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a b s t r a c t

The well known Fueter theorem allows to construct quaternionic regular functions or
monogenic functions with values in a Clifford algebra defined on open sets of Euclidean
space Rn+1, starting from a holomorphic function in one complex variable or, more in
general, from a slice hyperholomorphic function. Recently, the inversion of this theorem
has been obtained for odd values of the dimension n. The present work extends the result
to all dimensionsnbyusing the Fouriermultipliermethod.More precisely,we show that for
any axiallymonogenic function f defined in a suitable open set inRn+1, where n is a positive
integer, we can find a slice hyperholomorphic function f⃗ such that f = ∆(n−1)/2 f⃗ . Both
the even and the odd dimensions are treated with the same, viz., the Fourier multiplier,
method. For the odd dimensional cases the result obtained by the Fourier multiplier
method coincides with the existing result obtained through the pointwise differential
method.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The Fueter theorem is a useful tool to generate Cauchy–Fueter regular functions fromholomorphic functions in the upper
half complex planeC+, see [1]. Furthermore, letO be an open subset ofC+, f (z) = u(s, t)+iv(s, t) be a holomorphic function
defined on O and H be the set of all quaternions. Ωq is an open subset of H and is induced by O, i.e., Ωq = {q = q0 + q ∈

H | (q0, |q|) ∈ O}, where q0, q := q1i+ q2j+ q3k denote the real and the imaginary part of the quaternion q, respectively. In
Ωq, the function

F(q0, q) := ∆q


u(q0, |q|) +

q

|q|
v(q0, |q|)


is both left and right regular (or monogenic) with respect to the quaternionic Cauchy–Riemann operator

Dq = ∂q0 + i∂q1 + j∂q2 + k∂q3 ,

i.e., F satisfies DqF = FDq = 0, where ∆q = ∂2
q0 + ∂2

q1 + ∂2
q2 + ∂2

q3 denotes the Laplacian operator in the four real variables
q0, . . . , q3.

Qian by means of Fueter’s theorem developed a singular integral theory on the quaternionic unit sphere and its
Lipschitz perturbations that corresponds to the operator algebra of the spherical Dirac operator, which is identical with the
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Cauchy–DunfordH∞ functional calculus of the spherical Dirac operator. He also developed a theory of bounded holomorphic
Fourier multipliers in the Coifman–Meyer formulation of Fourier transformation on the Lipschitz surfaces [2].

Under the above assumptions on f , in 1957, Fueter’s theorem was extended to Rn+1 by Sce [3] for odd values of the
dimension n. Specifically, taken a function f as above, the Clifford algebra valued function

G(x0, x) := ∆
n−1
2


u(x0, |x|) +

x
|x|

v(x0, |x|)


, x = x0 + x ∈ Rn+1, (1.1)

is left and right monogenic with respect to the generalized Cauchy–Riemann operator in Rn+1

D := ∂x0 +

n
i=1

ei∂xi , (1.2)

i.e., DG = GD = 0, where

∆ :=

n
i=0

∂2
xi (1.3)

is the Laplacian in the n + 1 real variables. Moreover, the function G as in (1.1) turns out to be axially monogenic, namely it
is monogenic and it has the form A(x0, |x|) + (x/|x|)B(x0, |x|) where A and B are real-valued (more in general, for an axially
monogenic function A and Bmay have values in a Clifford algebra).

Qian in 1997 extended Sce’s result to Rn+1 for all positive integers n. In fact the Fourier multiplier method used by Qian
for n even is also valid for n odd, see [4,5] and also [6]. To the author’s knowledge, the approach of using Fueter’s theorem
is, so far, unique, in establishing the singular integral operator algebra theory on the sphere and its Lipschitz perturbations.
In contrast, the analogous theories for various contexts of unbounded Lipschitz graphs of one and higher dimensions were
established with a considerable variety of methods [7–11].

Fueter theorem can also be understood in terms of representation theory as an intertwining map between some
sl(2)-modules, see [12]. In particular, it is related with some properties of Gegenbauer polynomials. These polynomials
are important in the representation theory for the spin group Spin(n), within the setting of branching rules and axially
monogenic polynomials on Rn. Fueter theorem is also connected with some Appell sequences, see [13].

For further generalizations of Fueter’s Theorem beyond Sce and Qian we refer the reader to [14–19].
It is natural to ask whether there exists any converse result: given a monogenic function, is it possible to find its Fueter’s

primitive? The main goal of this paper is to show that the Fueter mapping is surjective on the set of axially monogenic
functions, and it is possible to solve the following inverse problem for all dimensions n:

Problem 1.1. Given an axially monogenic function

f (x) = A(x0, r) + ωB(x0, r),

where x = x0 + x ∈ Rn+1, r := |x|, ω := x/r , and A(x0, r), B(x0, r) are Clifford algebra valued functions, determine a slice
hyperholomorphic function f⃗ (the so-called Fueter’s primitive) such that

f (x) = ∆
n−1
2 f⃗ (x).

We note that for n odd integer this result was previously proved by Colombo et al. in [20,21] in which ∆(n−1)/2 is a
pointwise differential operator. In this paper, we give a uniform treatment for all integers n in which ∆(n−1)/2 is defined by
the corresponding Fourier multiplier and show that when n is odd our result coincides with the above mentioned result in
[21].

The proof is a combination of themethodused by Colombo, Sabadini, Sommen in [21], asmain strategy, andQian’s Fourier
multiplier method as given in [4,5], as technical approach. Although the Fourier multiplier method is applicable only to the
Clifford Cauchy kernel type meromorphic functions, through the Clifford Cauchy integral formula for general domains one
can obtain Fueter’s inversion for a general class of axially monogenic functions.

It is worthwhile mentioning that the method used in [21] can be further generalized to obtain Fueter’s inversion for
axially monogenic functions of degree k, see [22], and then obtain results in the case of monogenic functions, when the
dimension n is odd. Using a completely different approach, it is also possible to relate the class of slice hyperholomorphic
functions to the class of monogenic functions by using the Radon transform and its dual, see [23]. This approach does not
depend on the dimension n considered.

The plan of the paper is organized as follows. Section 2 contains preliminary results on Clifford algebras, monogenic
functions, Fueter’s theorem and its inversion. In Section 3 we recall some basic facts on slice hyperholomorphic functions.
Section 4 is the core of the paper and is devoted to obtain the inversion of Fueter’s theorem.



104 B. Dong et al. / Journal of Geometry and Physics 108 (2016) 102–116

2. Preliminary results

We start the section by revising some basic facts on (universal) Clifford algebras. Let e1, e2, . . . , en be an orthonormal
basis of Euclidean space Rn, satisfying the relations eiej + ejei = −2δij, i, j ∈ {1, 2, . . . , n}, where δij is the Kronecker delta.
That is e2i = −1 for i = 1, 2, . . . , n and eiej + ejei = 0 for 1 ≤ i ≠ j ≤ n. The real Clifford algebra R0,n is the real algebra
constructed over these elements. A basis for the R0,n as a real vector space is given by the elements eS := ej1ej2 · · · ejk , where
S := {j1, j2, . . . , jk} ⊆ {1, 2, . . . , n} with 1 ≤ j1 < j2 < · · · < jk ≤ n; or S = ∅, and we denote e∅ := 1. Hence the real
linear space R0,n has dimension 2n. An element a ∈ R0,n can be written as

a =


S

aSeS, aS ∈ R.

For each k ∈ {1, 2, . . . , n}, denote the subset of k-vectors of R0,n by

R(k)
0,n :=


a ∈ R0,n : a =


|S|=k

aSeS



which means that the set R(k)
0,n is spanned by the products of k different basis vectors of Euclidean space Rn. In particular,

when k = 1, R(1)
0,n is identified with Rn. And when k = 0, R(0)

0,n is actually R and for this reason a 0-vector is usually called
scalar. Thus we have

R0,n =

n
k=0

R(k)
0,n

and for an element a ∈ R0,n we can also rewrite it by

a =

n
k=0

[a]k

where [a]k is the projection of a on R(k)
0,n.

There are three involutions defined on R0,n: the main involution, the reversion and the conjugation. For an element
a ∈ R0,n the main involution ∼: a → ã is given by

ã =


S

aS ẽS

where ẽS := (−1)keS where the length |S| of S is such that |S| = k. For an element a ∈ R0,n the reversion ∗ : a → a∗ is
given by

a∗
=


S

aSe∗

S

where e∗

S := (−1)k(k−1)/2eS with eS = ej1ej2 · · · ejk . Finally, the conjugation of a is a combination by themain involution and
the reversion of a. In details, for an element a ∈ R0,n, the conjugation − : a → a is given by

a = (ã)∗ =


S

aS(ẽS)∗.

For elements a, b ∈ R0,n, suppose that a =


A aAeA and b =


B bBeB, the product of a and b is given by

ab =


A


B

aAbBeAeB.

Then, it is easy to show thatab = ãb̃,
(ab)∗ = b∗a∗,

ab = ba.

Now we can give the definition of norm of R0,n. For elements a, b ∈ R0,n, a norm of a, denoted by |a|, is given by

|a| = ([aa]0)
1
2 =


S

|aS |2
 1

2

.
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The complex Clifford algebra over e1, . . . , en is denoted by C0,n, and it is defined by

C0,n := C ⊗ R0,n = R0,n ⊕ iR0,n

where i is the imaginary unit of C. An element a ∈ C0,n, can be written as

a =


S

aSeS, aS ∈ C.

All the concepts introduced in the case of R0,n can be reformulated in the case of C0,n. In the case of the conjugation, for an
element a =


S aSeS ∈ C0,n, the conjugate of a is defined as a =


S aSeS with i = −i.

An important subset of the real Clifford algebra R0,n is R(0)
0,n ⊕ R(1)

0,n = R ⊕ Rn, whose elements are called paravectors.
Actually, a paravector is the sum of a scalar and a 1-vector, thus R⊕Rn is the real-linear span of 1, e1, . . . , en and x ∈ R⊕Rn

can be written as x := x0 + x, where x0 ∈ R and x :=
n

j=1 xjej ∈ Rn. Thus R ⊕ Rn may be naturally identified with Rn+1 by
associating all paravector x = x0 + x with the element (x0, x1, . . . , xn) ∈ Rn+1. In view of this identification, we will write
Rn+1 instead of R ⊕ Rn. It is immediate from the definition of norm that

|x| := ([xx]0)1/2 =


x20 + x21 + · · · + x2n,

for all x ∈ Rn+1, where x := x0 − x. If x ∈ Rn+1
\{0}, then the inverse x−1 exists and x−1

:= x · |x|−2.
We denote by C1(Ω, Cl0,n) (resp. C1(Ω, Cl0,n)) the continuously differentiable functionswhich are defined on an open set

Ω ⊂ Rn
1 (resp. Ω ⊂ Rn) and take values in the Clifford algebra Cl0,n which means either R0,n or C0,n. For all f ∈ C1(Ω, Cl0,n)

it has the form

f =


S

fSeS

where the functions fS are R-valued or C-valued. Let k be a nonnegative integers, we denote ∂k be the derivative for the kth
variables, i.e, ∂k := ∂xk for xk be the kth variables of x ∈ Rn+1. The Dirac operator is denoted by

Dx := ∂x1e1 + ∂x2e2 + · · · + ∂xnen, x ∈ Ω.

For all x ∈ Ω , the generalized Cauchy–Riemann operator is denoted by

D := ∂x0 + Dx.

We also need to introduce the Laplacian in the n + 1 real variables x0, x1, . . . , xn

∆ := ∂2
x0 + ∂2

x1 + · · · + ∂2
xn .

Monogenic functions are a crucial object in Clifford analysis.

Definition 2.1 (Monogenic Function). Let f (x) ∈ C1(Ω, Cl0,n) (resp. f (x) ∈ C1(Ω, Cl0,n)). Then f (x) (resp. f (x)) is called a
(left) monogenic function if and only if

Df (x) = 0 (resp. Dxf (x) = 0).

Axially monogenic functions are special case of monogenic functions.

Definition 2.2 (Axially Monogenic Function). A function f (x) ∈ C1(Ω, Cl0,n) is said to be axially monogenic if it is monogenic
and has the form

f (x) = A(x0, |x|) +
x
|x|

B(x0, |x|)

where A, B are Cl0,n-valued functions. Let Ω ⊂ Rn+1, we denote by AM(Ω) the set of all axially monogenic functions in Ω.

By the definition of monogenic functions the axially monogenic functions satisfy the Vekua’s system.

Theorem 2.3 (see [21, Theorem 2.10]). Let Ω ⊂ Rn+1. If f̃ (x) = A(x0, r)+ωB(x0, r) ∈ AM(Ω), then the pair of the functions
A(x0, r) and B(x0, r) forms a solution of the Vekua’s system, i.e.

∂x0A(x0, r) − ∂rB(x0, r) =
n − 1

r
B(x0, r),

∂x0B(x0, r) + ∂rA(x0, r) = 0

and vice versa.
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Fueter’s theorem is a useful tool in Clifford analysis and it can be seen as a bridge from complex analysis of one complex
variable to quaternionic analysis [1]. Then, Fueter’s theoremwas then extended to Rn+1 separately by Sce [3] for odd values
of n and by Qian [4] for even values of n. In details, let C be the complex plane and C+ be the upper half complex plane, i.e.,

C+
:= {z ∈ C | z = x0 + iy0, y0 > 0}.

Let O be a non-empty open set in C+ and let

f0(z) = u(x0, y0) + iv(x0, y0)

be a holomorphic function in O. Then the set O induces an open set in Rn+1 defined as

Ω := {x = x0 + x ∈ Rn+1
| (x0, |x|) ∈ O}.

We will say that Ω is the set induced by O and for x ∈ Ω , we can define the so-called induced function

f⃗0(x) := u(x0, |x|) +
x
|x|

v(x0, |x|).

By the mentioned generalizations in [3] and [4] of Fueter’s theorem, the function

∆
n−1
2 f⃗0, x ∈ Ω

is axially monogenic.
In the paper, N denotes the set of positive integers. Let n ∈ N and τ be the mapping defined by

τ(f0) = ∆
n−1
2 f⃗0,

where f⃗0 is the function induced by f0 and ∆(n−1)/2 is in the distributional sense of which the precise meaning will be
given below in the same section; or, alternatively, the reader may refer to page 117 in [24]. We note that τ(f0) is an axially
monogenic function, while the function f⃗0 belongs to the class of slice hyperholomorphic functions which will be rigorously
defined in the next section.

A natural question is whether the mapping τ is surjective on the set of axially monogenic functions. In other words we
ask:

Question 1. Given an axially monogenic function f , establish whether there exists a complex holomorphic function f0 such
that f = τ(f0).

Closely related, the main question we address in this paper is Problem 1.1, i.e., to establish the existence of a Fueter’s
primitive of an axially monogenic function. As we explained in the introduction section, Colombo, Sabadini and Sommen
give, in [21], a positive answer for the odd dimensions n. The full answer to this question is given by the study in the present
paper. We show that for a given axially monogenic function f , there exists a slice hyperholomorphic function f⃗ such that
f = ∆(n−1)/2 f⃗ , where n can be all positive integers. The existence of such function f⃗ establishes the inversion of Fueter’s
theorem in general, and the function f⃗ will be called a Fueter’s primitive of f .

When n ∈ N is an even integer, ∆(n−1)/2 is not a pointwise differential operator. In order to solve the inversion problem,
we need some knowledge on Fourier multiplier operators. Fourier transform and inverse Fourier transform of functions f
defined on Rn+1 are formally defined by

F (f )(ξ) :=


Rn+1

e2π i⟨x,ξ⟩f (x)dx

and

F −1(f )(x) :=


Rn+1

e−2π i⟨x,ξ⟩f (ξ)dξ,

respectively. As is well known, the Fourier inversion formula F −1F (f ) = f holds for f in the Schwarz class. We will use the
so-called Fourier multiplier operator induced by g:

Mg(f ) := F −1
[gF (f )].

In particular, for n ∈ N and x ∈ Rn+1, the fractional Laplace operator (−∆)(n−1)/2 is defined via the Fourier multiplier
operatorMg with g(x) := (2π |x|)n−1.

By using the Fourier multiplier operator the following key relation is established in [4]: for all positive integers k,

∆
n−1
2 (x−k) =

(−1)k−1λn

(k − 1)!
·

(∂0)

k−1E

(x),
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where λn is the constant given in Lemma 4.5, and E is the Cauchy kernel of monogenic functions (see [25]):

E(x) :=
x

ωn|x|n+1
, x ∈ Rn+1

\{0}, (2.1)

where ωn := 2π (n+1)/2/Γ [(n + 1)/2] is the surface area of the n dimensional unit sphere in Rn+1. The expression (2.1) of
the Cauchy kernel will be crucial in the proof of Lemma 4.5. The Cauchy kernel bears this name because it is the kernel used
in the Cauchy integral formula for monogenic functions, which we recall below (see [25] for more details). This formula will
be used in the proof of Theorem 4.15.

Theorem 2.4 (see [25, Corollary 9.6]). Let S be a region of Rn+1, S ⊂ Ω , and ∂S be compact differentiable and oriented. If f is
left monogenic in Ω , then

∂S
E(y − x)dσ(y)f (y) =


f (x), x ∈ So

0, x ∈ Ω\S,

where So denotes the interior of S, and the differential form dσ(y) is given by dσ(y) := η(y)dS(y), η(y) is the outer unit normal
to ∂S at the point y and dS(y) the surface measure of ∂S.

3. Slice hyperholomorphic functions

Wenow recall the definitions and someproperties of slice hyperholomorphic (or slicemonogenic) functions, see [26–29].
Denote by Sn−1 the n − 1 dimensional unit sphere in Rn, that is

Sn−1
:= {x ∈ Rn

: |x|2 = 1}.

If ω ∈ Sn−1, it is well-know that ω2
= −1. Let

Cω := R + ωR := {u + ωv : u, v ∈ R, ω ∈ Sn−1
}. (3.1)

For some x = x0 + x ∈ Rn+1, define

ωx =:

 x
|x|

, if x ≠ 0

any element of Sn−1, if x = 0.

Thus, by (3.1) we know that x ∈ Cωx and x = x0 + ωx|x|. We also need the following notation. Given an element x ∈ Rn+1,
we denote

[x] := {y ∈ Rn+1
| y = Re(x) + I|x|, ∀ I ∈ Sn−1

},

where Re(x) is the real part of x. The set [x] is a n−1 dimensional sphere inRn+1. If x ∈ R, then [x] = {x}, and the radius of the
sphere is zero. The notation reflects the fact that [x] is an equivalence class, precisely it contains the elements y equivalent
to x under the equivalence y ∼ x if and only if y = s−1xs, for s ∈ Rn+1, s ≠ 0.

In this section we denote by O an open set in R × R, then

Ω := {x = x0 + x ∈ Rn+1
: (x0, |x|) ∈ O}

is said to be the set induced by O. It is an open set satisfying the property described in the following definition:

Definition 3.1 (Axially Symmetric Open Sets). An open set Ω ⊂ Rn+1 is said to be axially symmetric if the (n − 1)-sphere
[u + ωv] is contained in Ω whenever u + ωv ∈ Ω for some u, v ∈ R.

We define the set of slice holomorphic functions only on axially symmetric open sets Ω .

Definition 3.2 (Slice Hyperholomorphic Functions). Let O ⊂ R × R+ and let Ω be the axially symmetric open sets induced
by O. We say that a function f : Ω → R0,n is slice hyperholomorphic if it is of the form

fω(x) = f (x0 + ωr) = α(x0, r) + ωβ(x0, r), (3.2)

where r = |x|, ω ∈ Sn−1, α and β are R0,n-valued differentiable functions, α(x0, r) = α(x0, −r), β(x0, r) = −β(x0, −r)
for all (x0, r) ∈ O and satisfy the Cauchy–Riemann system

∂x0α − ∂rβ = 0,
∂rα + ∂x0β = 0.
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Note that the hypothesis α(x0, r) = α(x0, −r), β(x0, r) = −β(x0, −r) is necessary in order to have the function
f (x0 + ωr) well defined, in fact:

f (x0 + ωr) = f (x0 + (−ω)(−r)) = α(x0, −r) − ωβ(x0, −r),

if and only if α and β are even and odd in the second variable, respectively.
Functions f slice hyperholomorphic according to Definition 3.2 are such that their restriction fω to the complex plane Cω

are in the kernel of the Cauchy–Riemann operator ∂x0 + ω∂r , see [27], for every ω ∈ Sn−1. The converse holds on axially
symmetric slice domains. We recall that an open set Ω is said to be a slice domain if Ω ∩ R is non empty and Cω ∩ Ω is a
domain in Cω for all ω ∈ Sn−1.

Now we give the definition of Fueter’s primitive for axially monogenic functions.

Definition 3.3 (Fueter’s Primitive). Let n ∈ N, Ω be an axially symmetric domain in Rn+1 and f be an axially monogenic
function defined onΩ. Then a slice hyperholomorphic function f⃗ , defined onΩ , is a Fueter’s primitive of f onΩ if it satisfies

f = ∆
n−1
2 f⃗ .

4. The inversion of Fueter’s theorem

Westart the section by recalling a resultwhichwill play an important role in the sequel, namely in the proof of Lemma4.5.
We refer the reader to page 73 in [24] for more details.

Lemma 4.1. Let 0 < α < n + 1, k ∈ N and Pk(x) be a homogeneous harmonic polynomial of degree k. Then
Rn+1

Pk(x)
|x|k+n+1−α

F (ϕ)(x)dx = γk,α


Rn+1

Pk(x)
|x|k+α

ϕ(x)dx (4.1)

for every ϕ which is sufficiently rapidly decreasing at infinity and

γk,α := ikπ (n+1)/2−αΓ (k/2 + α/2)/Γ (k/2 + (n + 1)/2 − α/2),

where i is the imaginary unit of the complex plane C and Γ is the Gamma function.

Remark 4.2. The formula (4.1) implies, in the tempered distribution sense,

F


Pk(x)

|x|k+n+1−α


(ξ) = γk,α

Pk(ξ)

|ξ |k+α

or

Pk(x)
|x|k+n+1−α

= γk,αF −1

Pk(ξ)

|ξ |k+α


(x).

Let n ∈ N, the following lemma states that the partial derivative ∂x0 can commute with the fractional Laplace operator
(−∆)(n−1)/2.

Lemma 4.3. Let n ∈ N and f be in the Schwarz class, then

∂x0


(−∆)

n−1
2 f (x)


= (−∆)

n−1
2

∂x0 f (x)


.

Proof. In fact, by the definition of (−∆)(n−1)/2, we have

∂x0


(−∆)

n−1
2 f (x)


= F −1


F

∂x0


(−∆)

n−1
2 f (x)


(ξ)


(x)

= F −1

(−2π iξ0) F


(−∆)

n−1
2 f (x)


(ξ)


(x)

= F −1 (2π |ξ |)n−1 (−2π iξ0) F [f (x)] (ξ)

(x)

= F −1 (2π |ξ |)n−1F

∂x0 f (x)


(ξ)

(x)

= (−∆)
n−1
2

∂x0 f (x)


where f belongs to the Schwarz class. �
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Remark 4.4. Likewise, the lemma is also true for the generalized Cauchy–Riemann operator D = ∂x0 + ∂x, i.e.

D

(−∆)

n−1
2 f (x)


= (−∆)

n−1
2 [Df (x)] .

Now we prove the following lemma.

Lemma 4.5. Let n, k ∈ N. Then x−k, defined on Rn+1
\{0}, is a Fueter’s primitive of

(−1)k−1λn

(k − 1)!
·

(∂0)

k−1E

(x), where λn =

(2π)n−1ωnγ1,n

i(n−1)γ1,1
.

Proof. The essence of the proof is contained in [4] or [5], we repeat the computations for completeness and to justify the
related constants as well. By the relation

x−k
=


x

|x|2

k

=
(−1)k−1

(k − 1)!
(∂x0)

k−1


x
|x|2


and Lemma 4.3, we have

(−∆)
n−1
2 (x−k) =

(−1)k−1

(k − 1)!
(∂x0)

k−1

(−∆)

n−1
2


x

|x|2


=

(−1)k−1

(k − 1)!
(∂x0)

k−1

F −1


F


(−∆)

n−1
2


x

|x|2


(ξ)


(x)


=
(−1)k−1

(k − 1)!
(∂x0)

k−1

F −1


(2π |ξ |)n−1F


x

|x|2


(ξ)


(x)


.

Applying Lemma 4.1 for k = 1, α = n, we get

(−∆)
n−1
2 (x−k) =

(−1)k−1

(k − 1)!
(∂x0)

k−1


F −1


γ1,n(2π |ξ |)n−1 ξ

|ξ |n+1


(x)


.

By using Lemma 4.1 for k = 1, α = 1, we obtain

(−∆)
n−1
2 (x−k) =

(−1)k−1

(k − 1)!
γ1,n

γ1,1
(2π)n−1(∂x0)

k−1


x
|x|n+1


.

Thus we have

∆
n−1
2 (x−k) =

(−1)k−1λn

(k − 1)!
·

(∂0)

k−1E

(x),

where λn := (2π)n−1ωnγ1,n/(i(n−1)γ1,1). In addition, it is immediate that x−k is slice hyperholomorphic. Thus, the statement
follows. �

Remark 4.6. It should be noted that the R0,n-valued function x−k is a Fueter’s primitive of the C0,n-valued function
[(−1)k−1λn/(k−1)!] ·


(∂0)

k−1E

(x) for n even.While for n odd this does not happen, and, instead, both the axial monogenic

function and its Fueter’s primitive take function values in the real Clifford algebra.

Let n and k be positive integers, then Lemma 4.5 yields

∆
n−1
2 (x−k) =

(−1)k−1λn

(k − 1)!
·

(∂0)

k−1E

(x). (4.2)

Thus the formula (4.2) can be seen as the definition of ∆(n−1)/2(x−k) for all k, n ∈ N. However, for k ∈ N, xk is not in the
Schwarz class, so themethod in Lemma4.5 cannot be used to give the definition of∆(n−1)/2


xk

.Wenote thatwhen n is odd,

and for positive powers k the function∆(n−1)/2(xk)may be defined through pointwise differentiation. Thuswe need to define
∆(n−1)/2(xk) when n is an even positive integer. Inspired by the method in [4], we will give the definition of ∆(n−1)/2(xk) for
all k, n ∈ N. And when n is odd the defined functions coincide with those obtained through pointwise differentiation.

For a given function f , its Kelvin inversion is denoted by I(f )(·) := E(·)f ((·)−1). Let k ∈ N, and let

P (−k)(·) := ∆
n−1
2 ((·)−k), P (k−1)

:= I(P (−k)).
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Definition 4.7. Let n, k ∈ N. For all x ∈ Rn+1 and k ≥ n − 1, we define

∆
n−1
2 (xk) := P (k+1−n)(x).

Remark 4.8. The above definition is natural. For n odd, the right hand side is equal to the left hand side under the pointwise
differentiation ∆(n−1)/2 (see [4]). For n even, it may be shown from Lemma 4.1 that ∆(n−1)/2(xk) = P (k+1−n)(x) indeed in the
distributional sense. We note that the rule P (k+1−n)

= I(P (−(k+2−n))) together with −(k+ 2− n) ≤ −1 gives the restriction
k ≥ n − 1. In the sequel we will use only values of k in such a range. The restriction of the range k ≥ n − 1 in the definition
of the mapping from xk to P (k+1−n)(x) reflects the fact that in Rn+1 there are no monogenic functions with homogeneity
degrees −1, −2, . . . ,−(n− 1) (see [30]). We will use this definition of ∆(n−1)/2(xk), k ≥ n− 1, as a crucial tool in the proof
of Lemma 4.12.

The functions K±
n defined below will play an important role in the proof of Theorem 4.15.

Definition 4.9. Let n ∈ N and E(x) the Cauchy kernel defined in (2.1). For all x ∈ Rn+1
\Sn−1, we define the kernels

K+

n (x) :=


Sn−1

E(x − ω) dS(ω)

and

K−

n (x) :=


Sn−1

E(x − ω) ω dS(ω)

where dS(ω) is the surface measure on Sn−1.

Remark 4.10. From Theorem 3.6 in [21], we know that K+
n (x) and K−

n (x) are axially monogenic functions. Furthermore,
for all x0 ∈ R we have

lim
|x|→0

K+

n (x) = Cn
x0

(x20 + 1)(n+1)/2
,

lim
|x|→0

K−

n (x) = −Cn
1

(x20 + 1)(n+1)/2
,

where

Cn :=
Γ [(n + 1)/2]
√

πΓ (n/2)
.

Next lemma is crucial to prove Lemma 4.12. Before introducing it, we need some notations. Let k ∈ N∪{0}. A monogenic
homogeneous polynomial Pk of degree k in Rn (we recall that Rn is identified with the set of 1-vectors x via the map
(x1, . . . , xn) → x1e1 + · · · + xnen) is called a solid inner spherical monogenic of degree k. We denote by Mk the set of
solid inner spherical monogenics of degree k.

Lemma 4.11 (See [31, Theorem 2.1]). Let Pk(x) ∈ Mk be fixed and W0(x0) an analytic function in Ω ⊂ R. Then there exists a
unique sequence {Ws(x0)}s>0 of analytic functions such that the series

f (x0, x) =

∞
s=0

xsWs(x0)Pk(x)

is convergent in an open set U in Rn+1 containing the set Ω , and its sum f is monogenic in U. The function W0(x0) is determined
by the relation

Pk(ω)W0(x0) = lim
|x|→0

1
|x|k

f (x0, x), ω =
x
|x|

∈ Sn−1.

The series f (x0, x) is the generalized axial CK-extension of the function W0(x0).

The following Lemma is devoted to find Fueter’s primitives of K+
n (x) and K−

n (x).

Lemma 4.12. For all x0 ∈ R, denote

P +

n (x0) :=
Cn

λ′
n

· D−(n−1)
x0


x0

(1 + x20)(n+1)/2


,

P −

n (x0) :=
Cn

λ′
n

· D−(n−1)
x0


1

(1 + x20)(n+1)/2


,
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where λ′
n := λn/(n − 1)! when x0 < 1, λ′

n := (−1)n−1λn/(n − 1)! when x0 > 1, and D−(n−1)
x0 stands for the (n − 1)-fold

antiderivative operation with respect to variable x0. Let P +
n (x) and P −

n (x) be the functions obtained by replacing x0 by x in
P +

n (x0) and P −
n (x0), respectively. Then, for all x ≠ 0, |x| ≠ 1, P +

n (x) is a Fueter’s primitive of K+
n (x), and P −

n (x) is a Fueter’s
primitive of K−

n (x).

Before giving a proof of Lemma 4.12 we note that D−(n−1)
x0 is the (n − 1)-fold antiderivative operation with respect to

variable x0. Hence, the representations of P ±
n (x) may differ by a term in the kernel of (∂x0)

n−1. However, the notation
D−(n−1)
x0 does not give rise to any ambiguity. This due to the fact that Fueter’s primitives are not unique and, in fact, any two

Fueter’s primitives differ by a function in the kernel of ∆(n−1)/2.
Besides, our proof of Lemma 4.12 splits into two cases, namely |x0| < 1 and |x0| > 1, each of which leads to a value of

the constant λ′
n.

Proof. We will only prove that P +
n (x) is a Fueter’s primitive of K+

n (x) for x ≠ 0, |x| ≠ 1, that is, P +
n (x) is slice

hyperholomorphic, and ∆(n−1)/2P +
n (x) = K+

n (x). Following a similar procedure, one can show that P −
n (x) is a Fueter’s

primitive of K−
n (x) for x ≠ 0, |x| ≠ 1.

We will see that the main part of proof it to prove lim|x|→0 ∆(n−1)/2P +
n (x) = lim|x|→0 K+

n (x) for x ≠ 0, |x| ≠ 1. We
separate it into two parts. When |x0| < 1, we have

P +

n (x0) :=
Cn

λ′
n

· D−(n−1)
x0


x0

(1 + x20)(n+1)/2



=
Cn

λ′
n

· D−(n−1)
x0


x0

∞
k=0


−

n + 1
2
k


x2k0



=
Cn

λ′
n

· D−(n−1)
x0


∞
k=0


−

n + 1
2
k


x2k+1
0



=
Cn

λ′
n

·

∞
k=0


−

n + 1
2
k


x2k+n
0

(2k + 2)(2k + 3) · · · (2k + n)
,

where we used the fact that the power series


∞

k=0


−

n+1
2
k


x2k0 converges absolutely in |x0| < 1. Replacing x0 by x, we have

P +

n (x) =
Cn

λ′
n

·

∞
k=0


−

n + 1
2
k


x2k+n

(2k + 2)(2k + 3) · · · (2k + n)
. (4.3)

For any given k, n ∈ N, x2k+n is slice hyperholomorphic. Thus, P +
n (x) is a slice hyperholomorphic function for |x| < 1.

Indeed, the power series (4.3) converges absolutely, and uniformly on all compact sets in |x| < 1. We now note that we can
apply the operator ∆(n−1)/2 to both sides of (4.3). In fact, ∆(n−1)/2


x2k+n


is well defined:

∆
n−1
2 P +

n (x) =
Cn

λ′
n

·

∞
k=0


−

n + 1
2
k


∆

n−1
2

x2k+n


(2k + 2)(2k + 3) · · · (2k + n)

. (4.4)

Now we calculate ∆(n−1)/2

x2k+n


. By Definition 4.7 we have

∆
n−1
2

x2k+n

= P (2k+1)(x)

= I

P (−(2k+2)) (x)

= −
λn

(2k + 1)!
E(x) ·


(∂0)

2k+1E

(x−1).

Then we have

lim
|x|→0


∆

n−1
2

x2k+n

= −
λn

(2k + 1)!
lim

|x|→0


E(x) ·


(∂0)

2k+1E

(x−1)


= −

λn

(2k + 1)!
E(x0) ·


(∂0)

2k+1E
  x0

|x0|2


= −

λn

(2k + 1)!
E(x0) ·


−

(n + 2k)!
(n − 1)!

|x0|n+2k+1


=
λn(n + 2k)!

(2k + 1)!(n − 1)!
x2k+1
0
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where we obtain the second equality by the continuously differentiable function E and the third equality by the definition
of partial derivative.

Taking the limit |x| → 0 on both sides of (4.4), and setting λ′
n := λn/(n − 1)!, we have

lim
|x|→0


∆

n−1
2 P +

n (x)


=
Cn

λ′
n

·

∞
k=0


−

n + 1
2
k

 lim
|x|→0


∆

n−1
2

x2k+n


(2k + 2)(2k + 3) · · · (2k + n)

=
Cn

λ′
n

·

∞
k=0


−

n + 1
2
k


λn(n + 2k)!x2k+1

0

(2k + 2)(2k + 3) · · · (2k + n)(2k + 1)!(n − 1)!

= Cn · x0
∞
k=0


−

n + 1
2
k


x2k0

= Cn ·
x0

(1 + x20)(n+1)/2

= lim
|x|→0

K+

n (x).

When |x0| > 1, we reason in an analogous way and we have

P +

n (x0) :=
Cn

λ′
n

· D−(n−1)
x0


x0

(1 + x20)(n+1)/2



=
Cn

λ′
n

· D−(n−1)
x0


x0|x0|−(n+1)

∞
k=0


−

n + 1
2
k


x−2k
0


.

If x0 > 1, we have

P +

n (x0) =
Cn

λ′
n

· D−(n−1)
x0


x0|x0|−(n+1)

∞
k=0


−

n + 1
2
k


x−2k
0



=
Cn

λ′
n

· D−(n−1)
x0


∞
k=0


−

n + 1
2
k


x−(2k+n)
0



=
Cn

λ′
n

·

∞
k=0


−

n + 1
2
k


(−1)n−1x−(2k+1)

0

(2k + n − 1)(2k + n − 2) · · · (2k + 1)
.

Replacing x0 by x, we have

P +

n (x) =
Cn

λ′
n

·

∞
k=0


−

n + 1
2
k


(−1)n−1x−(2k+1)

(2k + n − 1)(2k + n − 2) · · · (2k + 1)
.

For any given k ∈ N, x−(2k+1) is slice hyperholomorphic for |x| > 1. And the power series expressing P +
n (x) converges

absolutely, and uniformly on all compact sets in |x| > 1. Thus P +
n (x) is a slice hyperholomorphic function for |x| > 1.

Again reasoning as in the case |x0| < 1, we obtain

∆
n−1
2 P +

n (x) =
Cn

λ′
n

·

∞
k=0


−

n + 1
2
k


(−1)n−1∆

n−1
2

x−(2k+1)


(2k + n − 1)(2k + n − 2) · · · (2k + 1)

.

Now we compute ∆(n−1)/2

x−(2k+1)


. By Lemma 4.5 we have

∆
n−1
2

x−(2k+1)

= P (−(2k+1))(x) =
λn

(2k)!
·

(∂0)

2kE

(x). (4.5)
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Taking the limit |x| → 0 to the both side of (4.5) we have

lim
|x|→0

∆
n−1
2

x−(2k+1)

=
λn

(2k)!
· lim

|x|→0


(∂0)

2kE

(x)

=
λn

(2k)!
·

(∂0)

2kE

(x0)

=
λn

(2k)!
·
(n + 2k − 1)!

(n − 1)!
x−(2k+n)
0

=
λn(n + 2k − 1)!
(2k)!(n − 1)!

x−(2k+n)
0 .

By setting λ′
n = (−1)n−1λn/(n − 1)!, we obtain

lim
|x|→0

∆
n−1
2 P +

n (x) =
Cn

λ′
n

·

∞
k=0


−

n + 1
2
k

 (−1)n−1 lim
|x|→0


∆

n−1
2 x−(2k+1)


(2k + n − 1)(2k + n − 2) · · · (2k + 1)

=
Cn

λ′
n

·

∞
k=0


−

n + 1
2
k


(−1)n−1λn(n + 2k − 1)!x−(2k+n)

0

(2k + n − 1)(2k + n − 2) · · · (2k + 1)(2k)!(n − 1)!

= Cn · x−n
0

∞
k=0


−

n + 1
2
k


x−2k
0

= Cn ·
x0

(1 + x20)(n+1)/2

= lim
|x|→0

K+

n (x).

If x0 < −1, we have

P +

n (x0) =
Cn

λ′
n

· D−(n−1)
x0


x0|x0|−(n+1)

∞
k=0


−

n + 1
2
k


x−2k
0



=
Cn

λ′
n

· D−(n−1)
x0


(−1)n+1

∞
k=0


−

n + 1
2
k


x−(2k+n)
0



=
Cn

λ′
n

·

∞
k=0


−

n + 1
2
k


x−(2k+1)
0

(2k + n − 1)(2k + n − 2) · · · (2k + 1)
.

By the same way in the case x0 > 1, we obtain

∆
n−1
2 P +

n (x) =
Cn

λ′
n

·

∞
k=0


−

n + 1
2
k


∆

n−1
2

x−(2k+1)


(2k + n − 1)(2k + n − 2) · · · (2k + 1)

where ∆(n−1)/2

x−(2k+1)


is already obtained by (4.5).

Taking the limit |x| → 0 to the both side of (4.5) we have

lim
|x|→0

∆
n−1
2

x−(2k+1)

=
λn

(2k)!
· lim

|x|→0


(∂0)

2kE

(x)

=
λn

(2k)!
·

(∂0)

2kE

(x0)

= (−1)n+1 λn

(2k)!
·
(n + 2k − 1)!

(n − 1)!
x−(2k+n)
0

= (−1)n+1 λn(n + 2k − 1)!
(2k)!(n − 1)!

x−(2k+n)
0 .



114 B. Dong et al. / Journal of Geometry and Physics 108 (2016) 102–116

By setting λ′
n = λn/(n − 1)!, we obtain

lim
|x|→0

∆
n−1
2 P +

n (x) =
Cn

λ′
n

·

∞
k=0


−

n + 1
2
k

 lim
|x|→0


∆

n−1
2 x−(2k+1)


(2k + n − 1)(2k + n − 2) · · · (2k + 1)

=
Cn

λ′
n

·

∞
k=0


−

n + 1
2
k


(−1)n+1λn(n + 2k − 1)!x−(2k+n)

0

(2k + n − 1)(2k + n − 2) · · · (2k + 1)(2k)!(n − 1)!

= Cn · x0(−1)n+1x−(n+1)
0

∞
k=0


−

n + 1
2
k


x−2k
0

= Cn · x0|x0|−(n+1)
∞
k=0


−

n + 1
2
k


x−2k
0

= Cn ·
x0

(1 + x20)(n+1)/2

= lim
|x|→0

K+

n (x).

Theorem 1 in [4] yields that P (−(2k+1)) and P (2k+2) are both monogenic. It is easy to see that they are both axially
monogenic. Therefore, ∆(n−1)/2P +

n (x) is axially monogenic. Invoking Lemma 4.11 for the homogeneity 0 case, we have
∆(n−1)/2P +

n (x) = K+
n (x). Since P +

n (x) is also a slice hyperholomorphic function for x ≠ 0, |x| ≠ 1, we conclude that
it is a Fueter’s primitive of K+

n (x) and this concludes the proof. �

Remark 4.13. When the dimension n is odd and k ∈ N, in [4], Qian proved that P (k−1)(x) = ∆(n−1)/2(xn+k−2). Computations
similar to those in the proof of Lemma 4.12 then give P +

n (x) =
Kn
λ′
n
W+

n (x) and P −
n (x) =

Kn
λ′
n
W−

n (x),where W+
n (x) and W−

n (x)
are the functions obtained in [21] as Fueter’s primitive ofK+

n (x) andK−
n (x), where Kn is a constant depending on n. Formore

details, one can see [21]. Note that when n is odd, λ′
n assumes the same value for |x| < 1 and for |x| > 1. This coincidence

shows that, for n odd, the method based on Fourier multiplier used in Lemma 4.12 gives rise to the same result proved
in [21], the latter being based on the pointwise differential operator.

Remark 4.14. Wenote that the two slice hyperholomorphic extensionsP ±
n (x) obtained as sumsof the corresponding power

series may be defined in a set larger than Rn+1
\ {x = 0, |x| = 1}. See for example the case n = 3, where we have

P +

3 (x) =
1
2π arctan x, P −

3 (x) =
1
2π x arctan x, see [20,21].

We can now state and prove the main theorem of this paper. The proof will follow the lines of the proof of Theorem 4.2
of [21].

Theorem 4.15. Let n ∈ N, Ω be an axially symmetric open set in Rn+1 and let f (y) = f (y0 + ωr) = A(y0, r) + ωB(y0, r)
be a Cl0,n-valued axially monogenic function on Ω . Let Γ be the boundary of an open bounded set Vω ⊂ R + ωR+ and
V := ∪ω∈Sn−1 Vω ⊂ Ω . Moreover, suppose that Γ is a regular curve whose parametric equations in the upper complex plane
C+

ω = {y0 + ωr, y0, r ∈ R} are given by y0 = y0(s), r = r(s) and are expressed in terms of the arc-length s ∈ [0, L], L > 0.
Then, for all x ∈ V ,

f⃗ (x) :=


Γ

P −

n


x − y0

r


rn−2

[dy0A(y0, r) − drB(y0, r)] −


Γ

P +

n


x − y0

r


rn−2

[dy0B(y0, r) + drA(y0, r)]

is a Fueter’s primitive of f (x), where P ±
n (x) are defined in Lemma 4.12.

Proof. We need the following notations.

(1) Σ is the manifold defined by

Σ := {y0 + ωr | (y0, r) ∈ Γ , ω ∈ Sn−1
}.

(2) ds is the infinitesimal arc-length, dS(ω) is the infinitesimal element of surface area on Sn−1.

(3) t =
d
ds (y0 + ωr) is the unit tangent vector at a point of Γ ⊂ Cω , while the normal unit vector n is given by

n = −ωt =
d
ds

[r(s) − ωy0(s)].
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(4) The scalar infinitesimal element of the manifold Σ , expressed in terms of ds and dS, is given by

dΣ = rn−1dsdS(ω).

(5) The oriented infinitesimal element of manifold dσ(s, ω) is given by

dσ(s, ω) = ndΣ =
d
ds

[r(s) − ωy0(s)]rn−1dsdS(ω)

or

dσ(s, ω) = [dr(s) − ωdy0(s)]rn−1dS(ω).

Since f is monogenic, for all x = x0 + ντ ∈ V , we can write it by using the Cauchy integral formula in Theorem 2.4:

f (x0 + νρ) =


Γ


Sn−1

E(y0 + ωr − x0 − νρ)dσ(s, ω)f (y0 + ωr). (4.6)

We can rewrite (4.6) splitting into two parts:

f (x0 + νρ) = −


Γ


Sn−1

E(y0 + ωr − x0 − νρ)ωdS(ω)


rn−1

[dy0A(y0, r) − drB(y0, r)]

+


Γ


Sn−1

E(y0 + ωr − x0 − νρ)dS(ω)


rn−1

[dy0B(y0, r) + drA(y0, r)].

Since the Cauchy kernel has homogeneity degree −n, i.e. E(tx) = t−nE(x) for t > 0, we have

f (x0 + νρ) =


Γ


Sn−1

r−nE

x − y0

r
− ω


ωdS(ω)


rn−1

[dy0A(y0, r) − drB(y0, r)]

−


Γ


Sn−1

r−nE

x − y0

r
− ω


dS(ω)


rn−1

[dy0B(y0, r) + drA(y0, r)].

Recalling the definitions of K±
n , we may rewrite the above relation as

f (x) =


Γ

K−

n


x − y0

r


r−1

[dy0A(y0, r) − drB(y0, r)] −


Γ

K+

n


x − y0

r


r−1

[dy0B(y0, r) + drA(y0, r)].

Set x′
:=

x−y0
r and let ∆x′ be the Laplacian in the variable x′. Due to Lemma 4.12, P ±

n are Fueter’s primitives of,
respectively, K±

n . Note that Lemma 4.12 asserts that P ±
n may only be defined outside a set consisting of the origin and

the sphere |x| = 1. This restriction affects the integral below through the fixed x but upon the related integral variable s on
the curve Γ . The restriction, in fact, just excludes a set of Lebesgue measure zero on Γ and thus does not actually affect the
integral value. We obtain

f (x) =


Γ

∆
n−1
2

x′

P −

n (x′)

r−1

[dy0A(y0, r) − drB(y0, r)] −


Γ

∆
n−1
2

x′

P +

n (x′)

r−1

[dy0B(y0, r) + drA(y0, r)].

We now note that the power of the Laplacian and r can be interchanged, i.e.,

∆
(n−1)/2
x′ = rn−1∆(n−1)/2.

In fact, from the definition

Σ := {y0 + ωr | (y0, r) ∈ Γ , ω ∈ Sn−1
}

we can see that r is identical with |y|. It is, therefore, a constant for the Laplacian in x or x′. Hence we have ∆
(n−1)/2
x′ =

rn−1∆
(n−1)/2
x . Besides, since none of the involved integrands have singularities, we can exchange the order of the integration

and the differential operation ∆(n−1)/2. As a consequence, the following equation holds:

f (x) = ∆
n−1
2


Γ

P −

n


x − y0

r


rn−2

[dy0A(y0, r) − drB(y0, r)] −


Γ

P +

n


x − y0

r


rn−2

[dy0B(y0, r) + drA(y0, r)]


.

By setting

f⃗ (x) :=


Γ

P −

n


x − y0

r


rn−2

[dy0A(y0, r) − drB(y0, r)] −


Γ

P +

n


x − y0

r


rn−2

[dy0B(y0, r) + drA(y0, r)],

we have f = ∆(n−1)/2 f⃗ . From Lemma 4.12, we know that f⃗ (x) is a slice hyperholomorphic function on V . Therefore, f⃗ is a
Fueter’s primitive of f . The statement follows. �
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Remark 4.16. If we can find a Fueter’s primitive f⃗ of an axially monogenic function f , where f⃗ is such that the involved
functionsα andβ are real-valued, then it is immediate that f⃗ is the induced function of the holomorphic function f0(x+iy) =

α(x, y) + iβ(x, y). This shows the existence of f0 such that τ(f0) = f . Hence Question 1 in Section 2 is positively answered.
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