
Available online at www.sciencedirect.com

ScienceDirect

Journal of Approximation Theory 206 (2016) 17–47
www.elsevier.com/locate/jat

Full length article

Minimax principle and lower bounds in H2-rational
approximation✩

Laurent Baratcharta, Sylvain Chevillarda,∗, Tao Qianb

a Inria, 2004 route des Lucioles, BP 93, 06 902 Sophia-Antipolis Cedex, France
b Faculty of Science and Technology, University of Macau, E11 Avenida da Universidade, Taipa, Macau

Received 30 December 2013; received in revised form 9 March 2015; accepted 14 March 2015
Available online 1 April 2015

Communicated by Sergey Krushchev

Abstract

We derive lower bounds in rational approximation of given degree to functions in the Hardy space H2

of the unit disk. We apply these to asymptotic error rates in rational approximation to Blaschke products
and to Cauchy integrals on geodesic arcs. We also explain how to compute such bounds, either using
Adamjan–Arov–Krein theory or linearized errors, and we present a couple of numerical experiments. We
dwell on a maximin principle developed in Baratchart and Seyfert (2002).
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1. Introduction

Rational approximation to a given function on a curve in the complex plane is a classical topic
from analysis, and a cornerstone of modeling and design in several areas of applied sciences and
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engineering. Special interest attaches to the case where the approximated function extends holo-
morphically on one side of the curve. In connection with system identification and control, such
issues typically arise on the line or the circle where they make contact with extremal problems
in Hardy spaces [4,15,33,29,30,32,43]. Our model curve in this paper will be the circle, though
everything translates easily to the line. The criterion under examination will be the L2-norm.

From the approximation-theoretic viewpoint, much attention has been directed towards error
rates, in connection with smoothness of the approximated function. Let us mention Peller’s con-
verse theorems on the speed of rational approximation [33], Glover’s construction of near-best
uniform rational approximants [15], Parfenov’s solution of a conjecture by Gonchar on the degree
of rational approximation to holomorphic functions on compact subsets of the domain of analyt-
icity [31], the Gonchar–Rakhmanov estimates in uniform rational approximation to sectionally
holomorphic functions off an S-contour, and its generalization to best L2 and L p approximants
in [8,42].

The present paper is, in part, a sequel to [8]. In the latter reference best L2 and L∞ rational
approximants are compared in the n-th root sense, whereas here we compare them in norm. We
emphasize that the L2 norm and weighted variants thereof are of great importance in applications,
due to their interpretation as a variance in a stochastic context. Moreover, best rational H2

approximants have the interesting property of being attained through interpolation [26]. Note
also that certain functions, like Blaschke products, can be approximated in H2-norm but not in
the uniform norm by rational functions.

A key to the above-mentioned comparison is the derivation of lower bounds on the L2 approx-
imation error. Lower bounds in approximation are usually difficult to obtain; we dwell here on a
topological machinery developed in [6] which expresses the approximation error as the solution
to a max–min problem, and we rely as well on the Adamjan–Arov–Krein theory of best uniform
meromorphic approximation. We prove a somewhat general result (Theorem 4) which gives a
lower bound on the L2-best rational approximation error of given degree, in terms of the ratios
of L2 and L∞ norms of the singular vectors of the Hankel operator with symbol the approximated
function. We then apply it to three cases where these ratios can be estimated: rational functions,
Blaschke products, and Cauchy integrals on geodesic arcs. We use also the max–min principle to
study linearized errors as a means to compute further lower bounds. We also include numerical
experiments, some of which give excellent accuracy to estimate the H2 error in rational ap-
proximation (see Table 1 in Section 7). To the author’s knowledge, such results are first of their
kind.

The paper is organized as follows. After some preliminaries on Hardy spaces in Section 2, we
present in Section 3 the approximation problems that we consider. Section 4 is an introduction to
the results of [6] and it contains a basic account of the Adamjan–Arov–Krein theory. We derive
in Section 5 our main theorem giving lower bounds in L2 rational approximation, and we apply
it to cases mentioned above. Finally, in Section 6, we discuss linearized errors.

2. Notations and preliminaries

Let D be the unit disk in the complex plane C, and T the unit circle. We denote by C(T) the
space of continuous, complex-valued functions on T. For 1 ≤ p ≤ ∞, we put L p

= L p(T) for
the familiar Lebesgue space of complex measurable functions on T such that

∥ f ∥p =


1

2π

 2π

0
| f (eiθ )|p dθ

1/p

< ∞ if 1 ≤ p < ∞,
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∥ f ∥∞ = ess. sup
θ∈[0,2π ]

| f (eiθ )| < ∞.

Hereafter, we let H2
= H2(D) be the Hardy space of holomorphic functions in D whose

Taylor coefficients at 0 are square summable:

H2
= { f (z) = Σ∞

k=0ak zk
: ∥ f ∥H2 := Σ∞

k=0|ak |
2 < +∞}.

We refer the reader to [14] for standard facts on Hardy spaces. By Parseval’s relation

∥ f ∥
2
H2 = sup

0≤r<1

1
2π

 2π

0
| f (reiθ )|2 dθ, (1)

and the map
f (z) = Σ∞

k=0ak zk


−→


f ∗(eiθ ) := Σ∞

k=0akeikθ


is an isometry from H2 onto the closed subspace of L2 comprised of functions whose Fourier
coefficients of strictly negative index do vanish. As is customary, we shall identify H2 with this
subspace so that the distinction between f and f ∗ as well as ∥ f ∥H2 and ∥ f ∗

∥2 will disappear.
This conveniently allows one to regard members of the Hardy class both as functions on D and on
T. From the function-theoretic viewpoint, the correspondence f → f ∗ is that f ∗(eiθ ) is almost
everywhere the limit of f (z) as z tends non-tangentially to eiθ within D.

We put H̄2,0
= H̄2,0(C\D) for the companion Hardy space of holomorphic functions in C\D,

vanishing at infinity, whose Taylor coefficients there are square summable:

H̄2,0
= { f (z) = Σ∞

k=1ak z−k
: ∥ f ∥H̄2,0 := Σ∞

k=1|ak |
2 < +∞}.

The map
f (z) = Σ∞

k=1ak z−k


−→


f ∗(eiθ ) = Σ∞

k=1ake−ikθ


is an isometry from H̄2,0 onto the closed subspace of L2 comprised of functions whose Fourier
coefficients of non-negative index do vanish, and as before we identify H̄2,0 with the latter.
Clearly we have an orthogonal sum:

L2
= H2

⊕ H̄2,0. (2)

In fact, it holds that f ∈ H̄2,0 if and only if the function f̌ given by

f̌ (z) := z−1 f (1/z̄) (3)

lies in H2, and the map f → f̌ is an involutive isometry of L2 sending H2 onto H̄2,0. Actually,
f̌ has same modulus as f pointwise on T since f (1/z̄) = f (z)when |z| = 1. If f is holomorphic
on Ω , then f ♯(z) = f (1/z̄) is holomorphic on the reflection of Ω across T, and if f is rational
f ♯ is likewise rational. Of course, a relation like f ♯ = f̄ must be understood to hold on T only.

We let

P+


Σk∈Z akeikθ 

= Σk≥0 akeikθ and P−


Σk∈Zakeikθ 

= Σk<0akeikθ

indicate the so-called Riesz projections that discard the Fourier coefficients of strictly negative
and non-negative index respectively. Clearly P+ (resp. P−) contractively maps L2 onto H2 (resp.
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H̄2,0) and P+ + P− = I . We call P+ the analytic projection and P− the anti-analytic projection.
Note that, by Cauchy’s formula, P±( f ) can be expressed as Cauchy integrals:

P+( f )(z) =
1

2iπ


T

f (ζ )

ζ − z
dζ, |z| < 1,

P−( f )(z) =
1

2iπ


T

f (ζ )

z − ζ
dζ, |z| > 1.

(4)

The Hardy space H∞
= H∞(D) consists of bounded holomorphic functions on D, endowed

with the sup norm. From (1) we see that H∞ embeds contractively in H2, in particular each
f ∈ H∞ has a non-tangential limit f ∗ on T. It can be shown that ∥ f ∗

∥∞ = ∥ f ∥H∞ , and
that the map f → f ∗ is an isometry from H∞ onto the closed subspace of L∞ comprised of
functions whose Fourier coefficients of strictly negative index do vanish. Again we identify H∞

with this subspace. Likewise, the space H̄∞,0 of bounded holomorphic functions vanishing at
infinity in C\D identifies via non-tangential limits with the closed subspace of L∞ consisting of
functions whose Fourier coefficients of non-negative index do vanish. However, in contrast with
the situation for L2, the operators P± are unbounded on L∞. Besides the norm topology, H∞

inherits the weak-* topology from L∞(T). It is characterized by the fact that fn tends weak-* to
f if and only if


T fnϕ →


T f ϕ for every ϕ ∈ L1. It is equivalent to require that (∥ fn∥∞)n is

a bounded sequence and that, for each k, the k-th Fourier coefficient of fn converges to the k-th
Fourier coefficient of f .

As is well-known [14, Chapter II, Corollary 5.7], a nonzero f ∈ H2 factors uniquely as
f = jw where

w(z) = exp


1

2π

 2π

0

eiθ
+ z

eiθ − z
log | f (eiθ )| dθ


(5)

belongs to H2 and is called the outer factor of f , normalized so as to be positive at zero, while
j ∈ H∞ has modulus 1 a.e. on T and is called the inner factor of f . The latter may be further
decomposed as j = bS, where

b(z) = czk

ζl ≠0

−ζ̄ l

|ζl |

z − ζl

1 − ζ̄l z
(6)

is the normalized Blaschke product, with multiplicity k ≥ 0 at the origin, associated to a sequence
of points ζl ∈ D\{0} and to a constant c ∈ T, while

S(z) = exp


−

1
2π

 2π

0

eiθ
+ z

eiθ − z
dµ(θ)


is the singular inner factor associated with a positive singular measure µ on T. The ζl are of
course the zeros of f in D, counting multiplicities by repetition. The number of zeros, finite or
infinite, is called the degree of the Blaschke product. Throughout, we let Bn denote the set of
Blaschke products of degree at most n. If the degree is infinite, the convergence of the product in
(6) is equivalent to the condition

l

(1 − |ζl |) < ∞ (7)
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which holds automatically when f ∈ H2. That w(z) is well-defined rests on the fact that log
| f | ∈ L1 if f ∈ H2

\{0}. A function f ∈ H2 with inner–outer factorization f = jw lies in H∞

if, and only if w ∈ L∞(T). For simplicity, we often say that a function is outer (resp. inner) if it
is equal to its outer (resp. inner) factor.

We put Pn[z] for the space of complex algebraic polynomials of degree at most n in the
variable z, or simply Pn if the variable is understood. Below we let Z(q) indicate the set of zeros
of a polynomial q. For qn ∈ Pn[z], we define its reciprocal polynomial to beqn(z) := zn qn(1/z̄).

We warn the reader that this definition depends on n: if we consider qn−1 ∈ Pn−1 as an element
of Pn with zero leading coefficient, the definitions ofqn−1(z) in Pn−1 and in Pn may be incon-
sistent. Therefore we always specify, e.g. via a subscript “n” as in “qn”, which definition is used.
Clearly the “tilde” operation is an involution of Pn preserving modulus pointwise on T.

We designate by Rm,n = Rm,n(z) the set of complex rational functions of type (m, n) in L2,
namely those that can be written as pm/qn where pm belongs to Pm and qn ∈ Pn has no root on
T. When r = pm/qn is in irreducible form, the integer max{m, n} is the (exact) degree of r . Note
that Bm ⊂ Rm,m is comprised of rational functions of degree at most m which are analytic in D
and have unit modulus everywhere on T. Alternatively, Bm consists of functions qm/qm where
qm ∈ Pm has all its roots in D. Clearly, Bm is included in the unit sphere of both H2 and H∞.

We further set

H2
m :=


g

qm
: g ∈ H2, qm ∈ Pm


.

Members of H2
m identify in L2 with non-tangential limits of meromorphic functions with at

most m poles in D (counting multiplicities) whose L2-means over {|z| = r} remain eventu-
ally bounded as r → 1−. Functions in ∪m H2

m are called meromorphic in L2. Two equiva-
lent descriptions of H2

m are useful: on the one hand we get by pole-residue decomposition that
H2

m = H2
+(Rm−1,m ∩ H̄2,0), on the other hand we have that H2

m = B−1
m H2, the set of quotients

of H2-functions by Blaschke products of degree at most m. Likewise we put

H∞
m := H2

m ∩ L∞
= B−1

m H∞
=


g

qm
: g ∈ H∞, qm ∈ Pm


for the set of meromorphic functions with at most m poles in L∞.

3. Best rational and meromorphic approximation in L2

For n ≥ 1 an integer, the best rational approximation problem of degree n in L2 is:

Problem R(n): Given h ∈ L2, to find r∗
∈ Rn,n such that

∥h − r∗
∥2 = min

r∈Rn,n
∥h − r∥2.

Write h = h1 + h2 with h1 ∈ H2, h2 ∈ H̄2,0. By partial fraction expansion, each r ∈ Rn,n
can be decomposed as r1 + r2 where r1 ∈ H2, r2 ∈ H̄2,0, and deg r1 + deg r2 ≤ n. Then, by (2),

∥h − r∥
2
2 = ∥h1 − r1∥

2
2 + ∥h2 − r2∥

2
2

so that problem R(n) reduces, modulo optimal allocation of the degrees of r1 and r2 (n + 1
choices), to a pair of problems of the following types:
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Problem RA(n): Given f ∈ H2, to find r∗
∈ Rn,n ∩ H2 such that

∥ f − r∗
∥2 = min

r∈Rn,n∩H2
∥ f − r∥2.

Problem RAB(n): Given f ∈ H̄2,0, to find r∗
∈ Rn−1,n ∩ H̄2,0 such that

∥ f − r∗
∥2 = min

r∈Rn−1,n∩H̄2,0
∥ f − r∥2.

In “RA(n)” and “RAB(n)”, the letter “A” is mnemonic for “analytic” and “B” stands for
“bar”.

Problem RA(n) is in fact equivalent to RAB(n). For we can parametrize r ∈ Rn,n ∩ H2 as
r(0)+ zr3 where r(0) ∈ R and r3 ∈ Rn−1,n ∩ H2 vary independently, and by Parseval’s theorem

∥ f − r∥
2
2 = | f (0)− r(0)|2 + ∥( f − f (0))− zr3∥

2
2

hence r(0) = f (0) is the optimal choice. Thus, since multiplication by 1/z is an isometry, we find
upon replacing f by ( f − f (0))/z that Problem RA(n) is equivalent to the normalized version:

Problem RAN(n): Given f ∈ H2, to find r∗
∈ Rn−1,n ∩ H2 such that

∥ f − r∗
∥2 = min

r∈Rn−1,n∩H2
∥ f − r∥2.

Now, applying the check operation defined in (3), which preserves Rn−1,n and the degree,
this last problem is seen to be equivalent to RAB(n), as announced. Note that when passing from
RA(n) to RAB(n), the initial f ∈ H2 to be approximated from Rn,n ∩ H2 gets transformed into
the function f (1/z̄)− f (0) ∈ H̄2,0 to be approximated from Rn−1,n ∩ H̄2,0.

Finally, we state the best meromorphic approximation problem with at most n poles in L2:

Problem MA(n): Given f ∈ L2, to find g∗
∈ H2

n such that

∥ f − g∗
∥2 = min

g∈H2
n

∥ f − g∥2.

Problem MA(n) is also equivalent to RAB(n). Indeed, H2
n = H2

+ (Rn−1,n ∩ H̄2,0) so that,
by orthogonality of H2 and H̄2,0, the H2-component of a minimizer in MA(n) must be P+( f )
while the H̄2,0-component of this minimizer is a solution to RAB(n) with f replaced by P−( f ).

Let us mention that best meromorphic approximation, unlike best rational approximation,
is conformally invariant. This makes it of independent interest in a broader context, see
[5, Proposition 5.4] for further details.

Having reduced all previous approximation problems to RAB(n), hereafter we discuss the
latter. It is known that RAB(n) has a solution which needs not be unique, and every solution has
exact degree n unless f is rational of degree at most n − 1 [12,26,2].

We shall write d2( f,Rn−1,n) (resp. d2( f,Rn,n)) for the distance from f to Rn−1,n (resp.
Rn,n) in L2. For instance if f ∈ H̄2,0, then d2( f,Rn−1,n) is both the value of Problem RAB(n)
and of Problem MA(n); and if f ∈ H2, then d2( f,Rn−1,n) (resp. d2( f,Rn,n)) is the value of
problem RAN(n) (resp. RA(n)). Besides, the value of MA(n) is denoted by d2( f, H2

n ).
When f ∈ L∞, we let d∞( f, H∞

n ) indicate the distance from f to H∞
n . This is the value

of the best meromorphic approximation problem with at most n poles in L∞, that we did not
formally introduce but which stands analog to MA(n) with L2 replaced by L∞ and H2

n by H∞
n .

We put also d∞( f,Rn−1,n) (resp. d∞( f,Rn,n)) for the distance from f to Rn−1,n (resp. Rn,n)
in L∞.
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4. Duality in meromorphic approximation

Pick f ∈ H̄2,0 and let us parametrize r ∈ Rn−1,n ∩ H̄2,0 as r = pn−1/qn where pn−1 ranges
over Pn−1 and qn ranges over those polynomials in Pn whose roots lie in D. Then qn/qn ∈ Bn
and since pn−1/qn ∈ H2 we have by orthogonality of H2 and H̄2,0 that f −

pn−1

qn

2

2
=

 f
qnqn

−
pn−1qn

2

2
=

P−


f

qnqn

2

2
+

P+


f

qnqn


−

pn−1qn

2

2
. (8)

Clearly the product of a H̄2,0-function by a polynomial in Pn yields a member of zn H̄2,0.
Therefore

qnP+


f

qnqn


= f qn −qnP−


f

qnqn


∈ zn H̄2,0

∩ H2
= Pn−1, (9)

entailing that pn−1 =qnP+( f qn/qn) is the minimizing choice in (8) for fixed qn . Consequently

min
r∈Rn−1,n∩H̄2,0

∥ f − r∥2 = min
qn∈Pn ,Z(qn)⊂D

P−


f

qnqn


2

= min
bn∈Bn

∥P−( f bn)∥2. (10)

That the infimum is indeed attained in the right hand side of (10) follows from (8) and the fact
that RAB(n) has a solution. Define A f , the Hankel operator with symbol f , by

A f : H∞
−→ H̄2,0

v → P−( f v).
(11)

It is evident that A f is continuous and that |||A f ||| = ∥ f ∥2, a unit maximizing vector being v ≡ 1.
Here and below, we let |||.||| stand for the operator norm, and a maximizing vector of an operator
E is a nonzero vector v such that ∥Ev∥/∥v∥ = |||E |||.

The content of the discussion leading from (8) to (10) may now be restated as follows.

Proposition 1. For f ∈ H̄2,0, it holds that

d2( f,Rn−1,n) = min
bn∈Bn

∥A f (bn)∥2. (12)

A rational function pn−1/qn ∈ Rn−1,n is a solution to RAB(n) if, and only if bn = qn/qn is a
minimizing Blaschke product in (12) and pn−1 =qnP+( f bn).

Put Lk for the space of linear operators from H∞ into H̄2,0 which are weak-* continuous and
have rank not exceeding k. For k = 0, 1, 2, . . . , we denote by σk(A f ) the k-th approximation
number of A f defined by

σk(A f ) = inf

|||A f − Γ |||, Γ ∈ Lk .


. (13)

Note that σk(A f ) ≥ σk+1(A f ) and that σ0(A f ) = |||A f |||.
We need also introduce the genus of a closed symmetric subset K in a topological vector

space; here, symmetric means that if v ∈ K then also −v ∈ K . By definition the genus of K ,
denoted by gen(K ), is the smallest positive integer m for which there exists an odd continuous
mapping

G : K −→ Rm
\{0}, (14)
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or else +∞ if no finite m meets the above requirement. By convention the genus is zero if K = ∅.
When K is compact and does not contain 0, then gen(K ) is always finite, see [44]. For instance,
if m ≥ 1, the classical Borsuk–Ulam theorem from topology [20, Chapter 2, Section 6] implies
that any symmetric set in Rm which is homeomorphic to the (real) (m−1)-dimensional Euclidean
sphere Sm−1 through an odd map has genus m.

Below, we shall be concerned with weak-* compact subsets of S ∞, the unit sphere of H∞. In
this connection, we let

K∞
m =


K ⊂ S ∞

: K is a weak-* compact symmetric subset of S ∞with gen(K ) ≥ m

.

Subsequently, we define the (generalized) singular numbers of A f by

λm(A f ) = max
K∈K∞

m

min
u∈K

∥A f (u)∥2, m = 0, 1, 2, . . . . (15)

The following theorem, which was established in [6], connects approximation numbers and
singular numbers of A f with the value of Problem RAB(n):

Theorem 1 ([6, Theorem 8.1]). Let f ∈ H̄2,0 and A f : H∞
→ H̄2,0 the Hankel operator with

symbol f . For each integer n ≥ 0, the following equalities hold:

d2( f,Rn−1,n) = σn(A f ) = λ2n+1(A f ) = λ2n+2(A f ). (16)

Theorem 1 is reminiscent of a famous theorem by Adamjan–Arov–Krein (in short: the AAK
theorem) characterizing d∞( f, H∞

n ) rather than d2( f,Rn−1,n). To state the result, let us define
for f ∈ L∞ the Hankel operator Γ f by

Γ f : H2
−→ H̄2,0

v → P−( f v).
(17)

Although the definitions of A f and Γ f are formally the same, observe that the domains in (11)
and (17) are different. The definition of sk(Γ f ) is still given by (13) except that A f is replaced
by Γ f and Γ now ranges over linear operators from H2 into H̄2,0 having rank at most k. If in
addition f is continuous on T, then Γ f is compact [33, Chapter 1, Theorem 5.5]. Then, if we
let Γ ∗

f denote the adjoint, Γ ∗

f Γ f is a compact selfadjoint operator from the Hilbert space H2

into itself and as such it has a complete orthonormal family of eigenvectors called the singular
vectors of Γ f ; the associated eigenvalues are none but the squared approximation numbers
of Γ f [16, Chapter II, Theorem 2.1], and there holds the Courant max min principle
[45, Section 22.11a]:

sn(Γ f ) = max
V ∈Vn+1

min
v∈V

∥v∥2=1

∥Γ f (v)∥2, (18)

where Vn+1 is the collection of linear subspaces of H2 of complex dimension at least n + 1. In
this Hilbertian context, the approximation number sn(Γ f ) is also called the n-th singular value
of Γ f . We say that a function v is associated with a singular value s when v is an eigenvector
of Γ ∗

f Γ f associated with the eigenvalue s2: v = s2Γ ∗

f Γ f (v). As a particular case of Eq. (18) a
maximizing vector is just a singular vector associated with s0(Γ f ).

Theorem 2 (The AAK Theorem [1, Theorems 0.1 and 0.2] [33, Chapter 4, Theorem 1.2]). Let
f ∈ L∞ and Γ f : H2

→ H̄2,0 be the Hankel operator with symbol f . For each integer n ≥ 0,
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it holds that

d∞( f, H∞
n ) = sn(Γ f ). (19)

If in addition f ∈ C(T), then Γ f is compact and the quantity (19) is also equal to (18).

The case n = 0 of Theorem 2, i.e. that |||Γ f ||| = d∞( f, H∞) was known earlier as Nehari’s
theorem.

If we compare (15) and (16) with (18) and (19) for f ∈ H̄2,0
∩ L∞, we see that the main

difference between best meromorphic approximation with at most n poles in L2 and in L∞ lies
with the maximization step in (15), which in the L2-case must be taken over all compact sets of
genus at least1 2n + 2 and not just Euclidean spheres of real dimension 2n + 1.

It follows from [3, Theorem 1] or [23, Theorem 5.3] that Bn is homeomorphic to S2n+1

and inspection of the proof reveals that the homeomorphism is odd. Moreover Bn is weak-*
compact in S ∞ [6, Lemma 7.3], therefore Bn ∈ K∞

2n+2 and from Proposition 1 we see that it is a
supremizer in (15).

We mention for completeness a companion to Theorem 1 dealing with min max (not
max min):

Theorem 3 ([34] [6, Eq. (78)]). Let f ∈ H̄2,0 and A f : H∞
→ H̄2,0 be the Hankel operator

with symbol f . For each integer n ≥ 0, the following equality hold:

d2( f,Rn−1,n) = min
W∈Wn

max
w∈W

∥w∥∞=1

∥A f (v)∥2, (20)

where Wn is the collection of linear subspaces in H∞ of (complex) codimension at most n.

Note that (20) is the exact counterpart for A f of the standard Courant min max principle for Γ f :

d∞( f, H∞
n ) = min

X∈Xn
max
w∈X

∥w∥2=1

∥Γ f (v)∥2,

where Xn is the collection of linear subspaces in H2 of (complex) codimension at most n.
Using Proposition 1 it is easy to see that if pn−1/qn is a solution to RAB(n), then the subspace

(qn/qn)H∞, comprised of multiples of qn/qn in H∞, is a minimizing W in (20).
In the rest of the paper, we use the maximizing step in (15) together with Theorem 1 to derive

lower bounds for Problems RAB(n).

5. Lower bounds

5.1. Comparing L2 and L∞ meromorphic approximation

Consider f ∈ H̄2,0
∩ L∞ and r, r∗

∈ Rn−1,n with r∗ a solution to RAB(n), i.e. a best approx-
imant to f in L2 from Rn−1,n . Then ∥ f − r∗

∥2 ≤ ∥ f − r∥2. Now, for any h ∈ H∞, Parseval’s
theorem gives ∥ f − r∥2 ≤ ∥ f − r − h∥2. Finally, since the L∞-norm dominates the L2-norm
∥ f − r − h∥2 ≤ ∥ f − r − h∥∞ and so we have

∥ f − r∗
∥2 ≤ ∥ f − (r + h)∥∞.

1 That λ2n+1(A f ) = λ2n+2(A f ) in (16) is inessential and due the fact that A f is complex linear whereas the genus
is a real notion.
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Thus, minimizing over r, h, we find that d2( f,Rn−1,n) ≤ d∞( f, H∞
n ). However, it is a priori

unclear how large the gap between the two errors can be. Below, dwelling on Theorems 1 and 2,
we derive when f is continuous a lower bound in terms of the ratio between L2 and L∞ norms
of the singular vectors of the Hankel operator Γ f .

Theorem 4. Let f ∈ H̄2,0
∩ C(T) and n ≥ 0 an integer. Consider an orthonormal family

v0, . . . , vn of singular vectors of the Hankel operator Γ f (cf. (17)), where vk is associated to the
singular value sk(Γ f ). Define Mn( f ) := min{d∞( f, H∞

j )/∥v j∥∞, 0 ≤ j ≤ n} if v j ∈ H∞ for
0 ≤ j ≤ n, and Mn( f ) := 0 otherwise. Then

Mn( f )
√

n + 1
≤ d2( f,Rn−1,n). (21)

Proof. If Mn( f ) = 0, then (21) is trivial. Otherwise, the linear span of {v0, . . . , vn} over C is a
real 2n + 2-dimensional vector space in L2

∩ L∞, and we may endow it either with the L2-norm
or else with the L∞-norm. Let S2 and S∞ indicate the corresponding unit spheres. Identifying
a vector with its coordinates, we see that S2 is just S2n+1, and clearly v → v/∥v∥∞ is an odd
homeomorphism from S2 onto S∞. Therefore, by the Borsuk–Ulam theorem, S∞ is a compact
set of genus 2n + 2. Now, if we let v ∈ S∞ and write v =

n
j=0 λ jv j while abbreviating s j (Γ f )

as s j , we get using “⟨, ⟩” to mean Hermitian scalar product on T that

∥A f (v)∥
2
2 = ⟨A f (v), A f (v)⟩ = ⟨Γ f (v),Γ f (v)⟩ = ⟨Γ ∗

f Γ f v, v⟩ = Σ n
j=0|λ j |

2s2
j

≥
1

n + 1


n

j=0

|λ j |s j

2

≥
M2

n ( f )

n + 1


n

j=0

|λ j |∥v j∥∞

2

≥
M2

n ( f )

n + 1
, (22)

where the second line in (22) uses the Schwarz inequality, the definition of Mn( f ) together with
the equality s j (Γ f ) = d∞( f, H∞

j ) from Theorem 2, the triangle inequality and the fact that
∥v∥∞ = 1. Inequality (21) now follows from (22) and Theorem 1. �

The kernels KerA f and KerΓ f are closed subsets of H∞ and H2 respectively, and clearly
KerA f = KerΓ f ∩ H∞. (cf. definitions (11) and (17)). By a theorem of Beurling [14, Chapter II,
Theorem 7.1], being closed and shift-invariant (i.e. invariant under multiplication by the variable
z), KerΓ f is either trivial ({0} or H2) or else consists of all multiples of some inner function j,
that is, KerΓ f = jH2. In the latter case KerA f = jH∞, in particular KerΓ f and KerA f are
simultaneously nontrivial. In this situation the proof of Theorem 4 quickly leads to an improve-
ment of itself as follows. Notations and assumptions being as in the theorem, set ∥v j∥H∞/KerA f

to be +∞ if v j ∉ H∞ and to be the distance from v j to KerA f in H∞ otherwise. Observe that if
∥v j0∥H∞/KerA f = 0 for some j0 ∈ {0, . . . , n}, then v j0 ∈ KerΓ f which entails that Γ f has rank
at most j0 by definition of singular values. It is a theorem of Kronecker [33, Chapter 1, Corol-
lary 3.2] that this happens if and only if f ∈ H∞

j0
, and since f ∈ H̄2,0

∩ C(T) by assumption
we get that f ∈ R j0−1, j0 . In particular it holds in this case that d∞( f, H∞

j ) = d2( f,R j−1, j ) =

∥v j∥H∞/KerA f = 0 for all j ≥ j0. Keeping this observation in mind, let us define

Qn( f ) := min
0≤ j≤n


d∞( f, H∞

j )

∥v j∥H∞/KerA f


, (23)

where Qn( f ) is to be interpreted as 0 if ∥v j0∥H∞/KerA f = 0 for some j0 ∈ {1, . . . , n} (in which
case d∞( f, H∞

j0
) = 0 as well by what precedes).
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Corollary 1. Theorem 4 remains valid if Mn( f ) gets replaced by Qn( f ).

Proof. We can assume that v j ∈ H∞
\KerA f for 0 ≤ j ≤ n, otherwise Qn( f ) = 0 and there is

nothing to prove. By the discussion before the corollary, this amounts to say that f ∉ H∞
n . Next,

pick ε > 0 and g j ∈ KerA f such that ∥v j − g j∥∞ < ∥v j∥H∞/KerA f +ε for each j ∈ {1, . . . , n}.
If we let w j = v j − g j , then A f (w j ) = Γ f (w j ) = Γ f (v j ) and the w j are linearly independent
over C. Indeed, if

n
j=0 λ jw j = 0 with λ j0 ≠ 0, applying Γ ∗

f Γ f yields
n

j=0 λ j s2
j (Γ f )v j = 0

and since the v j are linearly independent we have that s j0(Γ f ) = 0; thus, by the AAK theorem,
we get that f ∈ H∞

j0
⊂ H∞

n , contrary to our initial assumption. Replacing now v j by w j in the
proof of Theorem 4 and using that Γ f (w j ) = Γ f (v j ), we obtain instead of (22) that, whenever
w =

n
j=0 λ jw j is such that ∥w∥∞ = 1, then

∥A f (w)∥
2
2 ≥

1
n + 1

min
0≤ j≤n


d∞( f, H∞

j )

∥v j∥H∞/KerA f + ε

2

.

Thus, letting ε go to 0, we get the desired result from Theorem 1 again. �

Theorem 4 is useful only if we have a fair appraisal of Mn( f ). The latter is delicate to estimate
in general, but in the following subsections we point out three cases where this can be done
in different guises. They are: the case of a general rational function which can be approached
numerically; the case of a Blaschke product where estimates can be given in terms of the zeros;
the case of Cauchy integrals over hyperbolic geodesic arcs in which boundedness of Mn( f ) can
be proved via a careful analysis of formulas behind AAK theory, dwelling on the work in [6].

5.2. Application to rational functions

When f is rational, the bounds in Corollary 1 can be numerically computed. As explained
in Section 3, the general case reduces by partial fraction extension to the special case where
f ∈ H̄2,0, the detail of which is carried out below.

Write f = p/q where p ∈ P N−1, q ∈ P N is monic with all roots in D, and p, q are coprime
as polynomials. Let us write

q(z) = Π N
k=1(z − ζk)

where each ζk ∈ D is repeated according to multiplicity. It is clear from definition (17) that
KerΓ f consists of those H2-functions vanishing at the zeros of q, hence KerΓ f = (q/q)H2. Its
orthogonal complement in H2 is (Ker Γ f )

⊥
= P N−1/q , an orthonormal basis of which is given

according to the Malmquist–Walsh lemma by the formulas [28, Chapter V, Section 1]:

e j (z) =


1 − |ζ j |

2
1/2

1 − ζ̄ j z
Π j−1

k=0
z − ζk

1 − ζ̄k z
, 1 ≤ j ≤ N , (24)

where the empty product is understood to be 1. The effect of Γ f on any member of (Ker Γ f )
⊥

is easily computed upon introducing a ∈ P N−1 and b ∈ P N−1 such that the following Bezout
relation holds: aq + bq = 1. Indeed, one has for any u ∈ P N−1[z] that

Γ f (u/q) = P−


pu

qq


= P−


pua

q
+

pubq


= P−


pua

q


=

Rq(pua)

q
, (25)
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where we used that pub/q ∈ H2 and, for any polynomial P , Rq(P) indicates the remainder
of Euclidean division of P by q . In particular, we get from (25) that ImΓ f = P N−1/q . The
Hermitian scalar product on T can be computed in several ways for functions in P N−1/q; one
which does not use partial fraction expansion is as follows. Pick u, v ∈ P N−1. Observing that
zN/q is conjugate to 1/q on T and denoting with Qq(P) the quotient of Euclidean division of
the polynomial P by q (so that P = q Qq(P)+ Rq(P)), we get since aq + bq = 1 that

u

q
,
v

q


=


zN uqq

, v


=


zN ubq + Qq


zN ua


+

Rq(zN ua)

q
, v



=


Qq


zN ua


, v

, (26)

where we used that Rq(zN ua)/q ∈ H̄2,0 and zN ub/q ∈ zN H2 are both orthogonal to v ∈ P N−1
by Parseval’s theorem. The last term in (26) is now a scalar product between polynomials which
can be computed as a Euclidean one in the basis {zk

; 0 ≤ k ≤ N − 1}.
Writing e j = u j/q where e j was defined in (24), we can use (25), (26) to compute the Her-

mitian matrix M = ⟨Γ ∗

f Γ f (ei ), e j ⟩ = ⟨Γ f (ei ),Γ f (e j )⟩, and an orthonormal family of singular
vectors v0, . . . , vN−1 associated with the nonzero singular values of Γ f is then obtained by di-
agonalization of M (of course any other orthonormal basis of P N−1/q than (ek) could be used
as well). More precisely, the k-th row of a unitary matrix U such that U MU∗ is diagonal yields
coordinates for vk in the basis e j . The diagonal terms are the squared singular values s2

k (Γ f ) for
0 ≤ k ≤ N − 1, which are none but the d∞( f, H∞

k ) by the AAK theorem. Moreover, it follows
from Nehari’s theorem that

∥v j∥H∞/KerA f = d∞(v jq/q, H∞) = |||Γv jq/q |||, (27)

and the last term in (27) is the largest singular value of a Hankel operator with rational symbol
which can be computed in the same manner as indicated above to compute s0(Γ f ).

Thus, we can evaluate Qn defined in (23) for all n, hence also the lower bound on d2
( f,Rn−1,n) given by Theorem 4 and Corollary 1. We implemented a prototype algorithm to
compute these two bounds. Numerical experiments are presented in Section 7.

5.3. Application to Blaschke products

In this section, we use Theorem 4 to derive some lower bounds for Problem RA(n) when f
is a Blaschke product of finite or infinite degree. This last case is instructive to contrast rational
approximation in L2 and L∞ norms, for on the one hand the value of Problem RA(n) tends to
zero as n goes large (since rational functions are dense in H2), while on the other hand f cannot
be approximated “at all” by rational functions in H∞, i.e. zero is a best uniform approximant.
This follows from the lemma below which is not easy to locate in the literature.

Lemma 1. Let b be a Blaschke product and n be a positive integer which is strictly less than the
degree of b (if b has infinite degree the assumption is void). Then

d∞(b,Rn,n) = ∥b∥∞ = 1. (28)

Proof. Clearly d∞(b,Rn,n) ≤ 1 for zero is a candidate approximant. Moreover, if r ∈ Rn,n ∩

H∞ then r̄ ∈ H∞
n . Therefore, upon conjugating, we get d∞(b,Rn,n) ≥ d∞(b̄, H∞

n ) and it is
enough to show the latter is at least 1, hence in fact equal to 1.
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Assume first that b has finite degree d , and write b = qd/qd where qd ∈ Pd has zeros in
D only. Then b̄ = qd/qd , and the kernel of Γb̄ is bH2 whose orthogonal complement in H2

is (Ker Γb̄)
⊥

= Pd−1/qd as pointed out in the previous section. Now, if pd−1 ∈ Pd−1, then
Γb̄(pd−1/qd) = pd−1/qd so that Γb̄ is an isometry from (Ker Γb̄)

⊥ onto its image. Consequently
the first d singular values of Γb̄ are equal to 1 (the remaining ones being zero). That
d∞(b̄, H∞

n ) = 1 now follows from the AAK theorem and the fact that n ≤ d − 1.
Assume next that b has infinite degree. We can write b = bn+1b∞ where bn+1 has degree

n + 1 and b∞ has infinite degree. If g ∈ H∞
n then also b∞g ∈ H∞

n , and since |b∞| = 1 a.e. on
T, we get by the first part of the proof that

∥b̄ − g∥∞ = ∥b∞b̄ − b∞g∥∞ = ∥b̄n+1 − b∞g∥∞ ≥ 1, g ∈ H∞
n , (29)

hence d∞(b̄, H∞
n ) ≥ 1, as desired. �

We turn to the main result of this section:

Theorem 5. Let b be a Blaschke product, of finite or infinite degree. Let us arrange its zeros into
a (finite or infinite) sequence ζ1, ζ2, . . . , where each ζ j is repeated according to its multiplicity
and the corresponding sequence of moduli is nondecreasing: |ζ1| ≤ |ζ2| ≤ · · ·. For each positive
integer n strictly less than the degree of b (if b has infinite degree the assumption is void), it
holds that

1 − |ζn+1|
2
1/2

√
n + 1

≤ d2(b,Rn,n) (30)

and also that
n

j=0

1
1 − |ζ j |

2
1/2

−1

≤ d2(b,Rn,n). (31)

Proof. Assume first that b has finite degree d , so that b ∈ C(T), and write b = qd/qd where
qd ∈ Pd has zeros in D only. By the equivalence between Problem RA(n) and RAN(n) discussed
in Section 3, we know that

d2(b,Rn,n) = d2


(b̄ − b(0)),Rn−1,n


.

Now, the Hankel operators Γb̄ and Γb̄−b(0) coincide and we saw in the proof of Lemma 1 that Γb̄

is an isometry from (Ker Γb̄)
⊥

= Pd−1/qd onto ImΓb̄ = Pd−1/qd . Hence the e j given by (24)
for 1 ≤ j ≤ d form an orthonormal family of d ≥ n + 1 singular vectors associated with the
singular value 1. By the AAK theorem it follows that d∞(b̄, H∞

j ) = 1 for 0 ≤ j ≤ d − 1, and

since ∥e j∥∞ = (1 − |ζ j |
2)−1/2, estimate (30) follows at once from Theorem 4 upon choosing

v j = e j+1 for 0 ≤ j ≤ n.
Next, if we let w j = (

n
k=0 e2iπk j/(n+1)vk)/(n + 1)1/2 for 0 ≤ j ≤ n, we get another

orthonormal family of n + 1 singular vectors associated with the singular value 1, and clearly
∥w j∥∞ ≤ (n +1)−1/2n+1

k=0(1−|ζk |
2)−1/2 for all j . Estimate (31) now follows from Theorem 4

again upon replacing the previous v j by w j .
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If now b is infinite and k ≥ 0 is the multiplicity of the zero at the origin, we can write (6) for
some constant c of unit modulus. Let us define bm = czm if m ≤ k and

bm(z) = czk
m

l=k+1

−ζ̄ l

|ζl |

z − ζl

1 − ζ̄l z
, m > k. (32)

The sequence of Blaschke products {bm} converges to b pointwise on D, and since it is bounded
it must also converge weakly to b in H2. Since bm and b have norm 1, the limit of the norms is
the norm of the weak limit, hence the convergence is actually strong in H2 [9, Theorem 3.32].
Consequently

lim
m→∞

d2(bm,Rn,n) = d2(b,Rn,n),

and since estimates (30), (31) depend only of the first n + 1 zeros of b they remain valid in the
limit. �

In view of Corollary 1, the conclusion of Theorem 5 can be sharpened upon replacing in the
proof ∥v j∥∞ and ∥w j∥∞ by |||Γb̄v j

||| and |||Γb̄w j
|||. Computations become more involved but in

any case cannot increase the left hand side of (30) and (31) by more than a factor 2. Incidentally,
for qn ∈ P N having all roots in D, it seems to be an open question which L2-orthonormal bases
of Pn−1/qn have minimax L∞-norm. Using such bases instead of e j in the proof of Theorem 5
may improve on the result.

Since (7) is necessary and sufficient for {ζl} to be the zero set of a Blaschke product, an
immediate corollary to Theorem 5 is:

Corollary 2. Whenever αn is a nonincreasing sequence in (0, 1] such that Σnαn < ∞, there is
a Blaschke product b such that

α
1/2
n+1

√
n + 1

≤ inf
r∈Rn,n∩H2

∥b − r∥2, n ∈ N, (33)

and also n
j=0

1

α
1/2
j

−1

≤ inf
r∈Rn,n∩H2

∥b − r∥2, n ∈ N. (34)

5.4. Application to Cauchy integrals on hyperbolic geodesics

Recall that geodesic lines for the hyperbolic metric in D are radii and circular arcs orthogonal
to T [14, Chapter I]. By definition, a hyperbolic geodesic segment is a compact and connected
subset thereof. Alternatively, a hyperbolic geodesic segment is the image of a real segment
[a, b] ⊂ (0, 1) under an automorphism of the disk (i.e. a Möbius transformation of the type
z → α(z − z0)/(1 − z̄0z) with |α| = 1 and z0 ∈ D, in other words a Blaschke product of degree
1). Below is a nonstandard characterization of hyperbolic geodesic segments which is analytic in
nature. We will not use the “if” part but it is interesting in itself.

Lemma 2. A C1-smooth, closed Jordan arc γ ⊂ D is a hyperbolic geodesic segment if, and only
if there is a constant C = C(γ ) > 0 such that, to each g ∈ H2, there is h ∈ H2 with h|γ = ḡ|γ

and ∥h∥2 ≤ C∥g∥2. If g is continuous on D, so is h.
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Proof. If γ is hyperbolic geodesic segment, then it is the image of a real segment under an
automorphism ϕ of D and h(z) = (g ◦ ϕ)(z̄) ◦ ϕ−1 does the job. Conversely, if γ is a C1-smooth
closed Jordan arc in D with endpoints z1, z2 and if there exists a constant C = C(γ ) as in the
statement of the lemma, then the proof of [6, Theorem 10.1] applies (upon trading the geodesic
arc G for γ in that proof) to show that γ consists exactly of non-isolated points of the cluster set,
as n ranges over N, of poles of best approximants to ((z − z1)(z − z2))

−1/2
∈ C(T) from H∞

n .
Because this characterization depends only on z1, z2, it follows that γ must be the geodesic arc
joining them. �

In this section, we will consider functions of the form

f (z) =
1

2iπ


G

h(ξ)

z − ξ
dξ (35)

where:

(H1) G ⊂ D is a geodesic segment,
(H2) h is a complex-valued function on G, summable with respect to arclength, having

continuous argument except possibly for finitely many jumps of amplitude π .

The prototype of such a function is one which is analytic over D except for two branchpoints
of order strictly greater than −1. Indeed, by Cauchy formula, such a function can be written as
the Cauchy integral, on any smooth cut connecting the branchpoints, of the jump of the function
across the cut. This jump is locally analytic and has continuous argument on the cut (up to the
branchpoints by Puiseux expansion), except at the zeros that the jump may have on this cut where
the argument has left and right limits which differ by kπ if k is the order of the zero. Choosing the
hyperbolic geodesic cut, we get representation (35). It may seem artificial to favor the hyperbolic
geodesic segment linking the branchpoints among all possible cuts. However, this one turns out
to attract almost all poles of best rational approximants (see [8] for this and generalizations to
finitely many branchpoints) and also of best meromorphic approximants (see [6, Theorem 10.1]
and Corollary 3 below), which makes it in some sense the natural singular set of the function.

We need additional facts from AAK theory that shed light on singular vectors of Hankel
operators with continuous symbol. They apply in particular to Γ f when f is of the form (35).

• For f ∈ C(T) and n ≥ 0, a best approximant gn to f from H∞
n in L∞ uniquely exists

[1, Theorem 1.3] [33, Chapter 4, Theorem 1.3] which is given by

gn =
P+( f vn)

vn
, f − gn =

Γ f (vn)

vn
=

P−( f vn)

vn
, (36)

where vn is any singular vector of Γ f associated with sn(Γ f ); moreover, the error function
f − gn has constant modulus sn(Γ f ) a.e. on T [1, Theorem 1.3] [33, Chapter 4, Section 1,
Eq. (1.12)]. In particular, (36) entails that the ratios P±( f vn)/vn are independent of which
singular vector vn associated with sn(Γ f ) is used; this is remarkable for if sn(Γ f ) has
multiplicity µ, then the union of {0} and of all associated singular vectors is a vector space of
complex dimension µ.

• When f ∈ C(T), the inner factor of a singular vector of Γ f is a finite Blaschke product.
More precisely, keeping notations as in the previous item and letting in addition m = m(n)
be the smallest non-negative integer such that sm(Γ f ) = sn(Γ f ), the singular vector vn may
be inner–outer factorized as

vn = bbmwn (37)
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where wn ∈ H2 is outer and bm ∈ Bm is a Blaschke product of exact degree m with zeros
the poles of gn (= gm), while b is a finite Blaschke product whose zeros are also zeros of
P+( f vn). Moreover, with b, bm and wn as in (37), it holds that

Γ f (vn)(z) = sn(Γ f ) z−1bm(1/z̄) j (1/z̄)wn(1/z̄), |z| ≥ 1 (38)

where j is a finite Blaschke product such that jb ∈ Bµ−1 and µ is the multiplicity of
σn(Γ f ) [1, Theorem 1.2].

• Assumptions and notations being as in the previous items, let vn be a singular vector of Γ f
associated with sn(Γ f ) and (37) be its inner–outer factorization. We claim that bmwn is also
a singular vector of Γ f associated with sn(Γ f ). Indeed, we know from the previous item that
gn = b−1

m h for some h ∈ H∞. Since ∥ f − h/bm∥∞ = ∥ f bm − h∥∞, the fact that gn is a
best approximant to f from H∞

n entails that h is the best approximant to f bm ∈ C(T) from
H∞, hence |||Γ f bm ||| = ∥ f − h/bm∥∞ = sn(Γ f ) by the AAK theorem. Taking into account
that Γ f bm (u) = Γ f (bmu) for u ∈ H2, and also that Γ ∗

f (Φ) = P+( f̄ Φ) for Φ ∈ H2,0, while

using that b̄m H̄2,0
⊂ H̄2,0 and P+ + P− = I d, we now compute

Γ ∗

f bm
Γ f bm (bwn) = Γ ∗

f bm
Γ f (vn) = P+


f bm Γ f (vn)


= P+


b̄mP+


f̄ Γ f (vn)


= P+


b̄mΓ ∗

f Γ f (vn)


= s2
n(Γ f )P+


b̄mvn


= s2

n(Γ f )bwn .

This shows that bwn is a maximizing vector of Γ f bm . Next, we observe that

∥Γ f bm (bwn)∥2 = ∥P−


bΓ f bm (wn)


∥2 ≤ ∥Γ f bm (wn)∥2 (39)

because multiplication by b is an isometry and anti-analytic projection is a contraction in
L2. Since ∥bwn∥2 = ∥wn∥2, we conclude from (39) that wn is in turn a maximizing
vector of Γ f bm and that equality must hold throughout in this equation. In other words
bΓ f bm (wn) ∈ H̄2,0, which implies easily that bΓ f bm (wn) = Γ f bm (bwn). Consequently

Γ ∗

f Γ f (bmwn) = P+


f b bΓ f (bmwn)


= P+


b̄P+( f̄ Γ f (bbmwn))


= P+


b̄Γ ∗

f Γ f (vm)


= s2
n(Γ f )P+


b̄vn


= s2

n(Γ f )bmwn . (40)

This proves the claim.

We now assume that f has the form (35). Using (4) to express definition (17) of the Hankel
operator, then inserting (35) and using successively Fubini’s theorem and the residue formula,
we obtain:

Γ f (vn)(z) =


1

2iπ

2 
G

h(ξ)dξ


T

vn(ζ )

(ζ − ξ)(z − ζ )
dζ

=
1

2iπ


G

vn(ξ)h(ξ)

z − ξ
dξ, |z| > 1. (41)

In particular Γ f (vn) extends analytically from C\D to C\G, and Eq. (38) becomes

sn(Γ f ) z−1bm(1/z̄) j (1/z̄)wn(1/z̄) =
1

2iπ


G

vn(ξ)h(ξ)

z − ξ
dξ, |z| ≥ 1. (42)
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Multiplying the restriction of (42) to z ∈ T by bm j and then taking anti-analytic projection again
gives us after a similar computation:

sn(Γ f ) z−1wn(1/z̄) =
1

2iπ


G

j (ξ)b2
m(ξ)b(ξ)wn(ξ)h(ξ)

z − ξ
dξ, |z| > 1, (43)

where we took into account (37). Eq. (43) entails that in turn w̌n (cf. (3)) extends analytically

from C\D to C\G, or equivalently that wn extends analytically from D to C\G
−1

, where G
−1

is the reflection of G across T.
We can now establish a technical result which is the key for applying Theorem 4 to functions

of the form (35). Recall that a family of analytic functions in an open set Ω ⊂ C is said to
be normal if it is uniformly bounded on every compact subset of Ω . Equivalently, a normal
family of analytic functions is one which is relatively compact for the topology of locally uniform
convergence in Ω .

Proposition 2. Let f assume the form (35) where hypotheses H1–H2 do hold, and {vn}n∈N be a
sequence of singular vectors of Γ f such that ∥vn∥2 = 1 for all n. Denote by wn the outer factor

of vn . Then, {wn}n∈N is a normal family in C\G
−1

.

Proof. We already pointed out that wn is analytic in C\G
−1

. According to Eq. (37), the
inner–outer factorization of vn is of the form vn = bbmwn , and we know from a previous claim
(cf. Eq. (40)) that bmwn is another singular vector of Γ f associated with sn(Γ f ) having the same
outer factor wn . Hence we can replace vn by bmwn (in other words, we may – and we shall –
assume that b ≡ 1 and write vn = bmwn). For correctness, one should of course write m(n)
throughout, but we drop the dependence of m on n for simplicity.

To prove thatwn is bounded independently of n on each compact subset of C\G
−1

, we parallel
the argument of [6, Theorem 10.1].

Let t → α(t) parametrize G with an automorphism α of D as t ranges over a real segment
[a, b]. Then t → α′(t) has continuous argument. Let β1 be a finite Blaschke product with real
coefficients vanishing precisely at the jumps of amplitude π that t → arg h(α(t)) may have on
[a, b] (if h(α(t)) is continuous we simply put β ≡ 1). Then t → arg(β1(t)h(α(t))) is continuous
by our assumptions on h. Thus, by Mergelyan’s theorem, there is a polynomial T which is real
valued on [a, b] and such that |T (t) + argα′(t) + arg(β1(t)h(α(t)))| < π/3 for t ∈ [a, b]. In
invariant form, this means that the function H = P ◦α−1

∈ H∞
∩ C(T) is real valued on G and

moreover that

|β(ξ)h(ξ)dξ | =

ei H(ξ)β(ξ)h(ξ)dξ
 ≤ 2Re


ei H(ξ)β(ξ)h(ξ)dξ


, ξ ∈ G, (44)

where β = β1 ◦ α−1 is in turn a finite Blaschke product which is real-valued on G. Notice that
H and β depend only on f and not on n.

In another connection, since wn has no zero in D, it has a well-defined square root w1/2
n ∈

H∞. Note, since ∥vn∥2 = ∥wn∥2 = 1 by assumption, that ∥w
1/2
n ∥2 = ∥wn∥

1/2
1 ≤ 1 by the

Schwarz inequality. Appealing to Lemma 2, let Hn ∈ H2 take conjugate values to bmw
1/2
n on G,

with ∥Hn∥2 ≤ C∥bmw
1/2
n ∥2 = C∥w

1/2
n ∥2 ≤ C . Note that Hn is continuous on D since bm and

w
1/2
n are. For j as in (38) ( j depends on vn but we drop this dependence), consider the contour
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integral

sn(Γ f )

2iπ


T

ei H(ξ) Hn(ξ) β(ξ) bm(ξ) j (ξ)
wn(ξ)

w
1/2
n (ξ)

dξ

ξ
(45)

where it should be observed that the integrand is continuous even though wn may have zeros on
T (of course at such points w̄n/w

1/2
n is understood to be 0). In view of (42), this integrand extends

analytically on D\G, hence we may rewrite (45) as an integral over the circle Tr = {z : |z| = r}

where r ∈ (0, 1) is close enough to 1 that Tr encompasses G. Then, substituting (42) and
using again Fubini’s theorem and the Cauchy formula (which is permitted since w1/2

n (z) does
not vanish for |z| ≤ r ), the integral (45) transforms into

1

(2iπ)2


Tr


G

vn(ζ )h(ζ )

ξ − ζ
dζ


ei H(ξ) Hn(ξ)β(ξ)

w
1/2
n (ξ)

dξ

=
1

2iπ


G

vn(ζ )

w
1/2
n (ζ )

h(ζ )ei H(ζ ) Hn(ζ )β(ζ ) dζ

=
1

2iπ


G

bm(ζ )w
1/2
n (ζ )h(ζ )ei H(ζ ) Hn(ζ ) β(ζ ) dζ,

where we took (37) into account. Altogether, by the construction of Hn , we deduce that

sn(Γ f )

2iπ


T

ei H(ξ) Hn(ξ) β(ξ)bm(ξ) j (ξ)
wn(ξ)

w
1/2
n (ξ)

dξ

ξ

=
1

2iπ


G

b2
m(ζ )wn(ζ )

h(ζ ) β(ζ )ei H(ζ )dζ. (46)

By (44), we get on the one hand that

1
4π


G

b2
m(ζ )wn(ζ ) β(ζ ) h(ζ )

d|ζ | ≤

 1
2iπ


G

b2
m(ζ )wn(ζ )

β(ζ )h(ζ )ei H(ζ )
 dζ. (47)

On the other hand, since β, bm, j are Blaschke products while ∥w
1/2
n ∥2 ≤ 1 and ∥Hn∥2 ≤ C , we

see from the Schwarz inequality that sn(Γ f )

2iπ


T

ei H(ξ) Hn(ξ) β(ξ) bm(ξ) j (ξ)
wn(ξ)

w
1/2
n (ξ)

dξ

ξ

 ≤ C sn(Γ f ) ∥ei H
∥∞. (48)

Therefore, in view of (47), (46), and (48), we get that

1
2π


G

b2
m(ζ )wn(ζ )β(ζ )h(ζ )

d|ζ | ≤ 2C sn(Γ f ) ∥ei H
∥∞. (49)

Now, if we multiply (43) (where b ≡ 1) by β and apply P− to this product, the computation
based on Fubini’s theorem and Cauchy formula that led us to (41) and (43) yields

sn(Γ f )P−(βw̌n)(z) =
1

2iπ


G

j (ξ)b2
m(ξ)b(ξ)wn(ξ)β(ξ)h(ξ)

z − ξ
dξ, |z| ≥ 1. (50)
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Eq. (50) entails that P−(βw̌n) extends analytically to C\G and, as | j | ≤ 1 in D since it is a
Blaschke product, it follows from (49) and (50) that

|P−(βw̌n)(z)| ≤ 2C ∥ei H
∥∞


inf
ζ∈G

|z − ζ |
−1

, z ∈ C\G.

This proves that |P−(βw̌n)| is uniformly bounded with respect to n on every compact subset of
C\G. In another connection, observe from (4) that P+(βw̌n) is uniformly bounded with respect
to n on compact subsets of D\G, because ∥βw̌n∥2 = ∥w̌n∥2 = 1. Adding up, we get that βw̌n
is uniformly bounded with respect to n on compact subsets of D\G. Since |β|, which is a finite
Blaschke product with all its zeros on G, is bounded from below on compact subsets of C\G, we

thus conclude that {w̌n} is normal in C\G. By reflection across T, normality of {wn} in C\G
−1

follows, as desired. �

The following corollary to Proposition 2 is worth pointing out as it shows in a rather strong
sense that most of the poles of best L∞ meromorphic approximants to f as in (35) asymptotically
cluster to G.

Corollary 3. Let f assume the form (35) where hypotheses H1–H2 do hold. Denote by gn the
best approximant to f from H∞

n in L∞. To each neighborhood V(G) of G, there are n0, N0 ∈ N
such that, if n ≥ n0, then gn has at most N0 poles outside V(G), counting multiplicity.

Proof. We make notations as in the proof of Proposition 2. We noticed already before the
latter that w̌n is analytic in C\G. In addition, it is clear that bm(1/z̄) = 1/bm(z) (resp.
j (1/z̄) = 1/j (z)) since bm (resp. j) is unimodular on T. Hence bm(1/z̄) (resp. j (1/z̄)) is
meromorphic in C with poles at the zeros of bm (resp. of j) and no zero in D. Since the right
hand side of (42) is analytic in C\G, we conclude that every zero of bm (and of j) which does
not lie on G is a zero of w̌n with same or greater multiplicity. Now, by Proposition 2, every
subsequence w̌nk , has a subsequence w̌nkℓ

converging locally uniformly in C\G to some analytic
function w̌ which is not the zero function because ∥w̌∥2 = limℓ→∞ ∥w̌nkℓ

∥2 = 1. In particular w̌
has only finitely many zeros z1, . . . , zN of respective multiplicities µ1, . . . , µN in D\VG . Thus,
by the Rouché theorem, w̌nkℓ

has exactly µ j zeros in the neighborhood of z j for ℓ large enough,
counting multiplicities, and no other zero in D\VG . Consequently every subsequence of {w̌n} has
boundedly many zeros in D\VG , which implies the desired conclusion as poles of gm which do
not lie on G are zeros of w̌n by the first part of the proof. �

The main result of this section is the following.

Theorem 6. Let f assume the form (35) where hypotheses H1–H2 do hold. Then,

C1
d∞( f,Rn−1,n)

√
n + 1

≤ C2
d∞( f, H∞

n )
√

n + 1
≤ d2( f,Rn−1,n) (51)

where C1,C2 are strictly positive constants depending on f but not on n.

Proof. If vn is a singular vector of Γ f associated with sn(Γ f ), normalized so that ∥vn∥2 = 1, and
if wn is the outer factor of vn , we deduce from Proposition 2 that ∥wn∥∞ = ∥vn∥∞ is bounded
independently of n. Hence the second inequality in (51) follows from Theorem 4.

To prove the first inequality, we must show that

d∞( f,Rn−1,n) ≤ C d∞( f, H∞
n ) (52)
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for some constant C independent of n. Let gn be a best approximant to f from H∞
n in L∞, and

write gn = rn + hn where rn ∈ Rn−1,n ∩ H̄∞,0 while hn ∈ H∞. Note that f − rn ∈ H̄∞,0,
hence hn = P+( f − gn). Obviously it holds that d∞( f,Rn−1,n) ≤ ∥ f − rn∥∞, therefore, it is
enough to check that ∥ f − rn∥∞ ≤ Cd∞( f, H∞

n ) in order to establish (52). Now, by the triangle
inequality, we get that

∥ f − rn∥∞ ≤ ∥ f − gn∥ + ∥hn∥∞ = d∞( f, H∞
n )+ ∥P+( f − gn)∥∞,

and we are left to prove that ∥P+( f −gn)∥∞ ≤ Cd∞( f, H∞
n ). Let vn be a singular vector of Γ f ,

associated with sn(Γ f ), having inner–outer factorization vn = bmwn , where bm ∈ Bm vanishes
exactly at the poles of gn and wn is outer; this is possible by a previous claim (cf. (40)). Here and
below, we should write for correctness m = m(n), but we drop the dependence of m on n for
simplicity. From (36) and (38), we gather that

P+( f − gn) = sn(Γ f )P+


b̄2

m j̄w̌n/wn


,

where we also dropped the dependence of j on vn , and since sn(Γ f ) = d∞( f, H∞
n ) it remains

to establish that ∥P+


b̄2

m j̄w̌n/wn

∥∞ is bounded independently of n. For this, it is enough to

show that from any subsequence nk one can extract a subsequence nkℓ for which the property
holds. Appealing to Proposition 2 as in the proof of Corollary 3, we can extract from {wnk }

a subsequence {wnkℓ
} converging locally uniformly to some w, analytic in C\G

−1
, which is

not the zero function. Let w have N zeros lying on T, say z1, . . . , zN , where multiplicities are
accounted by repetition and it is understood if N = 0 that {z j } is the empty set. Pick ε > 0 small

enough that the circle T1+ε does not meet G
−1

and w has no other zeros than z1, . . . , zN in the
corona Cε = {z : 1 ≤ |z| ≤ 1 + ε}. When ℓ is large enough, by the Rouché theorem, wnkℓ

has
exactly N zeros z1,ℓ, . . . , zN ,ℓ in Cε, counting multiplicities with repetition, and {z j,ℓ} converges
to {z j } as a set when ℓ → +∞ (recall that wnkℓ

is outer hence has no zero in D). We label the
z j,ℓ so that, say z j,ℓ ∈ T for 1 ≤ j ≤ sℓ and z j,ℓ ∉ T for sℓ + 1 ≤ j ≤ N . Define

PN ,ℓ(ξ) = Π N
j=1(ξ − z j,ℓ), QN−sℓ,ℓ(ξ) = Π N

j=sℓ+1(ξ − z j,ℓ),

and let us write wnkℓ
(ξ) = uℓ(ξ) PN ,ℓ(ξ) where uℓ(ξ) is analytic in C\G

−1
and zero-free in Cε.

By the maximum principle, u j,ℓ converges to w(z)/Π N
j=1(z − z j ) locally uniformly in C\G

−1
.

Clearly,

w̌n(ξ)

wn(ξ)
= Π sℓ

l=1


−z̄l,ℓ


ξ−N ǔ j,ℓ(ξ)

u j,ℓ(ξ)

QN−sℓ,ℓ(ξ)

QN−sℓ,ℓ(ξ)
, (53)

where we observe that bN−sℓ = Π sℓ
l=1


−z̄l,ℓ

 QN−sℓ,ℓ/QN−sℓ,ℓ lies in BN−sℓ and that ǔ j,ℓ/u j,ℓ
is continuous and bounded independently of ℓ on Cε as well as analytic in the interior of Cε. Now,
put β(ξ) = ξ and let us write

P+


b̄2

m j̄w̌m/wm


= bN−sℓP+


β̄N b̄2

m j̄ ǔℓ/uℓ


+ P+


bN−sℓP−


β̄N b̄2

m j̄ ǔℓ/uℓ

. (54)

Recalling that bm(1/z̄) = 1/bm(z) and j (1/z̄) = 1/j (z), we deduce from (4)

P+


β̄N b̄2

m j̄ ǔℓ/uℓ

(z) =

1
2iπ


T

1

b2
m(ξ) j (ξ)

ǔℓ(ξ)

uℓ(ξ)(ξ − z)

dξ

ξ N , |z| < 1, (55)
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and by Cauchy’s theorem we can deform the contour of integration to T1+ε without changing the
value of the integral:

P+


β̄N b̄2

m j̄ ǔℓ/uℓ

(z) =

1
2iπ


T1+ε

1

b2
m(ξ) j (ξ)

ǔℓ(ξ)

uℓ(ξ)(ξ − z)

dξ

ξ N , |z| < 1. (56)

The integral in the right hand side of (56) is now bounded in modulus, independently of ℓ and
z ∈ D, because |bm | ≥ 1 and | j | ≥ 1 on C\D, while ε ≤ |ξ − z| and ǔℓ/uℓ is uniformly
bounded on T1+ε. Thus, the first summand in the right hand side of (54) is bounded in L∞,
independently of ℓ, because bN−sℓ ∈ BN−sℓ . To see that the second summand is also bounded,
we put Ψ = P−


β̄N b̄2

m j̄ ǔℓ/uℓ


and we notice that ∥Ψ∥∞ is bounded independently of ℓ because
β̄N b̄2

m j̄ ǔℓ/uℓ is unimodular on T and we just saw from (56) that ∥P+


β̄N b̄2

m j̄ ǔℓ/uℓ

∥∞ is

bounded independently of ℓ. Next, we observe that this second summand is P+(bN−sℓΨ) and
that it lies in R N−sℓ−1,N−sℓ because for ξ ∈ T we have:

QN−sℓ(ξ)

ξ N−sℓ
P+(bN−sℓΨ)(ξ) = QN−sℓ(1/ξ̄ )Ψ(ξ)−

QN−sℓ(ξ)

ξ N−sℓ
P−(bN−sℓΨ)(ξ),

and both summands on the right lie in H̄2,0 whence QN−sℓP+(bN−sℓΨ) ∈ P N−sℓ−1. We now
appeal to Grigoryan’s theorem, saying that if P−(Φ) ∈ Rd−1,d then ∥P−(Φ)∥∞ ≤ cd∥Φ∥∞ for
some absolute constant c, see [33, Eq. (6.1)]. As P̌+(Φ) = P−(Φ̌) for any function Φ, it implies
since the check operation preserves R N−sℓ−1,N−sℓ and the L∞ norm that

∥P+(bN−sℓΨ)∥∞ = ∥P−(b̄N−sℓΨ̌)∥∞ ≤ c(N − sℓ)∥b̄N−sℓΨ̌∥∞ = c(N − sℓ)∥Ψ∥∞.

This achieves the proof. �

The authors conjecture that Theorem 6 carries over to Cauchy integrals of the form (35) where
G is a so-called symmetric contour for the Green potential in D (cf. [40, Theorem 1] for details),
the prototype of which is an analytic function with finitely many branchpoints of order greater
than −1 in the disk. For such functions, more generally even if branchpoints have arbitrary order,
it was proved in [17] that limn→∞ d∞( f,Rn−1,n)

1/n
= exp{−2/C} where C is the condenser

capacity of the pair (T,G). The same n-th root estimate holds for d2( f,Rn−1,n) [8, Corollary 8],
and more generally for the distance from f to Rn−1,n in L p when 1 ≤ p ≤ ∞ [42]. Inequality
(51) compares d2( f,Rn−1,n) and d∞( f,Rn−1,n) in a much stronger sense, but still one may
wonder if the factor 1/

√
n + 1 is really needed. In the special case of Markov functions, i.e. of

Cauchy integrals of positive densities on a segment, the results in [7] show that this factor is in
fact superfluous.

6. Linearized errors

Given f ∈ H̄2,0, pn−1 ∈ Pn−1, qn ∈ Pn and a (complex) weight function w ∈ H∞, the
linearized error associated with p, q and w in problem RAB(n) is

L( f, pn−1, qn, w) := (qn f − pn−1)w. (57)

It is formally obtained from the error f − pn−1/qn by chasing denominator qn and multiplying by
the weight. In applied sciences, problem RAB(n) and weighted variants thereof are of great im-
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portance to model time series as well as to identify linear dynamical systems,2 e.g. in modal anal-
ysis of mechanical structures or in frequency analysis of microwave devices [22,24,27,35,30].
The importance of the L2 norm in this context stems from its statistical interpretation as a
variance. Because RAB(n) (or equivalently MA(n)) is a difficult non convex problem, several
approaches to system identification in engineering have been based on linearization. Most pop-
ular in this connection are two closely related heuristics, namely the Steiglitz–McBride method
[41,35,36] and the vector fitting method [21,11]. These are iterative procedures, first choosing
w = 1/πn where πn ∈ Pn is monic with no root on T, then minimizing ∥L( f, pn−1, qn, w)∥2
with respect to pn−1 as well as qn , the latter being normalized so as to be monic3 (which yields a
convex problem). Subsequently, one replaces w by 1/qo

n , where qo
n is the optimal qn , and repeats

the previous steps until some fixed point is reached. Such procedures are prompted by the easy
observation that if f ∈ Rn−1,n , then the value of the problem is zero from the first iteration
already. Accordingly, convergence was studied in a classical stochastic setting for system identi-
fication, where f ∈ Rn−1,n ∩ H̄2,0 is perturbed by white noise (the noise is then constitutive of
the model), but such heuristics do not converge in general when f ∉ Rn−1,n [37,25,36].

Our purpose here is not to discuss these techniques, nor to compare them with dedicated
optimization algorithms [13,30], but rather to stress a link between the value of RAB(n) and the
minimization of linearized errors.

We consider weights of the form w = 1/πn where πn ∈ Pn is a polynomial having no root
on T. When minimizing the linearized error, Theorem 1 suggests a specific normalization for qn :
let us define

Pπn := {qn ∈ Pn : ∥qn/πn∥∞ = 1}. (58)

Then, the following result holds.

Theorem 7. Let f ∈ H̄2,0 and πn ∈ Pn , with Z(πn) ∩ T = ∅. Then

d2( f,Rn−1,n) = d2( f, H2
n ) ≥ min

qn∈Pπn
pn−1∈Pn−1

∥L( f, pn−1, qn,1/πn)∥2. (59)

Proof. We may assume without loss of generality that Z(πn) ⊂ C\D, for otherwise we can
replace every linear factor (z − a) of πn for which a ∈ D by the linear factor (1 − āz) which has
reflected zero across T. This leaves |πn| unchanged on T, and consequently does not affect the
minimization of ∥L( f, pn−1, qn, 1/πn)∥2.

Now, arguing as we did to obtain (9), we find that πnP+( f qn/πn) is a polynomial of degree
at most n −1. If we write pn−1(qn, πn) for this polynomial and take into account that Z(πn)∩D
= ∅, we see from Parseval’s theorem that for fixed qn ∈ Pn the criterion ∥L( f, pn−1, qn, 1/πn)∥

gets minimized precisely when pn−1 = pn−1(qn, πn), so that

min
pn−1∈Pn−1

∥L( f, pn−1, qn, 1/πn)∥2 =

P−


f

qn

πn


2

= ∥A f (qn/πn)∥2. (60)

2 For continuous time systems, rational approximation is performed on the imaginary axis rather than the circle. This,
is equivalent to the present setting thanks to the isometry f →

√
2 f ((z + 1)/(z − 1))/(z − 1) mapping H2 onto the

Hardy space of {Rez > 0} while preserving rationality and the degree.
3 What we describe here is the Steiglitz–McBride method, although we should mention that the criterion used is often

a discretized version of ∥L( f, pn−1, qn , 1/πn)∥2 obtained from pointwise values on T. The vector fitting method is
essentially a rewriting of the Steiglitz–McBride procedure where rational functions are parametrized in pole-residue
form.
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Let

Kπn := {qn/πn : qn ∈ Pπn }.

Since πn has no zeros on D, it holds that Kπn ⊂ S ∞, the unit sphere of H∞. Identifying Pn
with Cn+1

∼ R2n+2 by taking coefficients as coordinates, we see that Kπn is homeomorphic to
the Euclidean sphere S2n+1 via the map qn/πn → qn/∥qn∥2 which is odd. Therefore Kπn is a
compact subset of S ∞ of genus 2n + 2, and by (16):

d2( f, Rn−1,n) = d2( f, H2
n ) ≥ min

qn/πn∈Kπn

∥A f (qn/πn)∥2 (61)

which is (59) in view of (60). �

It follows easily from a compactness argument that the minimum in the right hand side of (59)
is attained. However, it not a priori obvious how to compute it for Pπn is not convex. Numerically,
this issue can be approached as follows. First, we assume without loss of generality that πn has
no roots in D, so that (60) holds (cf. proof of Theorem 7). Next, for ξ ∈ T, let

Pπn ,ξ := {qn ∈ Pn : ∥qn/πn∥∞ = 1, qn(ξ) = πn(ξ)}.

Observe that Pπn ,ξ is never empty when πn has no zero on T. Indeed, for small ε > 0, it holds
that |πn(eiθ )|2 − |ε(eiθ

− ξ)|2 ≥ 0 hence, by Fejèr–Riesz factorization (see Lemma 4 to come),
there is a polynomial qn with |qn| ≤ |πn| on T and |qn(ξ)| = |πn(ξ)|. Thus, qnπn(ξ)/qn(ξ) lies
in Pπn ,ξ . Clearly

Kπn = ∪ξ,ζ∈T ζ Pπn ,ξ , (62)

and multiplying qn by ζ ∈ T cannot change the value of ∥A f (qn/πn)∥2. Therefore it holds that

min
qn∈Pπn

pn−1∈Pn−1

∥L( f, pn−1, qn, 1/πn)∥2 = min
ξ∈T

ψ(ξ) (63)

where the function ψ(ξ) is given by (cf. (60))

ψ(ξ) = min
qn∈Pπn ,ξ

pn−1∈Pn−1

∥L( f, pn−1, qn, 1/πn)∥2 = min
qn∈Pπn ,ξ

∥A f (qn/πn)∥2. (64)

Note thatψ(ξ) can be computed as the solution of a convex problem for each ξ , because Pπn ,ξ is a
convex set and ∥A f (qn/πn)∥2 a quadratic criterion. Granted this ability to evaluate ψ pointwise,
we discuss below how to numerically estimate the minimum in (63).

Clearly ψ is the zero function when f ∈ Rn−1,n , for if f = p/q with deg q ≤ n we may pick
qn = q as minimizer in (64). The next lemma describes this minimizer in greater detail when
f ∉ Rn−2,n−1.

Lemma 3. Let f ∈ H̄2,0 and πn ∈ Pn , with Z(πn) ∩ D = ∅. If f ∉ Rn−2,n−1, then the
minimizing qn in (64) is unique, has all its roots in D, and exact degree n.

Proof. Assume that qn,1 and qn,2 are distinct minimizers, that is, qn,1, qn,2 ∈ Pπn ,ξ and
∥A f (qn,1/πn)∥2 = ∥A f (qn,2/πn)∥2 = ψ(ξ). Put qn,3 = (qn,1 + qn,2)/2 ∈ Pπn ,ξ . By strict
convexity of the L2 norm, we get A f (qn,1/πn) = A f (qn,2/πn) otherwise we would have that
∥A f (qn,3/πn)∥2 < ψ(ξ) which is absurd. Set q = qn,1 − qn,2 ∈ Pn . Then A f (q/πn) = 0
implying by definition of A f that f q/πn ∈ H2. A fortiori then f q ∈ H2, and since f ∈ H̄2,0

we must have that f q is a polynomial of degree at most n − 1, say p. Thus, f = p/q , and as q
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has a root on T (namely ξ ) the latter must be cancelled by a corresponding root of p. Altogether
f ∈ Rn−2,n−1, thereby showing the uniqueness part of the lemma. Let now qn,ξ be the unique
minimizer and b a Blaschke product with poles in Z(qn,ξ ) ∩ C\D. Then bqn,ξ ∈ Pn has same
modulus as qn on T, hence there is ζ ∈ T such that ζbqn,ξ ∈ Pπn ,ξ . Since ζb is a Blaschke
product, reasoning as in (39) yields ∥A f (ζbqn,ξ/πn)∥2 ≤ ∥A f (qn,ξ/πn)∥2 so that ζbqn,ξ is in
turn a minimizer, hence is equal to qn,ξ by the uniqueness part just proved. Now, qn,ξ ≢ 0 since
qn,ξ (ξ) = πn(ξ) ≠ 0, therefore ζb = 1. Thus, b must be a constant, that is to say there cannot
be a zero of qn,ξ outside D. Finally, assume that deg qn,ξ < n. Then qn,ξ (z)zξ̄ lies in Pπn ,ξ and,
since zξ̄ is a Blaschke product, it follows as before that qn,ξ zξ̄ is a minimizer, hence it must be
equal to qn,ξ by uniqueness. This contradiction achieves the proof. �

We need a continuity property of the Fejèr–Riesz factorization that we could not ferret out in
the literature. Write Tn for the space of trigonometric polynomials of degree at most n, i.e. sums
of the form


|k|≤n akeikθ . For fixed n, Pn and Tn have a natural topology induced by any norm.

Lemma 4. To each nonzero T ∈ Tn such that T ≥ 0 on T, one can associate continuously a
unique polynomial q ∈ Pn having no zero in D and such that |q(eiθ )|2 = T (eiθ ) with q(0) > 0.

Proof. Let T +
n ⊂ Tn be the closed subset of trigonometric polynomials which are non-negative

on T. For T ∈ T +
n , existence of q ∈ Pn such that |q|

2
= T on T is a classical result known after

Fejèr and Riesz [38, Section 53]. Since |z − a| = |1 − zā| for z ∈ T, clearly q may be chosen
zero free in D if T ≢ 0. Then, q|D is outer in H∞, for it has no zero and it extends analytically
across T [14, Chapter II, Theorems 6.2 and 6.3]. Thus, formula (5) shows that q is uniquely
defined by log |q| = log T/2, therefore also by T . Moreover, each coefficient of q is a continuous
function of log T ∈ L1, because the k-th coefficient is just the derivative q(k)(0)/k! and we may
differentiate (5) under the integral sign. To achieve the proof, we establish that T → log T is
continuous from T +

n \{0} into L1.
First, we claim that T → ∥ log T ∥1 is continuous from T +

n \{0} into R. To see this, it is enough
to show that if T {k} tends to T in T +

n \{0} as k → ∞, then ∥ log T {kℓ}∥1 tends to ∥ log T ∥1 for
some subsequence T {kℓ}. By the first part of the proof, we can write T {k}

= |q{k}
|
2 with

q{k}(z) = q{k}(0)Π n
l=1(1 − z a{k}

l ), a{k}
∈ D,

where multiplicities are counted by repetition and the ordering of the roots for each k is arbitrary.
Note that |q{k}(0)| is bounded, since by the Schwarz inequality:

|q{k}(0)| =

 1
2π

 2π

0
q{k}(eiθ )dθ

 ≤ ∥q{k}
∥2 =

T {k}

1/2

1
.

Therefore, there is a subsequence q{kℓ} such that q{kℓ}(0) converges to c ∈ C and a{kℓ}
j converges

to a j ∈ D for each j ∈ {1, . . . , n}. If we let

q(z) = c Π n
j=1 (1 − z a j ),

then clearly |q{kℓ}|2 converges to |q|
2 almost everywhere on T, so that necessarily |q|

2
= T . In

particular, we have that c ≠ 0 otherwise T would be identically zero, a contradiction. Now, since
log turns products into sums, we are left to show that if b{k}

→ b in D, then

lim
k→+∞

 2π

0

log |1 − eiθb{k}
|

 dθ =

 2π

0

log |1 − eiθb|

 dθ. (65)
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When |b| < 1 relation (65) is obvious. If |b| = 1, we may assume by rotational symmetry
that b = 1 and b{k}

∈ [0, 1], in which case (65) follows by dominated convergence from the
observation that |1 − b{k}eiθ

| ≥ | sin θ | for |θ | ≤ π/2. This proves the claim.
Now, if T {k} tends to T in T +

n \{0}, it is plain that log T {k} converges to log T almost every-
where on T and by the previous claim the L1-norm of the limit is the limit of the L1-norms. Thus,
the desired L1-convergence of log T {k} to log T follows from Egoroff’s theorem [39, Chapter 3,
Example 17]. �

With the help of Lemmas 3 and 4, we now prove that ψ is continuous:

Lemma 5. Let f ∈ H̄2,0 and πn ∈ Pn , with Z(πn) ∩ D = ∅. Then the map ψ defined by (64) is
continuous on T.

Proof. If f ∈ Rn−1,n , we mentioned that ψ ≡ 0 already. Otherwise, dwelling on Lemma 3, let
qn,ξ indicate the unique minimizer in the last term of (64). By definition of Pπn ,ξ we have that
|qn,ξ | ≤ |πn| on T and that qn,ξ (ξ) = πn(ξ), in particular qn,ξ is bounded independently of ξ .
Thus, from any convergent sequence ξk → ξ on T, we can extract a subsequence ξkℓ for which
qn,ξkℓ

converges uniformly to some q ∈ Pn , and passing to the limit we see that q ∈ Pπn ,ξ . Given
ε > 0, we can pick the sequence ξk so that

lim
k→+∞

ψ(ξk) = l ≤ lim inf
ζ→ξ

ψ(ζ )+ ε,

and by continuity of qn → ∥A f (qn/πn)∥2 from Pn into R we get that

lim inf
ζ→ξ

ψ(ζ )+ ε ≥ l = lim
ℓ→∞

∥A f (qn,ξkℓ
/πn)∥2 = ∥A f (q/πn)∥2 ≥ ψ(ξ). (66)

Since ε > 0 was arbitrary, we conclude that ψ is lower semi-continuous. To see that ψ is in fact
continuous, it is enough to establish the following claim: to each ξ ∈ T and ε > 0, there is η > 0
such that |ξ − ζ | < η implies existence of qζ ∈ Pπn ,ζ with ∥qn,ξ − qζ∥∞ < ε. Indeed, if the
claim holds, we get from (64) that when |ξ − ζ | < η:

ψ(ζ ) ≤ ∥A f (qζ /πn)∥2 ≤ ∥A f (qn,ξ/πn)∥2 + ∥A f ((qζ − qn,ξ )/πn)∥2

≤ ψ(ξ)+ ε∥ f/πn∥2,

and since ε was arbitrary we conclude that lim supζ→ξ ψ(ζ ) ≤ ψ(ξ) whence ψ is indeed
continuous in view of (66).

To establish the claim, observe from Lemma 4 since |πn|
2
− |qn,ξ |

2 is a non-negative trigono-
metric polynomial of degree at most n on T that

|qn,ξ (e
iθ )|2 + |κn,ξ (e

iθ )|2 = |πn(e
iθ )|2 (67)

where κn,ξ ∈ Pn has no root in D and is uniquely defined by (67) together with the normalization
κn,ξ (0) > 0. As πn(ξ) = qn,ξ (ξ), we can write κn,ξ (z) = (z − ξ)Qn−1(z), and for ζ ∈ T we set
more generally:

κn,ζ (z) =
(z − ζ )Qn−1(z)

λζ
, λζ = sup

z∈T
|(z − ζ )Qn−1(z)/πn(z)|. (68)

Clearly |κn,ζ |
2

≤ |πn|
2 on T so that, by Lemma 4, there is a unique Pn,ζ ∈ Pn having no root in

D and meeting Pn,ζ (0) > 0 such that

|Pn,ζ (e
iθ )|2 + |κn,ζ (e

iθ )|2 = |πn(e
iθ )|2. (69)
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Since qn,ξ has all its roots in D and exact degree n by Lemma 3, it follows from (67) and
the uniqueness part of Lemma 4 that Pn,ξ = c̄qn,ξ where c ∈ T is such that cqn,ξ has pos-
itive leading coefficient. Moreover, it is easily checked from (68) that |κnζ |

2 is arbitrary close
to |κn,ξ |

2 in Tn if |ξ − ζ | is sufficiently small. Therefore, from (69) and the continuity prop-
erty asserted by Lemma 4, we deduce that Pn,ζ is arbitrary close to c̄qn,ξ in Pn if |ξ − ζ | is
sufficiently small. Consequently Qζ = c̄Pn,ζ is arbitrary close to qn,ξ when |ξ − ζ | is small
enough. Now, by (69) and the definition of Qζ , it holds that |Qζ | = |Pn,ζ | ≤ |πn| on T,
and also that |Qζ (ζ )| = |Pn,ζ (ζ )| = |πn(ζ )| because κn,ζ (ζ ) = 0 by construction. Hence,
qζ = (πn(ζ )/Qζ (ζ ))Qζ lies in Pπn ,ζ , and since Qζ (ζ ) → qn,ξ (ξ) = πn(ξ) as ζ → ξ we have
that (πn(ζ )/Qζ (ζ )) → 1 when ζ → ξ . Thus, just like Qζ , the polynomial qζ is arbitrary close
to qn,ξ when |ξ − ζ | is small enough, which proves the claim. �

To estimate the right hand side (63), it remains to minimize ψ(ξ) over ξ ∈ T, which can
be numerically performed by dichotomy because T is compact and 1-dimensional while ψ is
continuous by Lemma 5.

A natural question is whether the lower bound (59) can be sharp. The answer is no except in
the trivial case where f ∈ Rn−1,n :

Proposition 3. Assumptions and notations as in Theorem 7, it holds if f ∉ Rn−1,n that

d2( f,Rn−1,n) > min
qn∈Pπn

pn−1∈Pn−1

∥L( f, pn−1, qn, 1/πn)∥2 (70)

Proof. As in the proof of Theorem 7, we may assume that Z(πn) ⊂ C\D and then, by (60),
the right hand side of (70) is equal to minqn∈Pπn

∥A f (qn/πn)∥2. Let qn,0 be a minimizer of the
latter, and bn,1 = qn,1/qn,1 a minimizing Blaschke product in (12). Multiplying qn,1 andqn,1 by
a real constant, we may assume qn,1 ∈ Pπn . We can also multiply qn,0 by a unimodular constant
so that, using (62), there is ξ0 ∈ T for which qn,0 ∈ Pπn ,ξ0 . Now, if (70) is an equality, we get by
definition of qn,0, qn,1 that

d2( f,Rn−1,n) = ∥P−( f qn,0/πn)∥2 ≤ ∥P−( f qn,1/πn)∥2

= ∥P−


f (qn,1/qn,1)(qn,1/πn)


∥2 ≤ ∥P−( f qn,1/qn,1)∥2

= d2( f,Rn−1,n) (71)

where we used in the second inequality that qn,1/πn ∈ S ∞. Consequently equality holds
throughout (71), implying in particular that |qn,1| = |πn| on T. Thus, as both polynomial have no
root in D their ratio is a unimodular constant, and renormalizing qn,1 if necessary we may assume
that qn,1 = πn . Then c = qn,1(ξ0)/qn,1(ξ0) is a unimodular constant such that cqn,1 ∈ Pπn ,ξ0 ,
and by the uniqueness part in Lemma 3 we see that the first inequality in (71) can be an equality
only if qn,0 = cqn,1. Altogether qn,0/πn = cbn,1 is in turn an optimal Blaschke product in (12).
This optimality entails that [6, Theorem 8.2]

A∗

f A f (qn,0/πn) = P+


|A f (qn,0/πn)|

2qn,0/πn


.

Consequently, letting ⟨u, v⟩L2 = Re⟨u, v⟩, it holds for all qn ∈ Pπn ,ξ0 that

⟨A f (qn,0/πn), A f (qn,0/πn)− A f (qn/πn)⟩L2

= ⟨A∗

f A f (qn,0/πn), qn,0/πn − qn/πn⟩L2
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= ⟨P+


|A f (qn,0/πn)|

2qn,0/πn


, qn,0/πn − qn/πn⟩L2

= ⟨|A f (qn,0/πn)|
2qn,0/πn, qn,0/πn − qn/πn⟩L2

= ⟨|A f (qn,0/πn)|
2, 1 − qn/qn,0⟩L2 , (72)

where we used in the third line that (qn,0 − qn)/πn ∈ H2 to get rid of P+ and in the last line that
qn,0/πn = πn/qn,0 on T.

On the one hand, we see that (72) is non-negative for all qn ∈ Pπn ,ξ0 because |qn/qn,0| =

|qn/πn| ≤ 1 on T. In fact, it can be made strictly positive: indeed, A f (qn,0/πn) is not the zero
function for f ∉ Rn−1,n , and as discussed before (62) one can pick qn ∈ Pπn ,ξ0 such that
|qn/qn,0|(ξ) < 1 for ξ ≠ ξ0 on T. On the other hand, the fact that qn,0 is a minimizer in the
convex problem (64) (where ξ is set to ξ0) implies that (72) is nonpositive for all qn ∈ Pπn ,ξ0 [10,
Proposition 5.23], a contradiction which concludes the proof. �

7. Numerical results

In order to study how effective the bounds given by Theorem 4, Corollary 1 and Theorem 7,
we wrote a prototype implementation in each case and ran it on a few examples. We report in
this section the results obtained on the following set of functions f ∈ H̄2,0. For each of them,
we consider the problem of best H2 approximation by a rational function in Rn−1,n with n = 4.

• Example 1: f : z → log((10z − 9)/(10z + 9)).
• Example 2: f is a rational function of degree 5.
• Example 3: f is a rational function with 20 poles that have been randomly and uniformly

chosen inside the unit disk.
• Example 4: f is a rational function with 20 poles that have been randomly and uniformly

chosen inside the disk of radius 0.2 centered at the origin.
• Example 5: f is a rational function with 20 poles that have been randomly and uniformly

chosen inside the annulus of radii 18/20 and 19/20 centered at the origin.
• Example 6: f is fairly close to a rational function of degree 4. Namely, we chose a rational

function g of degree 4 and then we obtained f by perturbing each Fourier coefficients of g
with a small noise of relative error bounded by 0.01.

• Example 7: f : z → exp(−i/(z − 0.9i))− 1.

These examples have been chosen so as to exhibit different kind of singularities inside the disk,
which may or may not be close to the unit circle, in order to cover various situations.

Before discussing the results, let us say a few words on the implementation. We are using
Matlab R2011b. For each example, f is actually approximated by a truncated Fourier series f .
The order of truncation is chosen so as to ensure that f and f agree to at least 40 bits on the
unit circle. The bounds of Theorem 4 and Corollary 1 are computed as described in Section 5.2:
indeed, since f is a truncated Fourier series, it can be written f = p/q where p ∈ P N−1 and
q = zN . It turns out that, when q is a power of z, the construction in Section 5.2 gets simpler
since q = 1, whence Bezout relation is just aq + bq = 1 with a = 1 and b = 0. We handled
all examples using this technique, even though in examples 2 to 5 the number N becomes quite
large (up to 1500) and it would have been more efficient (but would also have required more
implementation) to forget about f and to apply the construction in Section 5.2 to the original f .
Anyway, even for fairly large N , we obtained our results in a few seconds on an Intel Xeon at
2.67 GHz, with 4 GB of memory. When computing the bound of Theorem 4, the norms ∥v j∥∞

are estimated by sampling v j at 8000 points evenly distributed on the unit circle.
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Regarding the bound of Theorem 7, its computation reduces to finding the minimum of ψ(ξ),
for ξ ∈ T (see (63) and (64)) as explained in Section 6. For a given ξ , we evaluate ψ(ξ)
by solving a convex optimization probLemma For this purpose we use CVX, a package for
specifying and solving convex programs within Matlab [19,18]. More precisely, we precompute
A f (z j−1/πn) ( j = 1 . . . n + 1) in the Fourier basis, i.e. we compute a N × (n + 1) matrix M =

(mi j ) such that A f (z j−1/πn) =
N

i=1 mi j z−i . Therefore, if qn =
n+1

j=1 a j z j−1, we have that

∥A f (qn/πn)∥
2
2 =

M

 a1
...

an+1




2

2

.

Since N is much larger than n, it is convenient to compute a decomposition M = Q R, where Q
is orthogonal and R is upper-triangular. Since ∥Mv∥2 = ∥Rv∥2 for all vectors v and only the first
n +1 rows of R are non-zero, we end up handling a (n +1)× (n +1)matrix instead of M . Now,

ψ(ξ) = min
qn∈Pπn ,ξ

R

 a1
...

an+1




2

.

The set Pπn ,ξ is convex, but described by infinitely many constraints. Therefore, we consider a
set T1 of 50 points regularly spaced on the unit circle and we define

P(1)πn ,ξ
=


qn =

n+1
j=1

a j z j−1
: qn(ξ) = πn(ξ), and ∀ζ ∈ T1, |qn(ζ )| ≤ πn(ζ )


.

We first use CVX to solve our minimization problem subject to qn ∈ P(1)πn ,ξ
. This gives an

optimal polynomial q(1)n . Next, we construct a set T2 by adding to T1 the points of T where
|q(1)n /πn| reaches a local maximum. We then use CVX to solve our minimization problem sub-
ject to qn ∈ P(2)πn ,ξ

, where

P(2)πn ,ξ
=


qn =

n+1
j=1

a j z j−1
: qn(ξ) = πn(ξ),∀ζ ∈ T2, |qn(ζ )| ≤ πn(ζ )


.

This gives a new optimal polynomial q(2)n , and we repeat the process until we reach a step k
where maxζ∈T |q(k)n (ζ )/πn(ζ )| − 1 falls below the level of numerical errors produced by CVX.

It is worth pointing out that, although sufficient in most cases to get an idea of the numerical
value of ψ(ξ), this procedure yields no certified estimate of the bound in Theorem 7. Actually,
CVX is a user-friendly generic software, able to tackle many types of convex optimization
problems with a powerful syntax. However, it offers little control on the difference between
the true mathematical solution and the numerical estimate thereof. Moreover, when too many
constraints enter the game, it quickly yields no solution at all. In addition, it is probably much
slower than would be a dedicated tool to solve that particular convex problem. The point we want
here to make is that accurately estimating the bound in Theorem 7 (i.e. aiming at more than a
prototypical illustration of the content of the paper) requires further work.

The numerical results proper are reported in Table 1 where the second column is Mn( f )
√

n+1
(lower

bound given by Theorem 4), the third column is Qn( f )
√

n+1
(lower bound given by Corollary 1), the
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fourth and fifth columns are minqn∈Pπn ,pn−1∈Pn−1 ∥L( f, pn−1, qn,1/πn)∥2 (lower bound given by
Theorem 7) for two different choices of πn .

For an appraisal of the sharpness of our results, we also ran RARL2,4 a software tool that
tries to compute a solution to problem RAB(n). RARL2 looks for local minima of the criterion
in a fairly systematic way, and returns the best approximant it could find. As a consequence, it
gives an upper bound for the value of problem RAB(n) which is likely to be tight and therefore
interesting to compare with our lower bounds. The error ∥ f − r∥2 generated by the candidate
best approximant r computed by RARL2 is reported in the last column.

The bound given by Theorem 7 has the advantage of allowing the user to choose a weight πn
which offers extra-flexibility to try to improve the estimate. Yet, it is not obvious how to pick πn
in general. The simplest choice is πn ≡ 1 (reported in the fourth column of the table). Another,
appealing possibility is to put πn = q∗

n where qn
∗ is the denominator of the rational function

computed by RARL2 (since qn
∗ has all its poles inside the disk, πn has all its poles outside, as

required). The corresponding results are reported in the fifth column of the table.

Table 1
Numerical results.

Example Bound of
Theorem 4

Bound of
Corollary 1

Bound of Theorem 7
with πn = 1

Bound of Theorem 7
with πn =q∗

n

RARL2

1 2.884744e−3 2.887532e−3 4.04e−3 10.8e−3 11.5e−3
2 7.731880e−2 7.732037e−2 12.4e−2 24.3e−2 24.72e−2
3 2.459346 2.470149 2.286 0.258 16.6907
4 1.234503 1.234861 1.94 1.8 6.5721
5 47.26312 47.30424 2.14 N/A 178.3152
6 2.894007e−3 2.894380e−3 9.62e−3 12.46e−3 12.5e−3
7 1.780707e−4 1.782276e−4 0.7977e−4 6.3409e−4 6.3742e−4

As can be seen from the table, the refinement of Corollary 1 with respect to Theorem 4 is
almost negligible on all examples. The bound given by Theorem 7 with πn = 1 is better than
Theorem 4 and Corollary 1 in 4 cases out of 7, but not overly so. Considering that the computation
time is generally much longer for this bound, this improvement can be considered as rather
expensive. In contrast, when πn = q∗

n , the bound of Theorem 7 becomes fairly sharp in cases
1,2,6, and 7, which is encouraging. This better bound comes at the cost of a longer computation
time though, mostly because the convex optimization problems involved with this choice of πn
seem more difficult to solve. In Example 5, for instance, we were not able to obtain reliable
results from CVX. However, it also appears that choosing πn = q∗

n is not always best, and it
would be quite interesting to further understand which πn are efficient in this respect.
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