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1. Introduction

The quaternion Fourier transform (QFT) plays a valued role in representation
of signals. It transforms a real (or quaternionic) 2D signal into a quaternion-
valued frequency domain signal. The four components of the QFT separate
four cases of symmetry into real signals instead of only two as in the complex
FT. In [6,7,35] the authors used the QFT to proceed color image analysis.
The paper ([2]) implements the QFT to design a color image digital water-
marking scheme. The authors in [3] applied the QFT to image pre-processing
and neural computing techniques for speech recognition. Recently, the cer-
tain asymptotic properties of the QFT were analyzed and straightforward
generalizations of classical Bochner–Minlos theorems to the framework of
quaternionic analysis were derived in [16,17].

The uncertainty principle in the time-frequency plane plays an im-
portant role in signal processing [9,12,18,19,26,27,32,38,41]. This principle
states that for a given unit energy signal f(t) with Fourier transform

f̂(ω) :=
1√
2π

∫ ∞

−∞
f(t)e−iωtdt,
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the product of spreads of the signal in the time domain and the frequency
domain is bounded by a lower bound

σ2
t σ2

ω ≥ 1
4
, (1.1)

where σt and σω are, precisely, the duration and bandwidth of a signal f(t)
defined by

σ2
t :=

∫ ∞

−∞
(t− < t >)2|f(t)|2dt

and

σ2
ω :=

∫ ∞

−∞
(ω− < ω >)2|f̂(ω)|2dω,

respectively. Here

< t >:=
∫ ∞

−∞
t|f(t)|2dt

is the mean time and

< ω >:=
∫ ∞

−∞
ω|f̂(ω)|2dω

is the mean frequency. Without loss of generality, let < t >= 0 and < ω >= 0.
If f(t) is expressed in the polar form f(t) = |f(t)|eiθ(t) = ρ(t)eiθ(t), then

the stronger version of the uncertainty principle ([8]) is

σtσω ≥
∣∣∣∣−1

2
+ iCovtω

∣∣∣∣ =
1
2

√
1 + 4Cov2

tω, (1.2)

where Covtω is the covariance of a signal defined by

Covtω :=
∫ ∞

−∞
tθ′(t)ρ2(t)dt.

The covariance is to be an indication of how instantaneous frequency, θ′(t),
and time are related. When the instantaneous frequency does not change the
covariance is zero ([8]).

Recently, in [10], Dang, Deng and Qian strengthen the result of (1.2) ,
they obtained:

σtσω ≥
∣∣∣∣−1

2
+ iCOVtω

∣∣∣∣ =
1
2

√
1 + 4COV2

tω, (1.3)

where COVtω is the absolute covariance of a signal defined by

COVtω :=
∫ ∞

−∞
|tθ′(t)|ρ2(t)dt.

Since
∫ ∞

−∞ tθ′(t)ρ2(t)dt ≤ ∫ ∞
−∞ |tθ′(t)|ρ2(t)dt, (1.3) is stronger than (1.2). In

[11], they extend the result to linear canonical transform.
Because of the importance of the classical uncertainty principle in physi-

cs [1,8,22–24,28,29,34,40], there have been many efforts to extend it to vari-
ous types of functions and integral transforms, such as [30,36,39]. Since 1994,
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some studies [4,21,31] develop the uncertainty relations with the Quater-
nionic Fourier transform (QFT) in Hamiltonian quaternion analysis. The
uncertainty principle for the Quaternion linear canonical transform (QLCT),
the generalization of the QFT in the Hamiltonian quaternion algebra, are
derived in [25]. All those papers obtained their uncertainty bounds without
covariance in the spatial case. Recently, in [42], under the polar coordinate
form of quaternion signals, we first give stronger uncertainty principles asso-
ciated with covariance based on the right-sided quaternion Fourier transform
both in the directional and the spatial cases.

In the present paper, we extend the results (1.3) to Quaternion-valued
signals. The most advantage of this theory is that for quaternion-valued sig-
nals, if we write them into the polar coordinate form, we can obtain a tighter
bound. Furthermore, we also deduce the sufficient and necessary conditions
under which two uncertainty principles hold. These conditions are easily ver-
ified.

The article is organized as follows. In Sect. 2, Quaternion algebra is
introduced and the polar representation of a quaternion-valued signal is pre-
sented. The quaternion Fourier transform and its properties are reviewed in
Sect. 3. Two tighter uncertainty principles are generalized for the right-sided
quaternion Fourier transform of quaternion-valued signal in Sect. 4. We give
examples to illustrate the results in Sect. 5.

2. Preliminaries

The quaternion algebra H was first invented by W. R. Hamilton in 1843
for extending complex numbers to a 4D non-commutative field ([37]). A real
quaternion q ∈ H can be written in form

q = q0 + q = q0 + iq1 + jq2 + kq3, qk ∈ R, k = 0, 1, 2, 3,

where i, j,k satisfy Hamilton’s multiplication rules

i2 = j2 = k2 = −1, ij = −ji = k,

jk = −kj = i,ki = −ik = j.

The scalar part of q is q0 denoted by Sc[q] = q0, The non scalar part (or
pure quaternion) of q is q denoted by NSc[q] = q.

Using the Hamilton’s multiplication rules, the multiplication of two
quaternion numbers p = p0 + p and q = q0 + q can be expressed as

pq = p0q0 + p · q + p0q + q0p + p × q,

where

p · q = −(p1q1 + p2q2 + p3q3)

and

p × q = i(p3q2 − p2q3) + j(p1q3 − p3q1) + k(p2q1 − p1q2).
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We define the conjugation of q ∈ H by q = q0 − iq1 − jq2 − kq3. The
quaternion conjugation is a linear anti-involution

¯̄q = q, p + q = p̄ + q̄, pq = q̄p̄.

Clearly, qq̄ = q20 + q21 + q22 + q23 . So the modulus of a quaternion q is defined
by

|q| =
√

qq̄ =
√

q20 + q21 + q22 + q23 .

It is easy to verify that 0 �= q ∈ H implies

q−1 =
q

|q|2 .

In this paper, we will study quaternion-valued signals f : R2 → H that can
be expressed as

f(x) = f0(x) + if1(x) + jf2(x) + kf3(x),

where x = x1i+x2j ∈ R2 and fk, k = 0, 1, 2, 3 are real-valued functions. Here
H is the quaternion algebra.

It is well-known that a complex signal f(t) = u(t) + iv(t) can be ex-
pressed in the polar coordinate form |f(t)|eiθ(t), where the amplitude |f(t)| :=√

u2(t) + v2(t) and the phase θ(t) := arctan v(t)
u(t) .

We will be using the polar coordinate form of quaternion-valued signals
([5]), viz.,

f(x) = f0(x) + if1(x) + jf2(x) + kf3(x)

= |f(x)|eu(x)θ(x)

= ρ(x)eu(x)θ(x),

where eu(x)θ(x) is understood in accordance with Euler’s formula eu(x)θ(x) =
cos θ(x) + u(x) sin θ(x) and

ρ(x) :=
√

f2
0 (x) + f2

1 (x) + f2
2 (x) + f2

3 (x).

u(x) :=
if1(x) + jf2(x) + kf3(x)√

f2
1 (x) + f2

2 (x) + f2
3 (x)

belongs to the unit sphere S2 := {x ∈ H | |x|2 = 1} of 3D Euclidean space
R3. Here u(x) can be written in the spherical coordinate form

u(x) = i cos φ + j sin φ sin τ + k sin φ cos τ,

φ ∈ [0, π], τ ∈ [0, 2π]. The quaternionic phase is

θ(x) := arctan

√
f2
1 (x) + f2

2 (x) + f2
3 (x)

f0(x)
∈ [0, π].

Note that some researchers in [14,15] study monogenic signals fM of
the form

fM (x) : = f0(x) + if1(x) + jf2(x)

= |f(x)|euM (x)θM (x),
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where |f(x)| :=
√

f2
0 (x) + f2

1 (x) + f2
2 (x) is the amplitude, θM (x) := arctan√

f2
1 (x)+f2

2 (x)

f0(x)
is the phase and uM (x) := i cos φ + j sin φ is considered as the

orientation.
Let the inner product of f(x), g(x) ∈ L2(R2,H) be defined by

< f(x), g(x) >:=
∫
R2

f(x)g(x)dx.

Clearly, ‖f‖2L2 =< f, f >.

3. Quaternion Fourier Transforms

The quaternion Fourier transform (QFT) is an extension of Fourier transform
proposed by Ell [13]. Due to the non-commutative properties of quaternions,
there are three different types of QFT, the left-sided QFT, the right-sided
QFT and the two-sided QFT [33]. In this paper we only treat the right-
sided QFT, the left-sided is similar. We now review the definition and some
properties of the right-sided QFT ([4,20]).

Definition 3.1. If f ∈ L1(R2,H), the quaternion Fourier transform (QFT)
of f is defined by

F{f}(ξ) =
1
2π

∫
R2

f(x)e−ix1ξ1e−jx2ξ2dx

and if in addition, F{f} ∈ L1(R2,H), the inverse Fourier transform is de-
fined by

f(x) =
1
2π

∫
R2

F{f}(ξ)ejx2ξ2eix1ξ1dξ.

Lemma 3.1. ([4]) (Plancherel Theorem for QFT) If f, g ∈ L2(R2,H), then

< f, g >=< F{f}, F{g} > .

In particular, with f = g, we get the Parseval theorem, i.e.

‖f‖2 = ‖F{f}‖2.
Lemma 3.2. ([4]) If f ∈ L1

⋂
L2(R2,H) and for k = 1, 2, ∂

∂xk
f exists and is

also in L2(R2,H), then
∫
R2

ξ2k|F{f}(ξ)|2dξ =
∫
R2

∣∣∣∣ ∂

∂xk
f(x)

∣∣∣∣
2

dx. (3.1)

4. Uncertainty Principles

In this section, we will give two uncertainty relations in terms of absolute
covariance. We need the following technical Lemmas.
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Lemma 4.1. ([42]) For any quaternion signal f(x) = ρ(x)eu(x)θ(x), if ∂u
∂xk

and
∂θ

∂xk
exists for k = 1, 2, then the scalar part of

[
∂

∂xk
eu(x)θ(x)

] [
e−u(x)θ(x)

]

is zero.

Proof. The proof is given in [42]. To make the paper self-containing, we cite
the proof here as well.

By the generalized Euler formula of quaternion eu(x)θ(x) = cos θ(x) +
u(x) sin θ(x), we have

∂

∂xk

(
eu(x)θ(x)

)(
e−u(x)θ(x)

)

=
∂

∂xk
[cos θ(x) + u sin θ(x)] [cos θ(x) − u sin θ(x)]

=
[
− sin θ(x)

∂θ(x)
∂xk

+
∂u

∂xk
sin θ(x)+u cos θ(x)

∂θ(x)
∂xk

]
[cos θ(x)−u sin θ(x)]

= u(x)
∂θ(x)
∂xk

+ sin θ(x) cos θ(x)
∂u

∂xk
− sin2 θ(x)

∂u(x)
∂xk

u(x) (4.1)

Clearly, the scalar part of

∂

∂xk

(
eu(x)θ(x)

)(
e−u(x)θ(x)

)

is decided by the third part of the formula (4.1). Now we prove it is zero.
For u(x) ∈ S2, we have [u(x)]2 = −1. Therefore, we obtain

∂[u(x)]2

∂xk
=

∂u(x)
∂xk

u(x) + u(x)
∂u(x)
∂xk

= 2Sc[
∂u(x)
∂xk

u(x)] (4.2)

= 0.

This completes the proof. �

Remark 4.1. In one dimensional cases, for signal f(x) = ρ(x)eiθ(x), it is easy
to see that (

∂

∂x
eiθ(x)

)
e−iθ(x) = iθ′(x).

Lemma 4.2. For any quaternion signal f(x) = ρ(x)eu(x)θ(x), if ∂
∂xk

f(x) exists
for k = 1, 2, then
∣∣∣∣ ∂

∂xk
f(x)

∣∣∣∣
2

=
[

∂

∂xk
ρ(x)

]2

+ ρ2(x)
∣∣∣∣NSc

[(
∂

∂xk
eu(x)θ(x)

) (
e−u(x)θ(x)

)]∣∣∣∣
2

.

(4.3)

Proof. For f(x) = ρ(x)eu(x)θ(x), we have
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∂

∂xk
f(x) =

∂

∂xk
[ρ(x)eu(x)θ(x)]

=
(

∂

∂xk
ρ(x)

)
eu(x)θ(x) + ρ(x)

∂

∂xk
(eu(x)θ(x)).

Therefore,

| ∂

∂xk
f(x)|2

=
∂

∂xk
f(x)

∂

∂xk
f(x)

=
[(

∂

∂xk
ρ

)
euθ + ρ

∂

∂xk
(euθ)

] [(
∂

∂xk
ρ

)
e−uθ + ρ

∂

∂xk
(euθ)

]

=
(

∂

∂xk
ρ

)2

+ ρ2
∂

∂xk
(euθ)

∂

∂xk
(euθ)

+ρ

(
∂

∂xk
ρ

)[
∂

∂xk
(euθ)e−uθ +

∂

∂xk
(euθ)e−uθ

]
.

By Lemma 4.1, we have

∂

∂xk
(euθ)e−uθ +

∂

∂xk
(euθ)e−uθ = 0

and

ρ2
∂

∂xk
(euθ)

∂

∂xk
(euθ) = ρ2

∂

∂xk
(euθ)e−uθ ∂

∂xk
(euθ)e−uθ

= ρ2
∣∣∣∣ ∂

∂xk
(euθ)e−uθ

∣∣∣∣
2

= ρ2
∣∣∣∣NSc

[(
∂

∂xk
euθ

)
e−uθ

]∣∣∣∣
2

.

This completes the proof. �

Clearly, using (3.1) and (4.3), we have

Theorem 4.1. For any quaternion signal f(x) = ρ(x)eu(x)θ(x), if f ∈ L1
⋂

L2

(R2,H), and for k = 1, 2, ∂
∂xk

f exists and is also in L2(R2,H), then
∫
R2

ξ2k|F{f}(ξ)|2dξ =
∫
R2

[
∂

∂xk
ρ(x)

]2

dx

+
∫
R2

ρ2(x)
∣∣∣∣NSc

[(
∂

∂xk
eu(x)θ(x)

)(
e−u(x)θ(x)

)]∣∣∣∣
2

dx.

(4.4)

Remark 4.2. (4.4) is an effective formula to compute
∫
R2 ξ2k|F{f}(ξ)|2dξ.

Using this formula, we can avoid computing the Fourier transform of f(x).
Due to the non-commutative property of quaternions, it is complicated to
compute the Fourier transforms of quaternion-valued signals.



486 Y. Yang, P. Dang and T. Qian Adv. Appl. Clifford Algebras

Due to Remark 4.1, in the complex case we have ([8]):

σ2
ω =

∫ ∞

−∞
ρ′2(x)dx +

∫ ∞

−∞
ρ2(x)θ′2(x)dx.

Theorem 4.2. (Uncertainty Principle in spatial case)
Let f(x) = |f(x)|eu(x)θ(x). If f(x) ∈ L2(R2,H), xkf(x), ∂

∂xk
f(x) ∈

L2(R2,H), k = 1, 2 and ‖f‖L2 = 1, then(∫
R2

x2
k|f(x)|2dx

) (∫
R2

ξ2k|F{f}(ξ)|2dξ

)
≥ 1

4
+ COV2

xkξk
, (4.5)

where the absolute covariance

COVxkξk
:=

∫
R2

∣∣∣∣xkNSc
[(

∂

∂xk
eu(x)θ(x)

)
e−u(x)θ(x)

]∣∣∣∣ ρ2(x)dx.

The equality (4.5) holds if and only if f(x) = e− α1
2 x2

1− α2
2 x2

2eu(x)θ(x) and
( ∂

∂xk
eu(x)θ(x))e−u(x)θ(x) = βkxk. Here α1, α2 > 0 and β1, β2 are pure quater-

nions.

Proof. Applying formula (3.1) and (4.4), we have
(∫

R2
x2

k|f(x)|2dx

) (∫
R2

ξ2k|F{f}(ξ)|2dξ

)
=

(∫
R2

x2
kρ2dx

)

×
(∫

R2

[
∂

∂xk
ρ(x)

]2

dx +

∫
R2

ρ2

∣∣∣∣NSc

[(
∂

∂xk
eu(x)θ(x)

) (
e−u(x)θ(x)

)]∣∣∣∣
2

dx

)

=

(∫
R2

x2
kρ2dx

) (∫
R2

[
∂

∂xk
ρ(x)

]2

dx

)

+

(∫
R2

x2
kρ2dx

) (∫
R2

ρ2(x)

∣∣∣∣NSc

[(
∂

∂xk
eu(x)θ(x)

) (
e−u(x)θ(x)

)]∣∣∣∣
2

dx

)

(4.6)

Using Hölder inequality, we have
(∫

R2
x2

kρ2dx

)(∫
R2

[
∂

∂xk
ρ(x)

]2

dx

)

≥
(∫

R2

∣∣∣∣xkρ[
∂

∂xk
ρ(x)]

∣∣∣∣ dx

)2

≥
∣∣∣∣
∫
R2

xkρ[
∂

∂xk
ρ(x)]dx

∣∣∣∣
2

=
∣∣∣∣
∫
R2

1
2

∂

∂xk

(
ρ2xk

)
dx −

∫
R2

1
2
ρ2dx

∣∣∣∣
2

=
1
4
. (4.7)

The first term of (4.7) is a perfect differential and integrates to zero. The
second term gives one half since we assume the signal is unit energy.
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Similarly, we have
(∫

R2
x2

kρ2dx

) (∫
R2

ρ2(x)
∣∣∣∣NSc

[(
∂

∂xk
eu(x)θ(x)

)(
e−u(x)θ(x)

)]∣∣∣∣
2

dx

)

≥
(∫

R2

∣∣∣∣xkNSc
[(

∂

∂xk
eu(x)θ(x)

) (
e−u(x)θ(x)

)]∣∣∣∣ ρ2dx

)2

= COV2
xkξk

. (4.8)

connecting (4.7), (4.8) and (4.6), the inequality (4.5) holds.
Next we deduce the conditions under which the equation holds in (4.5).

The equation in (4.7) holds if and only if ∂
∂xk

ρ(x) = ±αkxkρ(x), where αk >

0. That is ρ(x) = e± αk
2 x2

k . For f(x) ∈ L2(R2), then we choose ρ(x) = e− αk
2 x2

k .
Clearly, the equation holds in (4.8) if and only if

NSc
[(

∂

∂xk
eu(x)θ(x)

)
e−u(x)θ(x)

]

=
(

∂

∂xk
eu(x)θ(x)

)
e−u(x)θ(x) (4.9)

= βkxk.

Lemma 4.1 is used in the first equation of (4.9). This completes the proof. �

Corollary 4.1. ([42]) Let f(x) = |f(x)|eu(x)θ(x). If f(x) ∈ L2(R2,H), xkf(x),
∂

∂xk
f(x) ∈ L2(R2,H), for k = 1, 2 and ‖f‖L2 = 1, then

(∫
R2

x2
k|f(x)|2dx

) (∫
R2

ξ2k|F{f}(ξ)|2dξ

)

≥ 1
4

+ |Covxkξk
|2 ,

where the covariance

Covxkξk
:=

∫
R2

NSc
[(

∂

∂xk
eu(x)θ(x)

)
e−u(x)θ(x)

]
ρ2(x)xkdx.

Theorem 4.3. (Uncertainty Principle in directional case)
Let f(x) = |f(x)|eu(x)θ(x). If f(x) ∈ L2(R2,H), xkf(x), ∂

∂xk
f(x) ∈

L2(R2,H), k = 1, 2 and ‖f‖L2 = 1, then(∫
R2

|x|2|f(x)|2dx

) (∫
R2

|ξ|2|F{f}(ξ)|2dξ

)

≥ 1 + COV2
xξ, (4.10)

where the absolute covariance is

COVxξ :=
2∑

k=1

∫
R2

∣∣∣∣xkNSc
[(

∂

∂xk
euθ

)
e−uθ

]∣∣∣∣ ρ2(x)dx.

The equality (4.10) holds if and only if f(x) = e− α
2 |x|2eu(x)θ(x) and

( ∂
∂xk

eu(x)θ(x))e−u(x)θ(x) = βxk. Here α > 0 and β are pure quaternion.



488 Y. Yang, P. Dang and T. Qian Adv. Appl. Clifford Algebras

Proof. Applying (3.1) and (4.3), we have
(∫

R2
|x|2|f(x)|2dx

) (∫
R2

|ξ|2|F{f}(ξ)|2dξ

)

=

(∫
R2

2∑
k=1

x2
kρ2dx

) (∫
R2

2∑
k=1

ξ2k|F{f}(ξ)|2dξ

)

=

(∫
R2

2∑
k=1

x2
kρ2dx

) (∫
R2

2∑
k=1

∣∣∣∣ ∂

∂xk

f(x)

∣∣∣∣
2

dx

)
=

(∫
R2

2∑
k=1

x2
kρ2dx

)

×
(∫

R2

2∑
k=1

[
∂

∂xk

ρ(x)

]2

+ ρ2(x)

∣∣∣∣NSc

[(
∂

∂xk

eu(x)θ(x)

) (
e−u(x)θ(x)

)]∣∣∣∣
2

dx

)

=

(∫
R2

2∑
k=1

x2
kρ2dx

) (∫
R2

2∑
k=1

[
∂

∂xk

ρ(x)

]2

dx

)

+

(∫
R2

2∑
k=1

x2
kρ2dx

) (∫
R2

2∑
k=1

ρ2(x)

∣∣∣∣NSc

[(
∂

∂xk

eu(x)θ(x)

)(
e−u(x)θ(x)

)]∣∣∣∣
2

dx

)
.

Applying the Schwarz inequality of continuous and discrete cases, we have(∫
R2

2∑
k=1

x2
kρ2dx

) (∫
R2

2∑
k=1

[
∂

∂xk
ρ(x)

]2

dx

)

≥
∣∣∣∣∣∣
∫
R2

(
2∑

k=1

x2
kρ2

) 1
2

(
2∑

k=1

(
∂

∂xk
ρ)2

) 1
2

dx

∣∣∣∣∣∣

2

≥
∣∣∣∣∣
∫
R2

2∑
k=1

(
∂

∂xk
ρ

)
xkρdx

∣∣∣∣∣
2

= 1.

(4.7) is used in the last step. Similarly, we have(∫
R2

2∑
k=1

x2
kρ2dx

) (∫
R2

2∑
k=1

ρ2(x)
∣∣∣∣NSc

[(
∂

∂xk
eu(x)θ(x)

)(
e−u(x)θ(x)

)]∣∣∣∣
2

dx

)

≥
(

2∑
k=1

∫
R2

∣∣∣∣xkNSc
[(

∂

∂xk
euθ

)
e−uθ

]∣∣∣∣ ρ2dx

)2

.

Similarly, like Theorem 4.2, the equality (4.10) holds if and only if f(x) =
e− α

2 |x|2eu(x)θ(x) and ( ∂
∂xk

eu(x)θ(x))e−u(x)θ(x) = βxk. Here α > 0 and β is a
pure quaternion. This completes the proof. �

Corollary 4.2. ([42]) Let f(x) = |f(x)|eu(x)θ(x). If f(x) ∈ L2(R2,H), xkf(x),
∂

∂xk
f(x) ∈ L2(R2,H), for k = 1, 2, then

(∫
R2

|x|2|f(x)|2dx

) (∫
R2

|ξ|2|F{f}(ξ)|2dξ

)

≥ 1 +
∣∣∣Covxξ

∣∣∣2 ,
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where the covariance is

Covxξ :=
2∑

k=1

∫
R2

NSc
[(

∂

∂xk
euθ

)
e−uθ

]
ρ2(x)xkdx.

5. Examples

Example 5.1. Consider a quaternionic valued signal of unit energy

f(x) =
√

α

π
e

−α|x|2
2 eu |x|2

2 ,

where α is a positive real number and u ∈ S2 is a pure quaternionic constant.
Computing directly, we have∫

R2
x2

k|f(x)|2dx =
α

π

∫
R2

x2
ke−α|x|2dx

=
1
2α

,

and∫
R2

ξ2k|F{f}(ξ)|2dξ =
∫
R2

(
∂

∂xk
ρ

)2

dx+
∫
R2

ρ2
∣∣∣∣NSc

[(
∂

∂xk
euθ

)
e−uθ

]∣∣∣∣
2

dx

=
α3

π

∫

R2

x2
ke−α|x|2dx +

α

π

∫

R2

x2
ke−α|x|2dx

=
α

2
+

1
2α

.

It is easy to see that Covxkξk
= u

2α , COVxkξk
= 1

2α , k = 1, 2. Then(∫
R2

x2
k|f(x)|2dx

) (∫
R2

ξ2k|F{f}(ξ)|2dξ

)

=
1
4

+
1

4α2

>
1
4

+
(

1
2α

)2

=
1
4

+ COV2
x1ξ1

>
1
4

+
∣∣∣ u

2α

∣∣∣2 =
1
4

+ |Covx1ξ1 |2

and (∫
R2

|x|2|f(x)|2dx

) (∫
R2

|ξ|2|F{f}(ξ)|2dξ

)

= 1 +
1
α2

= 1 +
(

1
2α

+
1
2α

)2

= 1 + COV2
xξ

= 1 +
∣∣∣ u

2α
+

u

2α

∣∣∣2 = 1 +
∣∣∣Covxξ

∣∣∣2 .
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Note that, in this case, the stronger forms of uncertainty principle of Theo-
rems 4.2 and 4.3 become equalities. In fact, ( ∂

∂xk
eu(x)θ(x))e−u(x)θ(x) = uxk,

which satisfies the conditions as given in (4.5) and (4.10).

Example 5.2. Consider a quaternionic valued signal of unit energy

f(x) =
√

α

π
e

−α|x|2
2 ej

β2x2
2

2 eiβ1x1 ,

where α is a positive real number and β1, β2 ∈ R.
By Example 5.1, we have∫

R2
x2

k|f(x)|2dx =
α

π

∫
R2

x2
ke−α|x|2dx

=
1
2α

, k = 1, 2. (5.1)

By direct calculation, we have∫
R2

ξ21 |F{f}(ξ)|2dξ =
∫
R2

(
∂

∂x1
ρ

)2

dx+
∫
R2

ρ2
∣∣∣∣NSc

[(
∂

∂x1
euθ

)
e−uθ

]∣∣∣∣
2

dx

=
α3

π

∫
R2

x2
1e

−α|x|2dx +
αβ2

1

π

∫
R2

e−α|x|2dx

=
α

2
+ β2

1 , (5.2)

and∫
R2

ξ22 |F{f}(ξ)|2dξ =
∫
R2

(
∂

∂x2
ρ

)2

dx+
∫
R2

ρ2
∣∣∣∣NSc

[(
∂

∂x2
euθ

)
e−uθ

]∣∣∣∣
2

dx

=
α3

π

∫
R2

x2
2e

−α|x|2dx +
αβ2

2

π

∫
R2

x2
2e

−α|x|2dx

=
α

2
+

β2
2

2α
. (5.3)

Clearly, we have Covx1ξ1 = 0, Covx2ξ2 = j β2
2α and COVx1ξ1 = |β1|√

πα
, COVx2ξ2 =

|β2|
2α . Therefore, (∫

R2
x2
1|f(x)|2dx

) (∫
R2

ξ21 |F{f}(ξ)|2dξ

)

=
1
4

+
β2
1

2α

>
1
4

+
β2
1

πα
=

1
4

+ COV2
x1ξ1

>
1
4

=
1
4

+ |Covx1ξ1 |2 (5.4)

and (∫
R2

x2
2|f(x)|2dx

) (∫
R2

ξ22 |F{f}(ξ)|2dξ

)

=
1
4

+
β2
2

4α2
=

1
4

+ COV2
x2ξ2
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=
1
4

+ |Covx2ξ2 |2

>
1
4
. (5.5)

Expressions (5.4) and (5.5) verify Theorem 4.2. Note that, in formula (5.5),
the stronger form of uncertainty principles of Theorem 4.2 becomes equality.
In fact, ( ∂

∂x2
eu(x)θ(x))e−u(x)θ(x) = jβ2x2, which satisfies the conditions of

equation (4.10) holds.
Applying (5.1) and (5.2), (5.3), we have∫

R2
|x|2|f(x)|2dx =

1
α

,

∫
R2

|ξ|2|F{f}(ξ)|2dξ = α + β2
1 +

β2
2

2α
.

Then (∫
R2

|x|2|f(x)|2dx

) (∫
R2

|ξ|2|F{f}(ξ)|2dξ

)

= 1 +
β2
1

α
+

β2
2

2α2

> 1 +
( |β1|√

πα
+

|β2|
2α

)2

= 1 + COV2
xξ

> 1 +
(

β2

2α

)2

= 1 +
∣∣∣Covxξ

∣∣∣2 . (5.6)

Here Covxξ = j β2
2α and COVxξ = |β1|√

πα
+ |β2|

2α . (5.6) verifies Theorem 4.3.

Example 5.3. Consider a quaternionic valued signal of unit energy

f(x) =
√

α

π
e

−α|x|2
2 ej

β2x2
2

2 e
i

(
x2
1
2 +β1x1

)
,

where α is a positive real number and β1, β2 ∈ R.
Clearly, by Example 5.1 and 5.2, we have∫

R2
x2

k|f(x)|2dx =
1
2α

, k = 1, 2, (5.7)
∫
R2

ξ22 |F{f}(ξ)|2dξ =
α

2
+

β2
2

2α
, (5.8)

and Covx2ξ2 = j β2
2α , COVx2ξ2 = |β2|

2α .
So we only calculate the quantities about variables x1 and ξ1. In fact,∫

R2
ξ21 |F{f}(ξ)|2dξ =

∫
R2

(
∂

∂x1
ρ

)2

dx+
∫
R2

ρ2
∣∣∣∣NSc

[(
∂

∂x1
euθ

)
e−uθ

]∣∣∣∣
2

dx

=
α3

π

∫
R2

x2
1e

−α|x|2dx +
α

π

∫
R2

|x1 + β1|2e−α|x|2dx

=
α

2
+

1
2α

+ β2
1 +

2|β1|√
απ

. (5.9)
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and

Covx1ξ1 =
α

π

∫
R2

x1e
−α|x|2ej

β2x2
2

2 i(x1 + β1)e−j
β2x2

2
2 dx

=
α

π

∫ ∞

−∞
(x2

1 + x1β1)e−αx2
1dx1

∫ ∞

−∞
e−αx2

2ej
β2x2

2
2 ie−j

β2x2
2

2 dx2

=
α

π

∫ ∞

−∞
x2
1e

−αx2
1dx1

∫ ∞

−∞
e−αx2

2ej
β2x2

2
2 ie−j

β2x2
2

2 dx2

=
α

π

∫ ∞

−∞
x2
1e

−αx2
1dx1

∫ ∞

−∞
e−αx2

2ejβ2x2
2 idx2

=
α

π

√
π

2α
√

α

√
π

α − jβ2
i

=
1

2α
√

1 − jβ2
α

i, (5.10)

COVx1ξ1 =
α

π

∫
R2

e−α|x|2 |x1(x1 + β1)|dx

≤ α

π

∫
R2

x2
1e

−α|x|2dx +
α|β1|

π

∫
R2

|x1|e−α|x|2dx

=
1
2α

+
|β1|√
πα

. (5.11)

Therefore,

(∫
R2

x2
1|f(x)|2dx

) (∫
R2

ξ21 |F{f}(ξ)|2dξ

)

=
1
4

+
1

4α2
+

β2
1

2α
+

|β1|
α
√

πα

>
1
4

+
(

1
2α

+
|β1|√
πα

)2

≥ 1
4

+ COV2
x1ξ1

>
1
4

+ | i

2α
√

1 + jβ2
α

|2 =
1
4

+ |Covx1ξ1 |2

>
1
4
. (5.12)

(5.12) verifies Theorem 4.2. Using (5.7) and (5.8), (5.9), we have

∫
R2

|x|2|f(x)|2dx =
1
α

,

∫
R2

|ξ|2|F{f}(ξ)|2dξ = α +
β2
2

2α
+

1
2α

+ β2
1 +

2|β1|√
πα

.
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Then (∫
R2

|x|2|f(x)|2dx

) (∫
R2

|ξ|2|F{f}(ξ)|2dξ

)

= 1 +
β2
2

2α2
+

1
2α2

+
β2
1

α
+

2|β1|
α
√

πα

> 1 +
(

1
2α

+
|β1|√
πα

+
|β2|
2α

)2

= 1 + COV2
xξ

> 1 + |i β2

2α
+

i

2α
√

1 + jβ2
α

|2 = 1 +
∣∣∣Covxξ

∣∣∣2 . (5.13)

(5.13) verifies Theorem 4.3.

6. Appendix

Proof of (5.6): We are to show

1 +
β2
1

α
+

β2
2

2α2
> 1 +

( |β1|√
πα

+
|β2|
2α

)2

.

We have the following equivalent relations:

β2
1

α
+

β2
2

2α2
>

( |β1|√
πα

+
|β2|
2α

)2

⇐⇒ β2
1

α
+

β2
2

2α2
>

β2
1

πα
+

β2
2

2α2
+

|β1||β2|
α
√

πα

⇐⇒ β2
1

α
+

β2
2

4α2
>

β2
1

πα
+

|β1||β2|
α
√

πα

⇐⇒ (π − 1)β2
1

πα
+

β2
2

4α2
>

|β1||β2|
α
√

πα
.

It is easy to see

(π − 1)β2
1

πα
+

β2
2

4α2
>

β2
1

πα
+

β2
2

4α2
≥ |β1||β2|

α
√

πα
.

This completes the proof.
Proof of (5.13): We are to show

1 +
β2
2

2α2
+

1
2α2

+
β2
1

α
+

2|β1|
α
√

πα
> 1 +

(
1
2α

+
|β1|√
πα

+
|β2|
2α

)2

.

We have the following equivalent relations:

β2
2

2α2
+

1

2α2
+

β2
1

α
+

2|β1|
α
√

πα
> (

1

2α
+

|β1|√
πα

+
|β2|
2α

)2

⇐⇒ β2
2

2α2
+

1

2α2
+

β2
1

α
+

2|β1|
α
√

πα
>

1

4α2
+

|β1|
α
√

πα
+

|β2|
2α2

+
β2
1

πα
+

|β1||β2|
α
√

πα
+

β2
2

4α2
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⇐⇒ β2
2

4α2
+

1

4α2
+

β2
1

α
+

|β1|
α
√

πα
>

|β2|
2α2

+
β2
1

πα
+

|β1||β2|
α
√

πα

⇐⇒ (1 − |β2|)2
4α2

+
(π − 1)β2

1

πα
>

|β1|(|β2| − 1)

α
√

πα
.

Clearly

(1 − |β2|)2
4α2

+
(π − 1)β2

1

πα
>

(1 − |β2|)2
4α2

+
β2
1

πα
≥ |β1|(|β2| − 1)

α
√

πα
.

This completes the proof.
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Quaternion Fourier Transform. Quaternion and Clifford Fourier Transforms
and Wavelets, pp. 105–120. Springer, Basel (2013)

[18] Hardy, G., Littlewood, JE., Polya, G.: Inequalities, 2nd edn. Press of University
of Cambridge (1951)

[19] Heinig, H., Smith, M.: Extensions of the Heisenberg-Weyl inequality. Int. J.
Math. Math. Sci. 9, 185–192 (1986)

[20] Hitzer, E.M.S.: Quaternion Fourier transform on quaternion fields and gener-
alizations. Adv. Appl. Clifford Algebr. 17(3), 497–517 (2007)

[21] Hitzer, E.M.S.: Directional uncertainty principle for quaternion Fourier trans-
form. Adv. Appl. Clifford Algebr. 20, 271–284 (2010)

[22] Iwo, B.B.: Entropic uncertainty relations in quantum mechanics. In: Accardi,
L., Von Waldenfels, W. (eds.) Quantum probability and applications II, Lecture
Notes in Mathematics 1136, pp. 90–103. Springer, Berlin (1985)

[23] Iwo, B.B.: Formulation of the uncertainty relations in terms of the Rényi en-
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