. However, by this

method, we cannot know the micro-local structure of g in details.
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To avoid this difficulty, we introduce a new method. Let

g(x) =


(ϵ,j,k)∈Λn

gϵj,kΦ
ϵ
j,k(x).

We localize g by restricting its wavelet coefficients gϵj,k such that Qj,k ⊂ Q. Then we limit the range of
frequencies and analyze its micro-local information. For this purpose, we analyze the function gt,Q defined
in (1.2). For such a gt,Q, the number of (ϵ, j, k) such that gϵj,k ̸= 0 is at most (2n − 1)


0≤s≤t 2ns. We study

micro-local functions gt,Q in Pα(Rn) and obtain three kinds of micro-local quantities.
For all t, j ∈ Z, k ∈ Zn and t ≥ 0, we consider the series

gtj,k =

gϵj+s,2sk+v, ϵ ∈ En, 0 ≤ s ≤ t, v ∈ Λs,n


.

Denote

gtj,k(x) =


(ϵ,s,u)∈Gt,n

gϵj+s,2sk+uΦ
ϵ
j+s,2sk+u(x). (3.4)

Since the correspondence between the sequences gtj,k and the function gtj,k(x) is one-to-one, in the notation-
wise, we sometimes do not distinguish them.

For simplicity, we suppose that our functions are real-valued. Let
f(x) =


(ϵ,j,k)∈Λn

f ϵj,kΦ
ϵ
j,k(x);

g(x) =


(ϵ,j,k)∈Λn

gϵj,kΦ
ϵ
j,k(x).

If ⟨f, g⟩ and


(ϵ,j,k)∈Λn f
ϵ
j,kg
ϵ
j,k are well defined, then we have

τf,g =: ⟨f, g⟩ =


(ϵ,j,k)∈Λn

f ϵj,kg
ϵ
j,k. (3.5)

To compute max∥f∥Q0
α
≤1 τf,gt

j,k
, according to (3.5), we can restrict f to the function

f tj,k =


(ϵ,s,u)∈Gt,n

f ϵj+s,2sk+uΦ
ϵ
j+s,2sk+u

with ∥f tj,k∥Q0
α
≤ 1. The number of (ϵ, j, k) such that f ϵj,k ̸= 0 is at most (2n−1)


0≤s≤t 2ns. Applying (3.5),

we transfer the problem to finding out the supremum under an infinite number of constraint conditions to a
maximal value problem on

t
s=0 2ns restricted conditions on the series of quantities {f ϵj+s,2sk+u}(ϵ,s,u)∈Gt,n .

Based on Theorem 3.3, we begin to consider the micro-local quantities of gtj,k in Pα(Rn).

Theorem 3.4. Suppose that 0 < α < n/2 and t ≥ 0. Let gtj,k be the function defined by (3.4) and ∥gtj,k∥Pα > 0.

(i) There exists a function

Sf tj,k =


(ϵ,s,u)∈Gt,n

Stjf
ϵ
j+s,2sk+uΦ

ϵ
j+s,2sk+u

with ∥Stjf tj,k∥Q0
α
≤ 1 such that

max
∥f∥Q0

α
≤1
τf,gt

j,k
=


(ϵ,s,u)∈Gt,n

Stjf
ϵ
j+s,2sk+u · gtj+s,2sk+u.
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(ii) There exists a positive number P tj gtj,k which is defined by the absolute values of the wavelet coefficient
of gtj,k such that

P tj g
t
j,k = ∥gtj,k∥Pα = max

∥f∥Q0
α
≤1
τf,gt

j,k
= τSft

j,k
,gt
j,k
.

(iii) There exists a sequence {Qtjgϵj,k}ϵ∈En such that

ϵ∈En Q

t
jg
ϵ
j,kΦ

ϵ
j,k has the same norm in Pα(Rn) as gtj,k

does.

Proof. For gtj,k = {gϵj+s,2sk+u}(ϵ,s,u)∈Gt,n , set g̃tj,k = {|gϵj+s,2sk+u|}(ϵ,s,u)∈Gt,n . Denote

Gt,j,kg =


(ϵ, s, u) ∈ Gt,n, gϵj+s,2sk+u ̸= 0

.

For f tj,k(x) =


(ϵ,s,u)∈Gt,n f
ϵ
j+s,2sk+uΦ

ϵ
j+s,2sk+u(x), define

f ϵ,gj+s,2sk+u =

|f ϵj+s,2sk+u| · |gϵj+s,2sk+u|−1gϵj+s,2sk+u, (ϵ, s, u) ∈ Gt,n;

0, (ϵ, s, u) ̸∈ Gt,n.

We denote by F t,j,kg the set
f tj,k : f tj,k(x) =


(ϵ,s,u)∈Gt,n

f ϵ,gj+s,2sk+uΦ
ϵ
j+s,2sk+u(x) and ∥f tj,k∥Q0

α
≤ 1

.

By (ii) of Proposition 2.5, we have

max
∥ft
j,k
∥Q0
α≤1

τf̃t
j,k
,gt
j,k

= max
ft
j,k
∈F t,j,kg

τft
j,k
,gt
j,k

= max
f̃t
j,k
∈F t,j,kg

τf̃t
j,k
,g̃t
j,k
. (3.6)

By Proposition 2.5, the condition ∥f̃ tj,k∥Q0
α
≤ 1 is equivalent to (3.3). Further, for fixed g̃tj,k, due to (3.5),

if (ϵ, s, u) ∈ Gt,n and (ϵ, s, u) ̸∈ Gt,j,kg , then the coefficients f ϵj+s,2sk+u make no contribution to τf̃t
j,k
,g̃t
j,k

.
Hence we get

max
f̃t
j,k
∈F t,j,kg

τf̃t
j,k
,g̃t
j,k

= max
f̃t
j,k
∈F t
j,k

τf̃t
j,k
,g̃t
j,k
.

According to Theorem 3.3, there exists at least one sequence

f̄ tj,k = {f̃ ϵj+s,2sk+u}(ϵ,s,u)∈Gt,n ∈ F
t
j,k

such that

τf̄t
j,k
,g̃t
j,k

= max
ft
j,k
∈F t
j,k

τft
j,k
,g̃t
j,k
. (3.7)

Let Sf tj,k(x) =


(ϵ,s,u)∈Gt,n S
t
jf
ϵ
j+s,2sk+uΦ

ϵ
j+s,2sk+u(x), where

Stjf
ϵ
j+s,2sk+u =


f̃ ϵj+s,2sk+u|gϵj+s,2sk+u|−1gϵj+s,2sk+u, ∀(ϵ, s, u) ∈ Gt,n;

0, ∀(ϵ, s, u) ̸∈ Gt,n.

According to (3.5) and (3.6), Sf tj,k satisfies (i).

Let P tj gtj,k = τf̄t
j,k
,g̃t
j,k

. According to the last equality in (3.6), P tj gtj,k is defined by the absolute values of
the wavelet coefficients of gtj,k. According to (3.5)–(3.7), P tj gtj,k satisfies (ii).
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Denote

Qtjg
ϵ
j,k =


2(j−1)n/2P tj g

t
j,k, if


ϵ∈En

|gϵj,k| = 0;

2n/2jP tj gtj,k

ϵ∈En

|gϵj,k|2
−1/2

gϵj,k, if

ϵ∈En

|gϵj,k| ≠ 0.

Applying (ii) of Proposition 2.5 again, we know that {Qtjgϵj,k}ϵ∈En satisfies the condition (iii). �

Remark 3.5. For α = 0 and α = n/2, if we deal with P tj gtj,k in a similar way, then:

(i) For α = 0, according to the wavelet characterization of H1(Rn) in [10], P tj gtj,k is equivalent with

 
(ϵ,s,u)∈Gt,n

2n(j+s)|gϵj+s,2sk+u|2χ(2j+s · −2sk − u)
1/2

L1
.

(ii) For α = n/2, P tj gtj,k can be written as


(ϵ,s,u)∈Gt,n 2−nj |gϵj,k|2
1/2

.

However, for 0 < α < n/2, P tj gtj,k cannot be expressed in an explicit way. Luckily, the three parts
{Qtjgϵj,k}ϵ∈En ,

Sf tj,k =


(ϵ,s,u)∈Gt,n

Stjf
ϵ
j+s,2sk+uΦ

ϵ
j+s,2sk+u,

P tj g
t
j,k

(3.8)

indicate the micro-local characters in both the frequency structure and the local structure.

In the rest of this paper, the quantities defined by (3.8) will be used repeatedly. Micro-local quantities
reveal the global information of functions in Pα(Rn). In Section 4, this idea will be used to get the wavelet
characterization of Pα(Rn) by a group of L1-functions defined by the absolute values of wavelet coefficients.
Such wavelet characterization does not involve the action of a group of Borel measures.

4. Wavelet characterization of Pα(Rn)

For s ∈ Z and N ∈ N, let

Ωs,N =

Q ∈ Ω : 2−sn ≤ |Q| ≤ 2(N−s)n


.

For 0 ≤ t ≤ N,m ∈ Zn, Q = Qs−N,m, define

Ωs,t,Q = Ω t,Ns,m =

Q′ ∈ Ω : 2−sn ≤ |Q′| ≤ 2(t−s)n, Q′ ⊂ Qs−N,m


.

We can see that Ωs,N =

m∈Zn ΩN,Ns,m . For s ∈ Z and N ∈ N, we define

gNs−N,m(x) =


Qj,k∈ΩN,Ns,m

gϵj,kΦ
ϵ
j,k(x) (4.1)

and

gs,N (x) =

m∈Zn

gNs−N,m(x). (4.2)

For g =


(ϵ,j,k)∈Λn g
ϵ
j,kΦ

ϵ
j,k ∈ Pα(Rn), let Λgn =


(ϵ, j, k) ∈ Λn : gϵj,k ̸= 0


.
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Let {f ϵ,gj,k } be the sequences such that

f ϵ,gj,k =

|f ϵ,gj,k | |g

ϵ
j,k|−1gϵj,k, (ϵ, j, k) ∈ Λgn;
0, (ϵ, j, k) ̸∈ Λgn.

We denote by Q0,g
α the set 

f : f(x) =


(ϵ,j,k)∈Λn

f ϵ,gj,kΦ
ϵ
j,k(x) and ∥f∥Q0

α
≤ 1

.

By (3.5), we have

sup
∥f∥Q0

α
≤1
τf,g = sup

f∈Q0,g
α

τf,g. (4.3)

We prove first an approximation lemma for Pα(Rn).

Lemma 4.1. For g =


(ϵ,j,k)∈Λn g
ϵ
j,kΦ

ϵ
j,k ∈ Pα(Rn), let

g̃s,N (x) =

|m|≤2n

gNs−N,m(x).

For arbitrary δ > 0, there exist s and N such that ∥g − g̃s,N∥Pα ≤ δ.

Proof. For any 0 < δ < ∥g∥Pα/8, according to Proposition 2.11, there exists {λu}u∈N+ ∈ l1 and a group of
(α, 2)-wavelet atoms {au} such that g(x) =


u∈N+

λuau(x) and
u∈N
|λu| − ∥g∥Pα

 ≤ δ/8.
Further there exists an integer Nδ > 0 such that

u>Nδ

|λu| ≤ δ/8. (4.4)

Now, for u = 1, . . . , Nδ, we consider the atoms

au(x) =


(ϵ,j,k)∈Λn,Qj,k⊂Qu

aϵ,uj,kΦ
ϵ
j,k(x).

Since  
(ϵ,j,k)∈Λn,Qj,k⊂Qu

2−2jα|aϵ,uj,k |
2
1/2
≤ |Qu|α/n−1/2,

there exists an integer Ñδ > 0 such that 
(ϵ,j,k)∈Λn,Qj,k⊂Qu,j>Ñδ

2−2jα|aϵ,uj,k |
2
1/2
≤ δ

16∥g∥Pα
|Qu|α/n−1/2. (4.5)

Since 1 ≤ u ≤ Nδ, there exists an integer jδ ∈ Z such that
1≤u≤Nδ

Qu ⊂


|m|≤2n
Qjδ,m. (4.6)
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For u = 1, . . . , Nδ, let bu(x) =


(ϵ,j,k)∈Λn,Qj,k⊂Qu,j≤Ñδ a
ϵ,u
j,kΦ

ϵ
j,k(x). According to (4.4) and (4.5), we know

that  
u>Nδ

λuau


Pα
≤ δ/8; 

1≤u≤Nδ

λu(au − bu)

Pα
≤ δ


1≤u≤Nδ

|λu|/16∥g∥Pα ≤ δ/8.
(4.7)

Let

gδ(x) =

u>Nδ

λuau +


1≤u≤Nδ

λu(au − bu) =


(ϵ,j,k)∈Λn

gϵ,δj,kΦ
ϵ
j,k(x).

Then ∥gδ∥Pα ≤ δ/4. Let

g1,δ(x) =


(ϵ,j,k)∈Λn,j≥Nδ,Qj,k⊂


|m|≤2n
Qjδ,m

gϵ,δj,kΦ
ϵ
j,k(x)

and g2,δ(x) = gδ(x)− g1,δ(x). According to (4.3), we have ∥g1,δ∥Pα ≤ δ/4 and ∥g2,δ∥Pα ≤ δ/4. Take s = Ñδ
and N = s− jδ. Let

g̃s,N (x) = g1,δ(x) +


1≤u≤Nδ

λubu(x).

According to the above construction process, g̃s,N satisfies the condition of Lemma 4.1. �

Given 0 ≤ t ≤ N , m ∈ Zn and Q = Qs−N,m. If t = 0, we denote

gϵ,s,t,Nj,k =


0, j > s;
gϵj,k, j = s.

Let t ≥ 1. For Qtjgϵj,k defined in Theorem 3.4, we denote

gϵ,s,t,Nj,k =


0, j > s− t;
Qtjg

ϵ
j,k, j = s− t;
gϵj,k, j < s− t.

Let gs,t,N (x) =

ϵ,j,k g

ϵ,s,t,N
j,k Φϵj,k(x). We define

Ps,t,Ng(x) =
 
ϵ,Qj,k∈Ωs,N ,j≤s−t

2nj |gϵ,s,t,Nj,k |2χ(2jx− k)
1/2

and

Qs,t,Ng =
 
ϵ,Qj,k∈Ωs,N ,j=s−t

2jn|gϵ,s,t,Nj,k |2χ(2j · −k)
1/2

L1
.

For t = N , we have

Qs,N,Ng
N
s−N,m = ∥Ps,N,NgNs−N,m∥L1 . (4.8)

Now we prove a wavelet characterization without involving Borel measures.

Theorem 4.2. If 0 < α < n/2, then

Pα(Rn) =

g : sup
s∈Z,N∈N

min
0≤t≤N

∥Ps,t,Ng∥L1 <∞

.
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Proof. According to (4.3) and Lemma 4.1, ∀δ > 0, there exists τδ > 0 such that for s > τδ, N ≥ 2s, we have

∥gs,N − g∥Pα +

|m|>2n

∥gNs−N,m∥Pα ≤ δ (4.9)

and

8−n max
|m|≤2n

∥gNs−N,m∥Pα − δ ≤ ∥gs,N∥Pα ≤

|m|≤2n

∥gNs−N,m∥Pα + δ, (4.10)

where gs,N and gNs−N,m are defined by (4.1) and (4.2).

By (4.8) and Theorem 3.4, we have

∥gNs−N,m∥Pα = Qs,N,NgNs−N,m = ∥Ps,N,NgNs−N,m∥L1 . (4.11)

Furthermore, we have

∥gs,t,N∥Pα ≤ ∥gs,t,N∥H1 = ∥Ps,t,Ng∥L1 . (4.12)

According to (4.9)–(4.12), the proof of Theorem 4.2 is complete. �

5. A Fefferman–Stein type decomposition of the Q-spaces

In this section, by Theorem 4.2, we give a Fefferman–Stein type decomposition of Qα(Rn). In [4], the
authors proved that Qα(Rn) ⊂ BMO(Rn). Equivalently, we can obtain

Proposition 5.1. If 0 < α < n/2, H1(Rn) ⊂ Pα(Rn).

Further, for the proof of Theorem 5.7 below, we need some special properties of the Daubechies wavelets.
Except for Theorem 5.7, we use the classical Meyer wavelets throughout Sections 5 and 6. The support of
the Fourier transform of the classical Meyer wavelet in [10] satisfies the following conditions

supp Φ0 ⊂ [−4π/3, 4π/3];
supp Φ1 ⊂ [−8π/3, 8π/3] \ (−2π/3, 2π/3).

(5.1)

For tensor product Meyer wavelets satisfying (5.1), ∀(ϵ, j, k), (ϵ′, j′, k′) ∈ Λn and |j − j′| ≥ 2, we have

⟨RiΦϵj,k, Φϵ
′

j′,k′⟩ = 0, ∀i = 1, . . . , n. (5.2)

5.1. Adapted L1 and L∞ spaces

For g(x) =


(ϵ,j,k)∈Λn g
ϵ
j,kΦ

ϵ
j,k(x) and j ∈ Z, denote

Qjg(x) =


ϵ∈En,k∈Zn
gϵj,kΦ

ϵ
j,k(x). (5.3)

For s ∈ Z and N ∈ N, we set

Ps,Ng(x) =


ϵ,s−N≤j≤s,k

gϵj,kΦ
ϵ
j,k(x). (5.4)

For all integers t = 0, . . . , N , denote

T 1
s,t,Ng(x) =


ϵ,s−t≤j≤s,k

gϵj,kΦ
ϵ
j,k(x)
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and

T 2
s,t,Ng(x) =


ϵ,s−N≤j<s−t,k

gϵj,kΦ
ϵ
j,k(x).

By Theorem 4.2, we introduce spaces P̃α(Rn).

Definition 5.2. Let α ∈ [0, n/2). We say that g ∈ P̃α(Rn) if

sup
s∈Z,N∈N

inf
0≤t≤N

(∥T 1
s,t,Ng∥Pα + ∥T 2

s,t,Ng∥H1) <∞.

The space P̃α(Rn) is not really new. In fact,

Theorem 5.3. (i) If α = 0, then P 0(Rn) = P̃ 0(Rn) = H1(Rn).
(ii) If 0 < α < n/2, then Pα(Rn) = P̃α(Rn).

Proof. P 0(Rn) = H1(Rn) is known, so (i) is evident. Now we consider the cases 0 < α < n/2. If g ∈ Pα(Rn),
then ∥Ps,Ng∥Pα ≤ ∥g∥Pα . Further

inf
0≤t≤N

(∥T 1
s,t,Ng∥Pα + ∥T 2

s,t,Ng∥H1) ≤ ∥T 1
s,N,Ng∥Pα = ∥Ps,Ng∥Pα .

Hence

sup
s∈Z,N∈N

inf
0≤t≤N

(∥T 1
s,t,Ng∥Pα + ∥T 2

s,t,Ng∥H1) ≤ ∥g∥Pα .

Conversely, if g ∈ P̃α(Rn), we have

∥Ps,Ng∥Pα ≤ ∥T 1
s,t,Ng∥Pα + ∥T 2

s,t,Ng∥Pα
≤ ∥T 1

s,t,Ng∥Pα + ∥T 2
s,t,Ng∥H1 .

Hence

∥Ps,Ng∥Pα ≤ inf
0≤t≤N

(∥T 1
s,t,Ng∥Pα + ∥T 2

s,t,Ng∥H1).

According to (4.9), g ∈ Pα(Rn). �

For g ∈ Pα(Rn), we can deduce from Theorem 5.3 that the Pα-norm of g is equivalent to

sup
s∈Z,N∈N

inf
0≤t≤N

(∥T 1
s,t,Ng∥Pα + ∥T 2

s,t,Ng∥H1),

which implies that for 0 < α < n/2, the high-frequency part T 1
s,t,Ng and the low-frequency part T 2

s,t,Ng

make different contributions to the norm. Now we use such property to construct L1,α(Rn) and L∞,α(Rn)
which will be adapted to the Fefferman–Stein type decomposition of Qα(Rn).

Let f(x) =


(ϵ,j,k)∈Λn f
ϵ
j,kΦ

ϵ
j,k(x). For s, t,N ∈ Z and 0 ≤ t ≤ N , we denote

Ps,Nf(x) =


ϵ,s−N≤j≤s,k

f ϵj,kΦ
ϵ
j,k(x),

S1
s,t,Nf(x) =


ϵ,s−t≤j≤s,k

f ϵj,kΦ
ϵ
j,k(x),

S2
s,t,Nf(x) =


ϵ,s−N≤j<s−t,k

f ϵj,kΦ
ϵ
j,k(x).

The spaces L1,α(Rn) and L∞,α(Rn) are defined as follows.
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Definition 5.4. Let f(x) =


(ϵ,j,k)∈Λn f
ϵ
j,kΦ

ϵ
j,k(x) and g(x) =


(ϵ,j,k)∈Λn g

ϵ
j,kΦ

ϵ
j,k(x).

(i) We say that g ∈ L1,α(Rn) if

sup
s∈Z,N∈N

min
0≤t≤N


∥T 1
s,t,Ng∥Pα + ∥T 2

s,t,Ng∥L1


<∞.

(ii) We say that f ∈ L∞,α(Rn) if

sup
s∈Z,N∈N

sup
0≤t≤N


∥S1
s,t,Nf∥Qα + ∥S2

s,t,Nf∥L∞

<∞.

By Proposition 5.1 and Theorem 5.3, we have

Theorem 5.5. Given 0 ≤ α < n/2.

(i) Pα(Rn) ⊂ L1,α(Rn);
(ii) L∞,α(Rn) = Qα(Rn)


L∞(Rn);

(iii) (L1,α(Rn))′ = L∞,α(Rn).

Remark 5.6. For the case α = 0, we have:

(i) P 0(Rn) = H1(Rn) and Q0(Rn) = BMO(Rn);
(ii) L1,0(Rn) = L1(Rn) and L∞,0(Rn) = L∞(Rn).

Now, we use the Daubechies wavelets to prove that L∞,α(Rn)  Qα(Rn). We know that there exist some
integer M and a Daubechies scale function Φ0 ∈ Cn+2

0 ([−2M , 2M ]n) satisfying

CD =

−y1
|y|n+1 Φ0(y − 2M+1e)dy < 0, e = (1, 1, . . . , 1). (5.5)

Theorem 5.7. Let Φ(x) = Φ0(x− 2M+1e) and let f be defined as

f(x) =

j∈2N

Φ(2jx). (5.6)

If 0 ≤ α < n/2, then f ∈ L∞,α(Rn) and R1(f) ̸∈ L∞(Rn), that is, L∞,α(Rn)  Qα(Rn).

Proof. For j, j′ ∈ 2N with j ̸= j′, the supports of Φ(2j ·) and Φ(2j′ ·) are disjoint. Hence the above f in (5.6)
belongs to L∞(Rn). The same reasoning gives


j∈N,2j>j′ Φ(22j ·) ∈ L∞(Rn) for any j′ ∈ N.

Now we compute the wavelet coefficients of f in (5.6). For (ϵ′, j′, k′) ∈ Λn, let f ϵ′j′,k′ = ⟨f, Φϵ
′

j′,k′⟩. We
divide the proof into two cases: j′ < 0 and j′ ≥ 0.

For j′ < 0, since supp f ⊂ [−3 · 2M , 3 · 2M ]n, we know that f ϵ′j′,k′ = 0 for |k′| > 22M+5. For |k′| ≤ 22M+5,
we have

|f ϵ
′

j′,k′ | ≤ C2nj
′/2

|f(x)|dx ≤ C2nj

′/2.
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For j′ ≥ 0, by orthogonality of the wavelets, we have

f ϵ
′

j′,k′ =

f, Φϵ

′

j′,k′


=
 
j∈N,2j>j′

Φ(22j ·), Φϵ
′

j′,k′


.

By the same reasoning, for the case j′ ≥ 0, we know that if |k′| > 22M+5, then f ϵ′j′,k′ = 0. Since
j∈N,2j>j′ Φ(22j ·) ∈ L∞, if |k′| ≤ 22M+5, we have

|f ϵ
′

j′,k′ | ≤ C

|Φϵ

′

j′,k′(x)|dx ≤ C2−nj
′/2.

By the above estimates and (i) of Proposition 2.5, we conclude that f ∈ Qα(Rn), that is, f ∈ Qα(Rn) ∩
L∞(Rn).

Since Φ0 ∈ Cn+2
0 ([−2M , 2M ]n), we know that

Φ = Φ0(· − 2M+1e) ∈ Cn+2
0 ([2M , 3 · 2M ]n).

Further, if |x| ≤ 2M−1 and y ∈ [2M , 3 · 2M ]n, then |x − y| > 2M−1. Hence R1Φ is smooth in the ball
{x : |x| ≤ 2M−1}.

Applying (5.5), there exists a positive δ > 0 such that for |x| < δ, R1Φ(x) < CD/2 < 0. By a dilation,
we can see that R1Φ(22jx) < CD/2 < 0 for 22j |x| < δ. Hence R1f ̸∈ L∞(Rn). �

5.2. Fefferman–Stein decomposition of Qα(Rn)

Fefferman–Stein [5] used the Riesz transformations and the L1 norm to characterize Hardy space H1(Rn):

Theorem 2. g ∈ H1(Rn) if and only if

CRiesz(g) = ∥g∥L1(Rn) +
n
i=1
∥Rig∥L1(Rn) <∞.

Theorem 2 gives rise to the Fefferman–Stein decomposition of BMO(Rn). The following theorem extends
Theorem 2 to Pα(Rn). If α = 0, Theorem 5.8 becomes Theorem 2, so we omit the proof of this case. The
proof for the cases 0 < α < n/2 is rather long. So we only state this result here and postpone the proof to
Section 6. For 0 ≤ α < n/2 and a function g, denote

Cα,Riesz(g) = ∥g∥L1,α + sup
s∈Z,N∈N

min
0≤t≤N

n
i=1
{∥T 1

s,t,NRig∥Pα + ∥T 2
s,t,NRig∥L1}.

Theorem 5.8. If 0 ≤ α < n/2, then g ∈ Pα(Rn) if and only if

Cα,Riesz(g) <∞. (5.7)

If Theorem 5.8 holds, by Theorem 5.7, we could obtain a Fefferman–Stein type decomposition of Qα(Rn)
using Fefferman–Stein’s skill in [5]. This result solves Problem 1.1 (Problem 8.3 in [4]).

Theorem 5.9. If 0 ≤ α < n/2, then f ∈ Qα(Rn) if and only if f(x) =


0≤i≤nRifi(x), where
fi ∈ Qα(Rn)


L∞(Rn).
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Proof. By the continuity of the Calderón–Zygmund operators on the Q-spaces, we know that if fi ∈
Qα(Rn)


L∞(Rn), then 

0≤i≤n
Rifi ∈ Qα(Rn).

Now we prove the converse result. Let

B =


(g0, g1, . . . , gn) : gi ∈ L1,α(Rn), i = 0, . . . , n

.

The norm of B is defined as

∥(g0, g1, . . . , gn)∥B =
n
i=0
∥gi∥L1,α .

We define

S =


(g0, g1, . . . , gn) ∈ B : gi = Rig0, i = 0, 1, . . . , n

.

S is a closed subset of B. By Theorem 5.8, The mapping

g0 → (g0, R1g0, . . . , Rng0)

defines a norm preserving map from Pα(Rn) to S. Hence the set of continuous linear functionals on Pα(Rn)
is equivalent to the set of continuous linear functionals on S. The continuous linear functionals on S can
extend to a continuous linear functionals on B preserving the same norm. We know that the dual space of
L1,α(Rn)⊕ · · · ⊕ L1,α(Rn) is L∞,α(Rn)⊕ · · · ⊕ L∞,α(Rn).

For f ∈ Qα(Rn), f defines a continuous linear functional l on Pα(Rn) and also on S. Hence there exist
f̃i ∈ L∞,α(Rn), i = 0, 1, . . . , n, such that for any g0 ∈ Pα(Rn),

l(f) =


Rn
f(x)g0(x)dx

=


Rn
f̃0(x)g0(x)dx+

n
i=1


Rn
f̃i(x)Rig0(x)dx

=


Rn
f̃0(x)g0(x)dx−

n
i=1


Rn
Ri(f̃i)(x)g0(x)dx.

Hence f(x) = f̃0(x)−
n
i=1Ri(f̃i)(x). �

Triebel–Lizorkin spaces Ḟ 0,q
∞ are introduced in [17], Besov–Morrey spaces and Triebel–Lizorkin–Morrey

spaces are introduced in [24]. These spaces play an important role in harmonic analysis and non-linear
problems, see [9] etc. Since Fefferman–Stein decomposition of BMO(Rn) plays an important role in harmonic
analysis, we propose the following open problems:

Remark 5.10. (1) In dimension n, how to give a Fefferman–Stein type decomposition for Triebel–Lizorkin
spaces Ḟ 0,q

∞ ?

(2) More generally, for other Besov–Morrey spaces or Triebel–Lizorkin–Morrey spaces, whether there is
also a Fefferman–Stein type decomposition?

6. The proof of Theorem 5.8

At first, we prove that

g ∈ Pα(Rn) =⇒ g satisfies (5.7). (6.1)
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By (ii) of Proposition 2.11, the fact g ∈ Pα(Rn) implies that

Rig ∈ Pα(Rn), i = 1, . . . , n.

By (i) of Theorem 5.5, we obtain that g satisfies (5.7).
The proof of the converse of (6.1) is cumbersomeness and we will complete it in Section 6.2. Next, as a

preliminary, we give the following lemma.

6.1. A lemma

Lemma 6.1. For g(x) =


(ϵ,j,k)∈Λn g
ϵ
j,kΦ

ϵ
j,k(x) and arbitrary j ∈ Z, denote gj(x) =


ϵ∈En,k∈Zn g

ϵ
j,kΦ

ϵ
j,k(x)

and denote g̃j(x) =

j′≤j gj′(x). For 0 < α < n2 , we have

(i) ∥gj∥H1 ≤ C∥g∥L1 .
(ii) max


∥g̃j∥Pα , ∥g − g̃j∥Pα


≤ ∥g∥Pα ≤ ∥g̃j∥Pα + ∥g − g̃j∥Pα .

(iii) ∥gj∥Pα ≤ C∥g∥L1,α .

Proof. (i) Applying (ii) of Proposition 2.2 and the orthogonality of {Φϵj,k}, we have

∥gj∥H1 ≤ C
 
ϵ∈En,k∈Zn

2nj |⟨gj ,Φϵj,k⟩|2χ(2j · −k)
1/2

L1

≤ C

ϵ∈En


k∈Zn

2n/2j |⟨g,Φϵj,k⟩|χ(2j · −k)

L1

≤ C∥g∥L1 .

(ii) Pα(Rn) is a Banach space, hence we have

∥g∥Pα ≤ ∥g̃j∥Pα + ∥g − g̃j∥Pα .

To prove the first inequality of (ii), denote

Gg =


(ϵ, j, k) ∈ Λn, gϵj,k ̸= 0

.

For f(x) =


(ϵ,j,k)∈Λn f
ϵ
j,kΦ

ϵ
j,k(x), define

f ϵ,gj,k =

|f ϵj,k| · |gϵj,k|−1gϵj,k, (ϵ, j, k) ∈ Gg;

0, (ϵ, j, k) ̸∈ Gg.

We denote by Fg the set 
f : f(x) =


(ϵ,j,k)∈Gg

f ϵ,gj,kΦ
ϵ
j,k(x) and ∥f∥Q0

α
≤ 1

.

Define

f(x) =


(ϵ,j,k)∈Λn

|f ϵj,k|Φϵj,k(x)

and

g(x) =


(ϵ,j,k)∈Λn

|gϵj,k|Φϵj,k(x).
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By (ii) of Proposition 2.5, we have

sup
∥f∥Q0

α≤1

τf,g = sup
f∈Fg
τf,g = sup

f∈Fg
τf,g = sup

∥f∥Q0
α≤1

τf,g. (6.2)

Hence we have

max

∥g̃j∥Pα , ∥g − g̃j∥Pα


≤ ∥g∥Pα .

(iii) By the definition of the L1,α-norm of g, for s ∈ Z, N ∈ N with s −N ≤ j ≤ s, there exists j0 such
that 0 ≤ j0 ≤ N and  

s−j0≤j′≤s

gj′

Pα

+
 
s−N≤j′<s−j0

gj′

L1
≤ ∥g∥L1,α .

If j < s − j0, we apply (i) to get the desired assertion. If j ≥ s − j0, we apply (ii) to get the desired
assertion. �

6.2. The proof of the converse part

For the proof of the converse of (6.1), it is sufficient to prove that ∀s1 ∈ Z, N1 ≥ 1 and gs1,N1(x) =
Ps1,N1g(x) defined in (5.4), we have

∥gs1,N1∥Pα ≤ CCα,Riesz(gs1,N1). (6.3)

Owing to (5.2), there exists {gϵ,ij,k}(ϵ,j,k)∈Λn such that for i = 1, 2, . . . , n,

Rigs1,N1(x) =


(ϵ,j,k)∈Λn,s1−N1−1≤j≤s1+1

gϵ,ij,kΦ
ϵ
j,k(x). (6.4)

Due to (6.4), to estimate the L1,α-norm of Rigs1,N1 , i = 0, 1, . . . , n, it is sufficient to consider s = s1 + 1
and N = N1 + 2. For such s and N , there exist t0s,N and t1s,N such that

∥T 1
s,t0
s,N
,Ngs1,N1∥Pα + ∥T 2

s,t0
s,N
,Ngs1,N1∥L1 = min

0≤t≤N


∥T 1
s,t,Ngs1,N1∥Pα + ∥T 2

s,t,Ngs1,N1∥L1


; (6.5)

1≤i≤n
{∥T 1

s,t1
s,N
,NRigs1,N1∥Pα + ∥T 2

s,t1
s,N
,NRigs1,N1∥L1}

= min
0≤t≤N


1≤i≤n

{∥RiT 1
s,t,Ngs1,N1∥Pα + ∥RiT 2

s,t,Ngs1,N1∥L1}. (6.6)

We divide the proof into three cases.
Case 1: t0s,N = t1s,N . Let Qj be the projection operators defined by (5.3). We divide the function gs1,N1

into two functions

gs1,N1(x) = g1s,N (x) + g2s,N (x),

where

g1s,N (x) =


j≥s−t0
s,N

Qjgs1,N1(x)

and

g2s,N (x) =


j<s−t0
s,N

Qjgs1,N1(x).
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By (6.5), we have g2s,N ∈ L1(Rn). By Lemma 6.1,

Qs−t0
s,N
−1gs1,N1 +Qs−t0

s,N
−2gs1,N1 ∈ H1(Rn) (6.7)

and

g2s,N −

Qs−t0

s,N
−1gs1,N1 +Qs−t0

s,N
−2gs1,N1


∈ L1(Rn). (6.8)

Further, for i = 1, . . . , n, we have

T 2
s,t1
s,N
,NRigs1,N1(x) = T 2

s,t1
s,N
,NRi


g2s,N (x) +Qs−t0

s,N
gs1,N1(x)


= T 2

s,t1
s,N
,NRi


g2s,N (x)−


Qs−t0

s,N
−1gs1,N1(x) +Qs−t0

s,N
−2gs1,N1(x)


+

Qs−t0

s,N
−1gs1,N1(x) +Qs−t0

s,N
−2gs1,N1(x)


+Qs−t0

s,N
gs1,N1(x)


= Ri

g2s,N (x)−


Qs−t0

s,N
−1gs1,N1(x) +Qs−t0

s,N
−2gs1,N1(x)


+T 2
s,t1
s,N
,NRi


Qs−t0

s,N
−1gs1,N1(x) +Qs−t0

s,N
−2gs1,N1(x)


+T 2
s,t1
s,N
,NRiQs−t0s,N gs1,N1(x).

Hence, by (6.7), for i = 1, . . . , n,

IIi =: Ri

g2s,N −


Qs−t0

s,N
−1gs1,N1 +Qs−t0

s,N
−2gs1,N1


+ T 2

s,t1
s,N
,NRiQs−t0s,N gs1,N1 ∈ L1(Rn).

By (5.2), there exists {τ ϵ,ij,k}(ϵ,j,k)∈Λn such that

Ii(x) =: Ri

g2s,N (x)−


Qs−t0

s,N
−1gs1,N1(x) +Qs−t0

s,N
−2gs1,N1(x)


=


(ϵ,j,k)∈Λn,j≤s−t0s,N−2

τ ϵ,ij,kΦ
ϵ
j,k(x)

and

RiQs−t0
s,N
gs1,N1(x) =


(ϵ,j,k)∈Λn,s−t0s,N−1≤j≤s−t0

s,N
+1

τ ϵ,ij,kΦ
ϵ
j,k(x).

For arbitrary L∞ function

h(x) =


(ϵ,j,k)∈Λn

hϵj,kΦ
ϵ
j,k(x)

and j0 ∈ Z, denote the operator

Pj0h(x) =

k∈Zn
⟨h(x),Φ0

j0,k(x)⟩Φ
0
j0,k(x).

We can see that Pj0h ∈ L∞(Rn). In fact, by the fact

|⟨h, Φ0
j0,k⟩| ≤ C2−nj0/2,

we can get

|Pj0h(x)| ≤ C

k∈Zn

2−nj0/2|Φ0
j0,k(x)|

≤ C

k∈Zn
|Φ0(2j0x− k)|

≤ C.
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Let

h0(x) =: Ps−t0
s,N
−2h(x) =


(ϵ,j,k)∈Λn,j≤s−t0s,N−2

hϵj,kΦ
ϵ
j,k(x).

Hence h0 ∈ L∞(Rn). Further, because IIi ∈ L1(Rn),

|⟨Ii, h⟩| = |⟨Ii, h0⟩|
= |⟨IIi, h0⟩|
≤ ∥IIi∥L1∥h0∥∞.

The last estimate implies that for i = 1, . . . , n, the functions

Ii = Ri

g2s,N −


Qs−t0

s,N
−1gs1,N1 +Qs−t0

s,N
−2gs1,N1


∈ L1(Rn).

This fact and (6.12) imply that

g2s,N −

Qs−t0

s,N
−1gs1,N1 +Qs−t0

s,N
−2gs1,N1


∈ H1(Rn).

By (6.7), we get g2s,N ∈ H1(Rn). Further, we have g1s,N ∈ Pα(Rn). Applying (6.5), we get gs1,N1 ∈ Pα(Rn).
Case 2: t0s,N > t1s,N . For this case, we decompose gs1,N1 as

gs1,N1(x) = g1s,N (x) + g2s,N (x) + g3s,N (x),

where

g1s,N (x) =


j≥s−t1
s,N

Qjgs1,N1(x),

g2s,N (x) =


s−t0
s,N
≤j<s−t1

s,N

Qjgs1,N1(x)

and

g3s,N (x) =


j<s−t0
s,N

Qjgs1,N1(x).

We know that

T 2
s,t1
s,N
,NRigs1,N1(x) = T 2

s,t1
s,N
,NRi


g3s,N (x) + g2s,N (x) +Qs−t1

s,N
gs1,N1(x)


.

Then for h(x) =

ϵ,s−N≤j<s−t0

s,N
,k h
ϵ
j,kΦ

ϵ
j,k(x) with ∥h∥L∞ ≤ 1, we know that

⟨T 2
s,t1
s,N
,NRigs1,N1 , h⟩ = ⟨Rig3s,N , h⟩. (6.9)

By (6.5), g3s,N ∈ L1(Rn). This fact implies that

Qs−t0
s,N
−1gs1,N1 +Qs−t0

s,N
−2gs1,N1 ∈ H1(Rn). (6.10)

Owing to (6.9) and (6.10), for i = 0, . . . , n, we have

Ri


g3s,N −


Qs−t0

s,N
−1gs1,N1 +Qs−t0

s,N
−2gs1,N1


∈ L1(Rn).

Hence we obtain

g3s,N −

Qs−t0

s,N
−1gs1,N1 +Qs−t0

s,N
−2gs1,N1


∈ H1(Rn).
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So we have g3s,N ∈ H1(Rn). Since

g1s,N (x) + g2s,N ∈ Pα(Rn),

we have gs1,N1 ∈ Pα(Rn).
Case 3: t0s,N < t1s,N . We decompose gs1,N1 into three functions

gs1,N1(x) = g1s,N (x) + g2s,N (x) + g3s,N (x),

where

g1s,N (x) =


j≥s−t0
s,N

Qjgs1,N1(x),

g2s,N (x) =


s−t1
s,N
≤j<s−t0

s,N

Qjgs1,N1(x)

and

g3s,N (x) =


j<s−t1
s,N

Qjgs1,N1(x).

For i = 1, . . . , n, we know that

T 2
s,t1
s,N
,NRigs1,N1(x) = T 2

s,t1
s,N
,NRi


g3s,N (x) +Qs−t1

s,N
gs1,N1(x)


= Ri

g3s,N (x)−


Qs−t1

s,N
−1gs1,N1(x) +Qs−t1

s,N
−2gs1,N1(x)


+T 2
s,t1
s,N
,NRi


Qs−t1

s,N
−1gs1,N1(x) +Qs−t1

s,N
−2gs1,N1(x)


+T 2
s,t1
s,N
,NRiQs−t1s,N gs1,N1(x).

Define the function hi, i = 1, 2, 3, 4, as

h1(x) =


ϵ,s−N≤j<s−t1
s,N
−2,k

hϵ,1j,kΦ
ϵ
j,k(x),

h2(x) =


ϵ,j=s−t1
s,N
−2,k

hϵ,2j,kΦ
ϵ
j,k(x),

h3(x) =


ϵ,j=s−t1
s,N
−1,k

hϵ,3j,kΦ
ϵ
j,k(x),

h4(x) =


ϵ,j=s−t1
s,N
,k

hϵ,4j,kΦ
ϵ
j,k(x),

where the sequences {hϵ,ij,k}, i = 1, 2, 3, 4, are four arbitrary sequences satisfying ∥hi∥L∞ ≤ 1. We consider
T 2
s,t1
s,N
,NRigs1,N1(x)hi(x)dx.

By (6.6) and the definition of t1s,N , we have

g3s,N (x) + g2s,N ∈ L1(Rn). (6.11)

Hence

g2s,N −

Qs−t1

s,N
−1gs1,N1 +Qs−t1

s,N
−2gs1,N1


∈ L1 (6.12)
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and

Qs−t1
s,N
−igs1,N1 ∈ H1(Rn), i = 0, 1, 2. (6.13)

Similar to Case 1, by (5.2), the fact that

T 2
s,t1
s,N
,NRigs1,N1 ∈ L1(Rn), i = 1, . . . , n,

implies that for i = 1, . . . , n,

Ri


g3s,N −


Qs−t1

s,N
−1gs1,N1 +Qs−t1

s,N
−2gs1,N1


∈ L1(Rn).

Therefore we have

g3s,N −

Qs−t1

s,N
−1gs1,N1 +Qs−t1

s,N
−2gs1,N1


∈ H1(Rn).

Hence g3s,N ∈ H1(Rn).
For i = 1, . . . , n, we have

T 1
s,t1
s,N
,NRigs1,N1(x) = T 1

s,t1
s,N
,NRi


g1s,N (x) + g2s,N (x) +Qs−t1

s,N
−1gs1,N1(x)


.

So the conditions

T 1
s,t1
s,N
,NRi


g1s,N + g2s,N +Qs−t1

s,N
−1gs1,N1


∈ Pα(Rn), i = 1, . . . , n

and g1s,N ∈ Pα(Rn) imply

T 1
s,t1
s,N
,NRi


g2s,N +Qs−t1

s,N
−1gs1,N1


∈ Pα(Rn).

For i = 1, . . . , n, we have

T 1
s,t1
s,N
,NRi


g2s,N (x) +Qs−t1

s,N
−1gs1,N1(x)


= Ri

g2s,N (x)−Qs−t1

s,N
−2gs1,N1(x)


+T 1
s,t1
s,N
,NRi


Qs−t1

s,N
−2gs1,N1(x) +Qs−t1

s,N
−1gs1,N1(x)


.

Applying (6.13), we obtain

Ri


g2s,N −Qs−t1s,N−2gs1,N1


∈ Pα(Rn).

Hence g2s,N − Qs−t1s,N−2gs1,N1 ∈ Pα(Rn), that is, gs1,N1 satisfies (6.12) and (6.13). By (6.5) and (6.6),
g1s,N ∈ Pα(Rn) and g3s,N ∈ H1(Rn). Putting together, we complete the proof of (6.3).
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