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Abstract. The purpose of this article is twofold. The first is to construct
frames of the L2(Rn) by using dilation and modulation starting from a
single function of a certain type. The second is to construct frames of the
H2(Rn

1,+) by using a Cauchy type integral. The work is motivated by the
recent development of sparse representation of Hardy space functions,
and, especially, by adaptive Fourier decomposition in relation to rational
orthogonal systems. We work in two contexts. One is the quaternionic
space and the other is the Euclidean space in the Clifford algebra setting.
We also investigate what type of functions can give rise to frames of
L2(Rn) by dilation and modulation.
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1. Introduction

Frames were firstly introduced in 1952 by Duffin and Schaeffer in [12] where
frames are used as a tool in the study of nonharmonic Fourier series. A
sequence {fn : n ∈ I} is called a frame of a Hilbert space H if, for any f ∈ H,
the inequalities A‖f‖2

H ≤
∑

n∈I
|〈f, fn〉H |2 ≤ B‖f‖2

H hold for some positive
constants A and B, where, I is some index set, 〈·, ·〉H and ‖ ·‖H are the inner
product and norm of H. The next work to develop the frame theory was
nearly 30 years later. In 1980, Young presented frames in an abstract setting
in his book [30] that also concerns the topic of nonharmonic Fourier series. In
1985, as the wavelet era began, Daubechies et al. [7] observed that frames can
be used to find series expansions of functions in L2(R) which are very similar
to the expansions using orthonormal bases. Due to Daubechies’ important
works [8,9] and the successive paper [21] by Heil and Walnut, mathematicians
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found the potential of this topic, see [1,2,4,10,13–20,22,26,28]. There are a
lot of results about the wavelet theory in terms of Lie group [29]. The subject
of frame has been developing in two different aspects. One is to study frame
theory as a branch of functional analysis. The other aspect is to construct
specific frames using harmonic analysis, time-frequency analysis and signal
processing, including Gabor and wavelet frames.

In construction of frames, it concerns three basic operators: modulation,
dilation and translation. They play crucial roles. They are in the above order
defined, respectively, as

Mωf(·) = ei〈ω,·〉f(·), DAf(·) = |A|− 1
2 f(A−1·), Tb

¯
f(·) = f(· − b

¯
)

for parameters ω,b
¯

∈ R
n and a dilation matrix A ∈ R

n×n. Here R
n×n de-

notes the set of n × n matrices with positive determinants. The windowed
Fourier transform [17,20] is based on translation and modulation, but wavelet
transform [8,9] is based on dilation and translation. Precisely, for a fixed win-
dowed function φ and a wavelet function ψ in L2(Rn), the windowed Fourier
transform and the wavelet transform are defined by

T win
φ f(b

¯
, ω) =

∫

Rn

f(x
¯
)φ(x

¯
− b

¯
)e−i〈ω,x

¯
〉dx

¯

and

T wav
ψ f(A,b

¯
) = |A|− 1

2

∫

Rn

f(x
¯
)ψ

(
A−1x

¯
− b

¯
)
dx
¯
,

respectively. Each of them involves two of the three basic operators: modu-
lation M, translation T and dilation D.

We remark that, in the windowed Fourier transform, the variables in
translation–modulation stand for time and frequency variables, respectively.
In the wavelet transform, the variables in translation–dilation are called time
and dilation variables, respectively. Usually, the dilation variable is regarded
as “frequency”. The windowed Fourier transform is treated as the coefficients
of the Schrödinger representation of the Heisenberg group up to a phase fac-
tor with modulus 1. The wavelet transform can be interpreted as the rep-
resentation coefficients of the group of affine transform. We remark that in
the Heisenberg group the multiplication law complies with the composition
principle of translation and modulation. Similarly, in the affine group, the
multiplication law corresponds to the composition principle of translation
and dilation (see [17]).

In this paper, we investigate frame theory in the Clifford algebra set-
ting. Due to the fact that R

n
1 is not closed under Clifford multiplication, the

functions are restricted to those defined in R
n
1 and with values in R

n
1 as well.

We establish a frame-type inequality for such functions. In the quaternionic
case we establish a frame theory for H

2(Q+).
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Our basic idea is as follows. Find radial functions ϕ(| · |) in L2(Rn) such
that the family of functions {ϕ

j,k
¯

: (j, k
¯
) ∈ Z × Z

n} in L2(Rn) defined by

ϕ
j,k
¯
(|x

¯
|) = a

− jn
2

0 ϕ(
|x
¯
|

aj
0

)ei〈a−j
0 ω0k¯

,x
¯

〉, x
¯

∈ R
n. (1.1)

forms a frame of L2(Rn). Note that in such formulation the dilation-
modulation lattice set is

Λ =
{

(a−j
0 ω0k¯

, a−j
0 ) : (j, k

¯
) ∈ Z × Z

n
}

. (1.2)

Next, by using a Cauchy-type formula (6.7), generate a frame for the Hardy
space defined in R

n
1,+ consisting of certain vector-valued monogenic functions

corresponding to the conjugate harmonic systems of Stein–Weiss [27]. Conse-
quently, such type monogenic frames are available for the quaternionic Hardy
space H

2(Q+). We specially note that what are used are only dilation and
modulation, and, that is, to the authors knowledge, the first such formulation
among the literature on frames on R

n with the Clifford algebra setting.
The present study on frames of the type (1.1) with monogenic exten-

sions is, in fact, motivated by their one dimensional counterparts, and their
analytic extensions, and especially the TM systems in one complex variable
(see [25] and thereafter references). Firstly, we observe that the Takenaka–
Malmquist(TM) system is essentially generated from dilation–modulation of
the exponential function. Here, the TM system is defined by

en(z) =

√
1
π Im{λn}
z − λ̄n

Bn(z), z ∈ C
+, n ∈ Z+,

where {λn} ⊂ C
+ and Bn is an order n−1 Blaschke product on the upper-half

complex plane defined by

Bn(z) =
n−1∏

j=0

z − λj

z − λ̄j
.

A TM system is an orthonormal system of the conventional Hardy space
H2(C+) on the upper half plane that is defined by

‖F‖2
H2(C+) := sup

y>0

∞∫

−∞
|F (x + iy)|2dx < ∞.

For each function F ∈ H2(C+), its non-tangential boundary limit f :=
lim
y→0

F (· + iy) exists. The set of non-tangential boundary limits of H2(C+)

also forms a Hilbert space, a closed subspace of L2(R), which is denote by
H2(dt) and called the boundary Hardy space of H2(C+). Moreover, the inner
products in H2(C+) and H2(dt) are related by

〈F,G〉C+ = 〈f, g〉,
where 〈f, g〉 means the usual inner product in L2(R). Correspondingly, we can
define the boundary value TM system (an orthonormal basis of H2(dt)), still
denoted by {en : n ∈ Z+}. In Sect. 3, we prove that each basic function en
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essentially comes from dilation–modulation of the exponential function e−|·|.
Secondly, in Sect. 4, we observe that radial functions as kernel functions are
sufficient to ensure the existence of the inverse formula of the continuous time-
frequency transform defined by (4.12). Correspondingly, as discretization of
(4.12), the generating atom in our frame system (1.1) is a radial function.

About the construction of frames L2(Rn) of the type (1.1), we inves-
tigate a continuous time-frequency transformation with modulated–dilated
kernel in the space L2(R). We point out that the basic kernel function has
to be radial in order to ensure the synthesis formula. This continuous trans-
form is also the group representation coefficient of a kind of affine group from
dilation and modulation. The reproducing formula implies that the dilation–
modulation kernel is dense in L2(Rn) when the dilation parameter and mod-
ulation parameter run over R+ and R

n, respectively. As a separable space, it
is intuitively to look for suitable discretization of the dilation parameter and
modulation parameter in the transformation that we study. By choosing the
lattices Λ, it leads to the system {ϕj,k

¯
: (j, k

¯
) ∈ Z × Z

n} defined in (1.1).
The writing plan is as follows. Section 2 gives some basic knowledge in

Clifford algebra. Section 3 explains that the TM system is essentially gener-
ated by dilation–modulation of an exponential function. Section 4 is devoted
to a generalized Heisenberg group, its representation and an important in-
tegral transform. Section 5 deals with necessary conditions and sufficient
conditions for a radial function to be able to induce a frame as defined in
(1.1). The formulation of this part is standard in accordance with the idea
and techniques in [9] and [5]. Section 6 is devoted to establishing a frame-
type inequality. Section 7 is construction of frames in the Quaternion Hardy
space.

2. Preliminary

Most of the basic knowledge and notation recalled in this section are referred
to [3,11,23,24]. Let e1, . . . , en be basis elements satisfying ejek + ekej =
−2δj,k, where δj,k = 1 if j = k and δj,k = 0 otherwise, j, k = 1, 2, . . . , n. Let

R
n = {x

¯
= x1e1 + · · · + xnen : xj ∈ R, j = 1, 2, . . . , n}

be identical with the usual Euclidean space R
n. The space R

n
1 is defined as

R
n
1 = {x = x0 + x

¯
: x0 ∈ R, x

¯
∈ R

n}.

The upper half space R
n
1,+ is defined as R

n
1 with the constraint x0 > 0. For

convenience, we sometimes use e0 := 1.
An element in R

n
1 is called a vector. The real (complex) Clifford algebra

generated by e1, . . . , en, denoted by R
(n) (C(n)), is the associative algebra

generated by e1, . . . , en, over the real (complex) field R (C). A general element
in R

(n), therefore, is of the form x =
∑

s xses, where es = ej1ej2 · · · ejk
, and

s runs over all the ordered subsets of {1, 2, . . . , n}, namely,

s = {1 ≤ j1 < j2 < · · · < jk ≤ n}, 1 ≤ k ≤ n.
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The natural inner product between x and y in C
(n), denoted by 〈x, y〉,

is the complex number
∑

s xsys, where x =
∑

s xses and y =
∑

s yses. The
norm associated with this inner product is

|x| = 〈x, x〉 1
2 =

(
∑

s

|xs|2
) 1

2

.

If x, y, . . . , u are vectors, then

|xy · · · u| = |x| |y| · · · |u|.
The conjugates of a vector x = x0 + x

¯
is defined as x̄ = x0 − x

¯
. It is easy to

verify that 0 	= x ∈ R
n
1 implies

x−1 =
x̄

|x|2 .

Let f(x) be a function defined in R
n or R

n
1 taking values in C

(n) with the
form f(x) =

∑
s fs(x)es, where fs are complex-valued functions. We will use

the Dirac operator

∂ = ∂0 + ∂

where ∂0 = ∂/∂x0 = (∂/∂x0)e0 and ∂ = (∂/∂x1)e1 + · · · + (∂/∂x1)en.
Define the left and right roles of the operator ∂ by

∂f =
n∑

j=0

∑

s

∂fs
∂xj

ejes

and

f∂ =
n∑

j=0

∑

s

∂fs
∂xj

esej .

If ∂f = 0 in a domain (open and connected) Λ, then we say that f is
left-monogenic in Λ; and if f∂ = 0 in Λ, we say that f is right-monogenic in
Λ. If f is both left- and right-monogenic, then we say that f is monogenic.

The Cauchy Theorem holds in the present case. Let Λ be a domain
with Lipschitz boundary ∂Λ and g be right- and f be left-monogenic in a
neighborhood of Λ ∪ ∂Λ. Then

∫

∂Λ

g(y)n(y)f(y)dσ(y) = 0,

where n(y) is the outward unit normal to the surface ∂Λ at y and dσ(y)
is the area measure. We also have the Cauchy formula. Under the above
assumptions,

g(x) =
1

Ωn+1

∫

∂Λ

g(y)n(y)E(y − x)dσ(y), x ∈ Λ,

and

f(x) =
1

Ωn+1

∫

∂Λ

E(y − x)(y)n(y)fdσ(y), x ∈ Λ,
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where

E(x) =
x̄

|x|n+1

is the Cauchy kernel, and Ωn+1 = 2π
n+1
2 /Γ(n+1

2 ) is the area of the n-
dimensional unit sphere in R

n
1 . The Fourier transformation in R

n is defined
by

F(f)(ξ) =
1

(2π)n/2

∫

Rn

e−i〈x
¯

,ξ〉f(x
¯
)dx

¯
,

and the inverse of Fourier transform is defined by

F−1(g)(x
¯
) =

1
(2π)n/2

∫

Rn

ei〈x
¯

,ξ〉g(x
¯
)dx

¯
.

For a function f : Rn → R
n
1 with f(x

¯
) =

∑n

j=0
fj(x¯

)ej , its Fourier transform

is defined by F(f)(x
¯
) =

∑n

j=0
F(fj)(x¯

)ej .

3. An Observation

For a given parameter sequence {λn}∞
n=0 in the upper half plane C

+, we
consider the iterative system

d

dt
gn(t)+iλ̄ngn(t) =

√
Im(λn)

Im(λn−1)

(
d

dt
gn−1(t) + iλn−1gn−1(t)

)
, t ∈ R, n ≥ 1

(3.1)
with initial function g0 = −

√
2ie−|·|χ[0,∞). Here χE denotes the characteristic

function of the set E ⊂ R. By the method of variation of parameters for
inhomogeneous linear ordinary differential equations, we get an alternative
representation of (3.1)

gn(t) = ce−iλ̄ntχ[0,∞)(t)

+

√
Im(λn)

Im(λn−1)
e−iλ̄nt

∫
eiλ̄nt

(
g′

n−1(t) + iλn−1gn−1(t)
)
dt

= ce−iλ̄ntχ[0,∞)(t) +

√
Im(λn)

Im(λn−1)
gn−1(t)

+

√
Im(λn)

Im(λn−1)

∫
i(λn−1 − λ̄n)gn−1(t)eiλ̄ntdt.

By induction, we can prove that, for integer n ≥ 1,

gn(t) =
n∑

j=0

c
(n)
j e−iλ̄jtχ[0,∞)(t), t ∈ R. (3.2)
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Specifically, we can choose

c
(n)
j =

√
Im(λn)

∏n−1

k=0
(λ̄j − λk)/

∏n

k=0
k �=j

(λ̄j − λ̄k), j = 0, 1, . . . , n,

which corresponds to the initial condition gn(0) =
∑n

j=0
c
(n)
j .

Denote the Fourier–Laplace transform L : L2(R+) → H2(C+) by

Lf(z) =
∫

R+

f(t)eitzdt, z ∈ C
+.

By calculation, the image of gn under the transform L is

Lgn(z) = en(z), n ∈ Z+. (3.3)

The system {Lgn : n ∈ N} is called Takenaka–Malmquist system, which
is an orthonormal basis in the Hardy space H2(C+) under the condition
∑

k∈Z+

√
Im(λk)

1 + |λk|2 = ∞.

Remark that L is an isometry between L2(R+) and H2(C+). We there-
fore conclude that the system {gn : n ∈ Z+} is also an orthogonal basis of
L2(R+). It is interesting to investigate the time-frequency structure of gn. By
(3.2), we know that each function gn is a finite superposition of some basic
atoms from the set {e−iλ̄k·χ[0,∞) : k ∈ Z+}. The basic atom e−iλ̄k·χ[0,∞) can
be written as modulation–dilation form of one fixed function, that is,

e−iλ̄ktχ[0,∞)(t) = e−iRe(λk)te−Im(λk)tχ[0,∞)(t).

This example essentially suggests a passage to construct bases or frames in
H2(C+) by using the Cauchy formula. A general theory in higher dimensions
will be established in the following sections.

4. Integral Transform and Group Representation

We need the following canonical commutation relations among translation,
modulation and dilation. Translation and modulation satisfy

Tb
¯
Mω = e−i〈b

¯
,ω〉MωTb

¯
= R−〈b

¯
,ω〉MωTb

¯
, MωTb

¯
= ei〈b

¯
,ω〉Tb

¯
Mω

= R〈b
¯

,ω〉Tb
¯
Mω. (4.1)

Modulation and dilation ensure

DAMω = M(AT )−1ωDA, MωDA = DAMAT ω. (4.2)

For dilation and translation we have

DATb
¯

= TAb
¯
DA, Tb

¯
DA = DATA−1b

¯
. (4.3)

There holds the symmetric relation

M 1
2ωTb

¯
M 1

2ω = R− 1
2 〈b

¯
,ω〉MωTb

¯
= R 1

2 〈b
¯

,ω〉Tb
¯
Mω, (4.4)

where the rotation transform is defined by

Rdf(·) = eidf(·).
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The composition rule for the time-frequency operation RdM 1
2ωTb

¯
M 1

2ω,
namely,

(
RdM 1

2ωTb
¯
M 1

2ω

)(
Rd̃M 1

2 ω̃T˜b
¯
M 1

2 ω̃

)

= R
d+d̃+ 1

2 (〈˜b
¯

,ω〉−〈b
¯

,ω̃〉)M 1
2 (ω+ω̃)Tb

¯
+

˜b
¯
M 1

2 (ω+ω̃)

suggests a multiplication on (Rn)2 × R

(b
¯
, ω, d)(b̃

¯
, ω̃, d̃) =

(
b
¯

+ b̃
¯
, ω + ω̃, d + d̃ +

1
2
(〈b̃

¯
, ω〉 − 〈b

¯
, ω̃〉)

)
.

This group is called the full Heisenberg group. The unitary operator RdM 1
2ω

Tb
¯
M 1

2ω is called the Schrödinger representation of the full Heisenberg group.
The representation coefficient is

〈f,RdM 1
2ωTb

¯
M 1

2ωφ〉 = R−d+ 1
2 〈b

¯
,ω〉〈f,MωTb

¯
φ〉 = R−d+ 1

2 〈b
¯

,ω〉T
win

φ f(b
¯
, ω).

Up to the phase factor ei(−d+ 1
2 〈b

¯
,ω〉), the coefficients of the Schrödinger rep-

resentation coincide with the windowed Fourier transform in L2(Rn).
The wavelet transform can also be interpreted as a representation co-

efficient 〈f, Tb
¯
DAψ〉 of a unitary representation Tb

¯
DA of the group of the

affine transformation, which is the set R
n×n ×R

n with the multiplication by

(A,b
¯
)(Ã, b̃

¯
) = (AÃ,b

¯
+ Ab̃

¯
).

The multiplication is based on the composition law for the operator Tb
¯
DA

(Tb
¯
DA)(T˜b

¯
DÃ) = Tb

¯
+A

˜b
¯
DAÃ, (A,b

¯
), (Ã, b̃

¯
) ∈ R

n×n × R
n.

The Heisenberg group and the affine transformation group are imbed-
ding subgroups of the following more complicated group, called the polarized
group H

pol, i.e. the set R
n×n × (Rn)2 × R with the multiplication

(A,b
¯
, ω, d) ·(Ã, b̃

¯
, ω̃, d̃) = (AÃ,b

¯
+Ab̃

¯
, ω+(AT )−1ω̃, d+ d̃−〈A−1b, ω̃〉). (4.5)

In the scalar case, this group, called affine Weyl–Heisenberg group, first ap-
peared in [6]. The inverse of (A,b

¯
, ω, d) is

(A,b
¯
, ω, d)−1 =

(
A−1,−A−1b

¯
,−AT ω,−d − 〈b

¯
, ω〉

)
. (4.6)

The group representation is the unitary operator defined by

ρ1(A,b
¯
, ω, d) := Rd+ 1

2 〈b,ω〉M 1
2ωTb

¯
M 1

2ωDA. (4.7)

We remark that, by direct calculation with patience by using (4.1), (4.2),
(4.3) and (4.4), the identities (4.5),(4.6) and (4.7) can be verified.

In fact, we can construct another group structure H
full, which is the

set R
n×n × (Rn)2 × R under the multiplication

(A,b
¯
, ω, d) · (Ã, b̃

¯
, ω̃, d̃)

=
(

AÃ,b
¯

+ Ab̃
¯
, ω + (AT )−1ω̃, d + d̃ +

1
2
(〈Ab̃

¯
, ω〉 − 〈A−1b

¯
, ω̃〉)

)
.

(4.8)
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We call it the full Group. The inverse is

(A,b
¯
, ω, d)−1 =

(
A−1,−A−1b

¯
,−AT ω,−d

)
. (4.9)

The group representation is

ρ2(A,b
¯
, ω, d) := RdM 1

2ωTb
¯
M 1

2ωDA. (4.10)

By adopting the techniques in [17] for Heisenberg group, we note that H
full

and H
pol are isomorphic via the group isomorphism ı : H

full → H
pol with

ı : (A,b
¯
, ω, d) →

(
A,b

¯
, ω, d − 1

2
〈b
¯
, ω〉

)
.

The reason is as below. Firstly, the mapping ı is clearly bijective on R
n×n ×

(Rn)2 × R. Secondly, for h, h̃ ∈ H
full, the relations

ı(h · h̃)

= ı

(
AÃ,b

¯
+ Ab̃

¯
, ω + (AT )−1ω̃, d + d̃ +

1
2

(
〈Ab̃

¯
, ω〉 − 〈A−1b

¯
, ω̃〉

))

=
(

AÃ,b
¯

+ Ab̃
¯
, ω + (AT )−1ω̃, d + d̃ +

1
2

(
〈Ab̃

¯
, ω〉 − 〈A−1b

¯
, ω̃〉

)

−1
2
〈b
¯

+ Ab̃
¯
, ω + (AT )−1ω̃〉

)

=
(

AÃ,b
¯

+ Ab̃
¯
, ω + (AT )−1ω̃, d + d̃ − 〈A−1b

¯
, ω̃〉 − 1

2
〈b
¯
, ω〉 − 1

2
〈b̃
¯
, ω̃〉

)

and

ı(h) · ı(h̃)

=
(

A,b
¯
, ω, d − 1

2
〈b
¯
, ω〉

)
·
(

Ã, b̃
¯
, ω̃, d̃ − 1

2
〈b̃
¯
, ω̃〉

)

=
(

AÃ,b
¯

+ Ab̃
¯
, ω + (AT )−1ω̃, [d − 1

2
〈b
¯
, ω〉] + [d̃ − 1

2
〈b̃
¯
, ω̃〉] − 〈A−1b, ω̃〉

)

imply ı(h) · ı(h̃) = ı(h · h̃).
Our interest lies in a common imbedding subgroup of H

full and H
pol

when setting b = d = 0, where the multiplication on R
n×n × {0} × R

n × {0}
is defined by

(A, 0, ω, 0) · (Ã, 0, ω̃, 0) = (AÃ, 0, ω + (AT )−1ω̃, 0).

For simplicity, we denote it by H, the set R
n×n × R

n with the multiplication

(A,ω) · (Ã, ω̃) =
(
AÃ, ω + (AT )−1ω̃

)
. (4.11)

The corresponding group representation of H is the unitary operator MωDA

which has the composition rule of frequency-dilation

(MωDA)(Mω̃DÃ) = Mω+(AT )−1ω̃DAÃ.

In order to design a useful time-frequency transform, we only consider
the uniform scaling (isotropic scaling), that is, the case A = aI with I being
the identity matrix of order n. For a fixed atom φ ∈ L2(Rn), according to
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the representation coefficients of the group H, we are suggested to investigate
the integral transform in L2(Rn)

Uφf(ω, a)=〈f,MωDaIφ〉=a− n
2

∫

Rn

f(x
¯
)φ

(x
¯
a

)
e−i〈ω,x

¯
〉dx

¯
, ω ∈ R

n, a ∈ R+.

(4.12)
The next theorem indicates that f can be reconstructed from Uφf.

Theorem 4.1. Suppose that φ ∈ L2(Rn) is a radial function with φ(x
¯
) = ϕ(|x

¯
|)

and Cϕ := (2π)n
∫

R+

|ϕ(t)|2
t dt < ∞. Then the following formula

f =
1

Cϕ

∫

R+

an−1da

∫

Rn

dωUφf(ω, a)MωDaIφ (4.13)

holds in the weak sense for any f ∈ L2(Rn).

Proof. Let the image space Uφ(L2(Rn)) be equipped with the inner product

〈Uφf,Uφg〉(ω,a) =
∫

R+

∫

Rn

Uφf(ω, a)Uφg(ω, a)an−1dadω.

It suffices to prove 〈Uφf,Uφg〉(ω,a) = Cφ〈f, g〉. Direct computation gives

〈Uφf,Uφg〉(ω,a) = 〈〈f,MωDaIφ〉, 〈g,MωDaIφ〉〉(ω,a)

= (2π)n
〈(

fDaIφ
)∧

(ω),
(
gDaIφ

)∧
(ω)

〉

(ω,a)
.

The Plancherel formula leads to

〈Uφf,Uφg〉(ω,a) = (2π)n

∫

R+

∫

Rn

(
fDaIφ

)∧
(ω)

(
gDaIφ

)∧
(ω)an−1dadω

= (2π)n

∫

R+

∫

Rn

(
fDaIφ

)
(ω)

(
gDaIφ

)
(ω)an−1dadω

= (2π)n

∫

R+

∫

Rn

f(ω)g(ω)|(DaIφ)(ω)|2an−1dadω

= (2π)n

∫

R+

∫

Rn

f(ω)g(ω)
|ϕ(|ω|/a)|2

a
dadω

= 〈f, g〉(2π)n

∫

R+

|ϕ(t)|2
t

dt.

This completes the proof of this theorem. �

Remark. In the synthesis formula (4.13), an−1dadω is used to replace the
Haar measure 1

an+1 dadω in wavelet transform.
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The resolution of the identity (4.13) can be rewritten in another way

C−1
ϕ

∫

R+

∫

Rn

an−1dadω〈·,MωDaIφ〉MωDaIφ = Id , (4.14)

where 〈·, g〉g stands for the operator on L2(Rn) that sends f to 〈f, g〉g.
The synthesis formula (4.13) indicates that the system {MωDaIϕ(| · |) :

ω ∈ R
n, a ∈ R+} is dense in L2(R). Due to the separability of the space

L2(Rn), it is natural to expect a countable system from discretization of
MωDaIϕ(| · |). To this end, we consider the lattices Λ defined in (1.2), which
leads to the atoms

ϕ
j,k
¯
(x
¯
) = M

a−j
0 ω0k¯

Daj
0Iϕ(|x

¯
|) = a

− jn
2

0 ϕ

(
|x
¯
|

aj
0

)
ei〈a−j

0 ω0k¯
,x
¯

〉, x
¯

∈ R
n. (4.15)

Here a0 > 1 and ω0 > 0.

5. Conditions on Generator and Lattice Parameters

For numerical stability, we require that the atoms {ϕj,k
¯

: (j, k
¯
) ∈ Z × Z

n}
defined in (4.15) form a frame of L2(Rn), that is,

A‖f‖2 ≤
∑

j∈Z

∑

k
¯

∈Zn

|〈f, ϕ
j,k
¯
〉|2 ≤ B‖f‖2 (5.1)

holding for any f ∈ L2(Rn). It is well known [17,20] that, if imposing the
linearly independent condition on {φ

j,k
¯
}, the system {φ

j,k
¯

: (j, k
¯
) ∈ Z × Z

n}
becomes a Riesz basis of L2(Rn), i.e.

A‖{c
j,k
¯
}‖2

l2 ≤ ‖
∑

j∈Z

∑

k
¯

∈Zn

c
j,k
¯
ϕ

j,k
¯
‖2 ≤ B‖{c

j,k
¯
}‖2

l2 .

We will look for conditions on the generator ϕ and the sampling lattice
parameters ω0 ∈ (0,∞), a0 ∈ (1,∞), that make (5.1) hold.

5.1. Necessary Conditions on Generator and Lattice Parameters

Before establishing our main theorem we first prove some useful lemmas. The
first lemma is related to trace-class operators. We first recall some notation
and terminology. A operator C mapping L2(Rn) to itself is said to be self-
adjoint if C∗ = C. If a self-adjoint operator C satisfies 〈Cf, f〉 ≥ 0 for all
f ∈ L2(Rn), then it is called a positive operator. Trace-class operators are
special operators for which

∑
l |〈Cul, ul〉| is finite for all orthonormal bases in

L2(Rn).
For a trace-class operator the quantity

∑
l〈Cul, ul〉 is independent of

any particularly chosen orthonormal basis, which is named as the trace of C
and denoted by

TrC =
∑

l

〈Cul , ul〉.
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For a positive operator C, if
∑

l
〈Cul, ul〉 is finite for a particular orthonormal

basis, then C is a trace-class operator [9]. Any function f ∈ L2(Rn) has the
following decomposition

Cf =
∑

l

dl〈f, ul〉ul (5.2)

in terms of the eigenvectors of the positive trace-class C. Here Cul = dlul and
dl ≥ 0.

Lemma 5.1. Suppose that {ϕ
j,k
¯

: (j, k
¯

) ∈ Z × Z
n} is a frame of L2(Rn)

with the bounds A and B as given in (5.1). Then for any positive trace-class
operator C, there holds

ATrC ≤
∑

j∈Z

∑

k
¯

∈Zn

〈Cϕ
j ,k
¯

, ϕ
j ,k
¯

〉 ≤ BTrC. (5.3)

Proof. Let {ul : l ∈ Z} be an orthonormal basis of L2(Rn). Choosing coeffi-
cients dl ≥ 0 satisfying

∑
l∈Z

dl < ∞, setting f = ul in (5.1) and then taking
the weighted sum ( with the weights dl) on the obtained inequalities, we get

A
∑

l∈Z

dl ≤
∑

l∈Z

dl

∑

j∈Z

∑

k
¯

∈Zn

|〈ul, ϕj,k
¯
〉|2 ≤ B

∑

l∈Z

dl.

By invoking (5.2) and TrC =
∑

l∈Z

dl , we obtain the relation (5.3). �

Next we introduce a special positive trace-class operator related to the
synthesis formula (4.14). Define

C =
∫

R+

∫

Rn

an−1〈·, ha,ω〉ha,ωc(a, ω)dadω (5.4)

where ha,ω = MωDaIh, h is any function in L2(Rn) and c is an arbitrary pos-
itive function in L1(R × R

n) such that the integral
∫

R+

∫
Rn an−1c(a, ω)dadω

converges.

Lemma 5.2. The operator defined in (5.4) is a positive trace-class operator
with

TrC = ‖h‖22
∫

R+

∫

Rn

an−1 c(a, ω)dadω. (5.5)

Proof. The positivity of C can be verified by

〈Cf, f〉 =
∫

R+

∫

Rn

an−1|〈f, ha,ω〉|2c(a, ω)dadω ≥ 0.
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The following calculation indicates that C is a trace-class operator:

TrC =
∑

l∈Z

〈Cul, ul〉 =
∫

R+

∫

Rn

an−1c(a, ω)
∑

l∈Z

|〈ha,ω, ul〉|2dadω

=
∫

R+

∫

Rn

an−1c(a, ω)‖ha,ω(·)‖2
2dadω

= ‖h‖2
2

∫

R+

∫

Rn

an−1c(a, ω)dadω,

where we utilized the Lebesgue dominated convergence theorem and the Par-
seval identity for orthonormal basis. �

Specifically, set

c(a, ω) =
{

η(a|ω|), 1 ≤ a ≤ a0, ω ∈ R
n

0, otherwise, (5.6)

where η ∈ L1(R) is a positive function with η(r) = O((1+r2)− n+1
2 ). We have

the following corollary.

Corollary 5.3. Let C be the operator defined in (5.4) with c(a, ω) defined in
(5.6). Then

C =

a0∫

1

∫

Rn

an−1〈·, ha,ω〉ha,ωη(a|ω|)dadω (5.7)

and
TrC = Ωn‖h‖2

2 ln a0

∫

R+

rn−1η(r)dr, (5.8)

where Ωn = 2πn/2/Γ(n/2), the area of the unit sphere in R
n.

Next lemma establishes an identity about the inner product of ϕ
j,k
¯

and
ha,ω.

Lemma 5.4. The following identity holds

〈ϕj,k
¯

, ha,ω〉 = 〈ϕ(| · |), ha−j
0 a, aj

0ω−ω0k¯ 〉. (5.9)

Proof. The definitions of ϕ
j,k
¯

and ha,ω imply that

〈ϕj,k
¯
, ha,ω〉 =

∫

Rn

a
− jn

2
0 ϕ(

|x
¯
|

aj
0

)eia−j
0 ω0〈k

¯
,x
¯

〉a− n
2 h(

x
¯
a
)e−i〈ω,x

¯
〉dx

¯

= a
− jn

2
0 a− n

2

∫

Rn

ϕ(
|x
¯
|

aj
0

)h(
x
¯
a
)e−i〈ω−a−j

0 ω0k¯
, x
¯

〉dx
¯
.

Changing x
¯

to aj
0x¯

leads to

〈ϕ
j,k
¯
, ha,ω〉 = a

jn
2

0 a− n
2

∫

Rn

ϕ(|x
¯
|)h(

aj
0x¯
a

)e−i〈aj
0ω−ω0k¯

, x
¯

〉dx
¯
.

We therefore conclude (5.9). �
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The next lemma offers an integral representation for the quantity
∑

j∈Z∑
k
¯

∈Zn
〈Cϕ

j,k
¯
, ϕ

j,k
¯
〉 in terms of the functions η and h.

Lemma 5.5. Suppose that C is defined by (5.7). Then
∑

j∈Z

∑

k
¯

∈Zn

〈Cϕj,k
¯

, ϕj,k
¯

〉 =
∫

R+

∫

Rn

an−1
∑

k
¯

∈Zn

η (a|ω + ω0k¯
|) |〈ϕ(| · |), ha,ω〉|2 dadω.

(5.10)

Proof. Using (5.7) and (5.9), we have

∑

j∈Z

∑

k
¯

∈Zn

〈Cϕ
j,k
¯
, ϕ

j,k
¯
〉 =

∑

j∈Z

∑

k
¯

∈Zn

a0∫

1

∫

Rn

an−1|〈ϕ
j,k
¯
, ha,ω〉|2η(a|ω|)dadω

=
∑

j∈Z

∑

k
¯

∈Zn

a0∫

1

∫

Rn

an−1|〈ϕ(|·|), ha−j
0 a,aj

0ω−ω0k
¯〉|2η(a|ω|)dadω.

Changing the variable pair (a, ω) to (aj
0a, a−j

0 (ω + ω0k¯
)) and noting that the

Jacobi is a
−j(n−1)
0 , we have

∑

j∈Z

∑

k
¯

∈Zn

〈Cϕ
j,k
¯
, ϕ

j,k
¯
〉 =

∑

j∈Z

∑

k
¯

∈Zn

a−j+1
0∫

a−j
0

∫

Rn

an−1 |〈ϕ(| · |), ha,ω〉|2 η (a|ω + ω0k
¯
|) dadω.

Note that the function in the right hand side of the above integral is inde-
pendent of j. By applying the Lebesgue dominated convergence theorem, we
obtain (5.10). �

We need the following property for the Gaussian function.

Lemma 5.6. Suppose that η(x) = λne−πλ2x2
with the parameter λ > 0. Then

∑

k
¯

∈Zn

η (a|ω + ω0k¯
|) =

1
anωn

0

+ ρ(a, ω) (5.11)

with |ρ(a, ω)| < gλ and gλ = ( 1
aω0

+ λ)n − 1
anωn

0
.

Proof. Using the property of the Gaussian function, it can be proved that
(see, for instance, Daubechies, see [8, Lemma 2.2])

∑

j∈Z

λe−πλ2a2(t+ω0j)2 =
1

aω0
+ ρ1(a, t), t ∈ R

with |ρ1(a, t)| < λ. Therefore,

∑

k
¯

∈Zn

η (a|ω + ω0k¯
|) =

n∏

j=1

∑

kj∈Z

λe−πλ2a2(ωj+ω0kj)
2

=
n∏

j=1

(
1

aω0
+ ρ1(a, ωj)

)
.
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Here ωj is the jth element of the ω for 1 ≤ j ≤ n. Write
∑

k
¯

∈Zn η (a|ω + ω0k¯
|)

as the sum of 1
anωn

0
and ρ(a, ω) with

ρ(a, ω) =
n∏

j=1

(
1

aω0
+ ρ1(a, ωj)

)
− 1

anωn
0

.

The estimation for ρ(a, ω) can be obtained from the calculation

|ρ(a, ω)| ≤
n∏

j=1

(
1

aω0
+ |ρ1(a, ωj)|

)
− 1

anωn
0

≤
(

1
aω0

+ λ

)n

− 1
anωn

0

= gλ.

�

The final lemma of this section as given below investigates the operator
C when η is specified as the Gaussian function.

Lemma 5.7. Suppose that C is defined by (5.7) with η(x) = λne−πλ2x2
for

a parameter λ > 0. Let h ∈ L2(Rn) be a radial function h = �(| · |) with
C� :=

∫
R+

|�(x)|2
x < ∞. Then

∑

j∈Z

∑

k
¯

∈Zn

〈Cϕj,k
¯

, ϕj,k
¯

〉 =
(2π)n

ωn
0

‖h‖2
2

∫

R+

ϕ(t)
t

dt + R (5.12)

with 0 < |R| ≤ C�gλ‖ϕ(| · |)‖2
2, and the trace of the operator C is

TrC = ‖h‖2
2 ln a0. (5.13)

Proof. Combing (5.10) with (5.11), we get
∑

j∈Z

∑

k
¯

∈Zn

〈Cϕ
j,k
¯
, ϕ

j,k
¯
〉

=
∫

R+

∫

Rn

1
aωn

0

|〈ϕ(| · |), ha,ω〉|2 dadω

+
∫

R+

∫

Rn

an−1ρ(a, ω) |〈ϕ(| · |), ha,ω〉|2 dadω

:= J + R.

We first deal with R. Using |ρ(a, ω)| < gλ and the synthesis formula (4.13)
(note that the condition C� :=

∫
R+

|�(x)|2
x < ∞ holds), it follows

|R| ≤ gλ

∫

R+

∫

Rn

an−1 |〈ϕ(| · |), ha,ω〉|2 dadω

= C�gλ‖ϕ(| · |)‖2
2.
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Next, by Plancherel formula, we rewrite J as

J =
∫

R+

∫

Rn

1
aωn

0

|〈ϕ(| · |), ha,ω〉|2 dadω

=
1

ωn
0

∫

R+

∫

Rn

1
an+1

∣∣∣∣∣∣

∫

Rn

ϕ(|x
¯
|)�

(x
¯
a

)
e−i〈ω,x

¯
〉dx

¯

∣∣∣∣∣∣

2

dadω

=
1

ωn
0

∫

R+

∫

Rn

(2π)n 1
an+1

∣∣∣∣∣

(
ϕ(| · |)�

(
| · |
a

))∧
(ω)

∣∣∣∣∣

2

dωda

=
(2π)n

ωn
0

∫

R+

∫

Rn

1
an+1

∣∣∣∣ϕ(|x
¯
|)�

(
|x
¯
|

a

)∣∣∣∣
2

dx
¯
da.

Setting x
¯

→ ay
¯

in the above integral leads to

J =
(2π)n

ωn
0

∫

R+

∫

Rn

1
a
|ϕ(a|y

¯
|)|2|�(|y

¯
|)|2dy

¯
da

=
(2π)n

ωn
0

∫

R+

1
a|y

¯
| |ϕ(a|y

¯
|)|2d(a|y

¯
|)
∫

Rn

|�(|y
¯
|)|2dy

¯

=
(2π)n

ωn
0

‖h‖2
2

∫

R+

ϕ(t)
t

dt.

To calculate the trace, we recall (5.8) and the definition of the Gamma
function to obtain

TrC = Ωn‖h‖2
2 ln a0

∫

R+

rn−1η(r)dr

= Ωn‖h‖2
2 ln a0

∫

R+

rn−1λne−πλ2r2
dr

= Ωn‖h‖2
2

1
2
π− n

2 Γ
(n

2

)
ln a0 = ‖h‖2

2 ln a0.

The proof is complete. �

Through all these preparations, we now establish a theorem concerning
necessary conditions.

Theorem 5.8. If the system {ϕj,k
¯

: (j, k
¯

) ∈ Z × Z
n} defined in (4.15) consti-

tute a frame for L2(Rn) with frame bounds A,B, then

ωn
0 ln a0

(2π)n
A ≤

∫

R+

|ϕ(t)|2
t

dt ≤ ωn
0 ln a0

(2π)n
B. (5.14)
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Proof. By (5.3), (5.13) and (5.12), we get the inequality

A‖h‖2
2 ln a0 ≤ (2π)n

ωn
0

‖h‖2
2

∫

R+

|ϕ(t)|2
t

dt + R ≤ B‖h‖2
2 ln a0

with 0 < |R| ≤ C�gλ‖ϕ(| · |)‖2
2. Note that limλ→0 R = 0 (see the definition

of gλ in (5.11) ). Letting λ tend to 0 and dividing by ‖h‖2
2 in the above

inequalities, we find

A ln a0 ≤ (2π)n

ωn
0

∫

R+

|ϕ(t)|2
t

dt ≤ B ln a0.

Therefore, (5.14) follows. �

5.2. Sufficient Conditions

We now discuss sufficient conditions that ensure {ϕj,k
¯

: (j, k
¯
) ∈ Z×Z

n} to be

a frame of L2(Rn). The key point is to estimate the quantity
∑

j∈Z

∑
k
¯

∈Zn∣∣∣〈f, ϕj,k
¯
〉
∣∣∣
2

.
Let ♦ be the unit hypercube [0, 1]n in R

n and ♦s
¯

be s
¯
-shift of the box ♦.

Denote by 2πω−1
0 aj

0♦s
¯

the 2πω−1
0 aj

0 dilation of ♦s
¯
. By utilizing the partition

of R
n = ∪∞

s
¯
∈Zn2πω−1

0 aj
0♦s

¯
, a direct computation gives rise to

∑

j∈Z

∑

k
¯

∈Zn

∣∣∣〈f, ϕ
j,k
¯

〉
∣∣∣
2

=
∑

j∈Z

∑

k
¯

∈Zn

∣∣∣∣∣∣

∫

Rn

f(x
¯
)a

− jn

2
0 ϕ

(
|x
¯
|

aj
0

)
e

−i〈a−j
0 ω0k

¯
,x
¯

〉
dx
¯

∣∣∣∣∣∣

2

=
∑

j∈Z

∑

k
¯

∈Zn

∣∣∣∣∣∣∣∣

∑

s
¯

∈Zn

∫

2πω−1
0 aj

0♦s
¯

f(x
¯
)a

− jn

2
0 ϕ

(
|x
¯
|

aj
0

)
e

−i〈a−j
0 ω0k

¯
,x
¯

〉
dx
¯

∣∣∣∣∣∣∣∣

2

=
∑

j∈Z

∑

k
¯

∈Zn

∣∣∣∣∣∣∣

∑

s
¯

∈Zn

∫

2πω−1
0 aj

0♦

f(x
¯
+ 2πω

−1
0 a

j
0s¯

)a
− nj

2
0 ϕ

(
|x
¯
+ 2πω−1

0 aj
0s|̄

aj
0

)
e

−i〈a−j
0 ω0k

¯
,x
¯
+2πω−1

0 aj
0s¯

〉
dx
¯

∣∣∣∣∣∣∣

2

=
∑

j∈Z

∑

k
¯

∈Zn

a
−jn
0

∣∣∣∣∣∣∣

∫

2πω−1
0 aj

0♦

∑

s
¯

∈Zn

f(x
¯
+ 2πω

−1
0 a

j
0s¯

)ϕ(|a−j
0 x

¯
+ 2πω−1

0 s|̄)e−i〈a−j
0 ω0k

¯
,x
¯

〉
dx
¯

∣∣∣∣∣∣∣

2

.

By the Plancherel theorem for periodic functions, we obtain
∑

j∈Z

∑

k
¯

∈Zn

∣∣∣〈f, ϕj,k
¯
〉
∣∣∣
2

=

(
2π

ω0

)n ∑

j∈Z

∫

2πω−1
0 aj

0♦

∣∣∣∣∣∣

∑

s
¯
∈Zn

f(x
¯

+ 2πω−1
0 aj

0s¯
)ϕ(|a−j

0 x + 2πω−1
0 s|̄)

∣∣∣∣∣∣

2

dx
¯

=

(
2π

ω0

)n ∑

j∈Z

∫

2πω−1
0 aj

0♦

∑

s
¯
∈Zn

f(x
¯

+ 2πω−1
0 aj

0s¯
)ϕ(|a−j

0 x + 2πω−1
0 s|̄)
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∑

k
¯

∈Zn

f(x
¯

+ 2πω−1
0 aj

0k¯
)ϕ(|a−j

0 x
¯

+ 2πω−1
0 k

¯
|)dx

¯

=

(
2π

ω0

)n ∑

j∈Z

∫

Rn

f(x
¯
)ϕ(|a−j

0 x
¯
|)

∑

k
¯

∈Zn

f(x
¯

+ 2πω−1
0 aj

0k¯
)ϕ(|a−j

0 x
¯

+ 2πω−1
0 k

¯
|)dx

¯
.

We rewrite it as
∑

j∈Z

∑

k
¯

∈Zn

∣∣∣〈f, ϕ
j,k
¯
〉
∣∣∣
2

:= M1 + M2, (5.15)

where

M1 =
(

2π

ω0

)n ∫

Rn

|f(x
¯
)|2

∑

j∈Z

|ϕ(|a−j
0 x

¯
|)|2dx

¯

and

M2 =

(
2π

ω0

)n ∑

j∈Z

∑

k
¯

∈Zn\{0}

∫

Rn

f(x
¯
)f(x

¯
+ 2πω−1

0 aj
0k
¯
) ϕ(|a−j

0 x
¯
|)ϕ(|a−j

0 x
¯

+ 2πω−1
0 k

¯
|)dx

¯
.

Obviously M1 has the estimation

(
2π

ω0

)n

‖f‖2
2 ess inf

x
¯

∈Rn

∑

j∈Z

|ϕ(|a−j
0 x

¯
|)|2

≤ M1 ≤
(

2π

ω0

)n

‖f‖2
2 ess sup

x
¯

∈Rn

∑

j∈Z

|φ(|a−j
0 x

¯
|)|2. (5.16)

By the Cauchy–Schwartz inequality, we get

|M2| ≤
(

2π

ω0

)n ∑

j∈Z

∑

k
¯

∈Zn\{0}

∫

Rn

∣∣∣f(x
¯
)f(x

¯
+2πω−1

0 aj
0k
¯
)ϕ(|a−j

0 x
¯
|)ϕ(|a−j

0 x
¯
+2πω−1

0 k
¯
|)
∣∣∣ dx

¯

≤
(

2π

ω0

)n ∑

j∈Z

∑

k
¯

∈Zn\{0}

⎛

⎝
∫

Rn

|f(x
¯
)|2

∣∣∣ϕ(|a−j
0 x

¯
|)ϕ(a−j

0 x
¯

+ 2πω−1
0 k

¯
|)
∣∣∣ dx

¯

⎞

⎠

1
2

⎛

⎝
∫

Rn

|f(x
¯

+ 2πω−1
0 aj

0k
¯
)|2

∣∣∣ϕ(|a−j
0 x

¯
|)ϕ(|a−j

0 x
¯

+ 2πω−1
0 k

¯
|)
∣∣∣ dx

¯

⎞

⎠

1
2

≤
(

2π

ω0

)n ∑

k
¯

∈Zn\{0}

∑

j∈Z

⎛

⎝
∫

Rn

|f(x
¯
)|2

∣∣∣ϕ(|a−j
0 x

¯
|)ϕ(|a−j

0 x
¯

+ 2πω−1
0 k

¯
|)
∣∣∣ dx

¯

⎞

⎠

1
2

⎛

⎝
∫

Rn

|f(x
¯
)|2

∣∣∣ϕ(|a−j
0 x

¯
− 2πω−1

0 k
¯
|)ϕ(|a−j

0 x
¯
|)
∣∣∣ dx

¯

⎞

⎠

1
2

.
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Using the Cauchy–Schwartz inequality to the summation over j, we have

|M2| ≤
(

2π

ω0

)n ∑

k
¯

∈Zn\{0}

⎛

⎝
∑

j∈Z

∫

Rn

|f(x
¯
)|2

∣∣∣ϕ(|a−j
0 x

¯
|)ϕ(|a−j

0 x
¯

+ 2πω−1
0 k

¯
|)
∣∣∣ dx

¯

⎞

⎠

1
2

⎛

⎝
∑

j∈Z

∫

Rn

|f(x
¯
)|2

∣∣∣ϕ(|a−j
0 x

¯
− 2πω−1

0 k
¯
|)ϕ(|a−j

0 x
¯
|)
∣∣∣ dx

¯

⎞

⎠

1
2

≤
(

2π

ω0

)n

‖f‖22
∑

k
¯

∈Zn\{0}

⎛

⎝ess sup
x
¯

∈Rn

∑

j∈Z

∣∣∣ϕ(|a−j
0 x

¯
|)
∣∣∣
∣∣∣ϕ(|a−j

0 x
¯

+ 2πω−1
0 k

¯
|)
∣∣∣

⎞

⎠

1
2

⎛

⎝ess sup
x
¯

∈Rn

∑

j∈Z

∣∣∣ϕ(|a−j
0 x

¯
|)
∣∣∣
∣∣∣ϕ(|a−j

0 x
¯

− 2πω−1
0 k

¯
|)
∣∣∣

⎞

⎠

1
2

.

By setting

η(t
¯
) = ess sup

x
¯

∈Rn

∑

j∈Z

∣∣∣ϕ(|a−j
0 x

¯
|)
∣∣∣
∣∣∣ϕ(|a−j

0 x
¯

+ t|̄)
∣∣∣ , (5.17)

we get

|M2| ≤
(

2π

ω0

)n

‖f‖2
2

∑

k
¯

∈Zn\{0}

(
η(2πω−1

0 k
¯
)η(−2πω−1

0 k
¯
)
) 1

2 . (5.18)

Combing (5.15) with (5.16) and (5.18), we obtain
(

2π

ω0

)n

‖f‖2
2C1 ≤

∑

j∈Z

∑

k
¯

∈Zn

∣∣∣〈f, ϕj,k
¯
〉
∣∣∣
2

≤
(

2π

ω0

)n

‖f‖2
2C2 (5.19)

with

C1 = ess inf
x
¯

∈Rn

∑

j∈Z

|ϕ(|a−j
0 x

¯
|)|2 −

∑

k
¯

∈Zn\{0}

[
η(2πω−1

0 k
¯
)η(−2πω−1

0 k
¯
)
] 1

2 (5.20)

and

C2 = ess sup
x
¯

∈Rn

∑

j∈Z

|ϕ(|a−j
0 x

¯
|)|2 +

∑

k
¯

∈Zn\{0}

[
η(2πω−1

0 k
¯
)η(−2πω−1

0 k
¯
)
] 1

2 . (5.21)

We therefore establish the following theorem on sufficiency.

Theorem 5.9. If C1 and C2 defined in (5.20) and (5.21) are strictly positive
and bounded, then {ϕj,k

¯
: (j, k

¯
) ∈ Z × Z

n} constitutes a frame of L2(Rn).

We remark that the conditions in Theorem 5.9 are complicated and
inconvenient. We need to impose some conditions on the generator ϕ to ensure
the strict positivity and boundedness of C1 and C2 in (5.20) and (5.21). To
this end, it is natural to have the following two sets of requirements, that is,

(i) ess infx
¯

∈Rn

∑
j∈Z

|ϕ(|a−j
0 x

¯
|)|2 > 0 and ess supx

¯
∈Rn

∑
j∈Z

|ϕ(|a−j
0 x

¯
|)|2

< ∞;
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(ii) η should decay sufficiently fast so to ensure the convergence of∑
k
¯

∈Zn\{0}
[
η(2πω−1

0 k
¯
)η(−2πω−1

0 k
¯
)
] 1

2 with the bound ess infx
¯

∈Rn

∑
j∈Z

|ϕ(|a−j
0 x

¯
|)|2.

The first requirement (i) can be reduced to

ess infx
¯

∈Ba0\B1

∑

j∈Z

|ϕ(a−j
0 |x|)|2 > 0 and ess supx

¯
∈Ba0\B1

∑

j∈Z

|ϕ(a−j
0 |x|)|2 < ∞,

(5.22)
where the ball shell Ba0\B1 ⊂ R

n denotes the set of which the elements are in
the ball centered at the origin with radius a0 but not in the unit ball centered
at the origin. The reason is that any non-zero x

¯
∈ R can be reduced to the

range Ba0\B1 by multiplying it with a suitable aj
0.

Complying with the requirement (ii), we impose on ϕ the condition

η(t
¯
) = ess sup

x
¯

∈Rn

∑

j∈Z

∣∣∣ϕ(a−j
0 |x

¯
|)
∣∣∣
∣∣∣ϕ(|a−j

0 x
¯

+ t|̄)
∣∣∣ = O

⎛

⎝
n∏

j=1

(1 + |tj |)−(1+ε)

⎞

⎠

(5.23)
for some ε > 0.

Corollary 5.10. Suppose that (5.22) and (5.23) hold. Then there exists ω̃0 > 0
such that, for ω0 ≤ ω̃0, the countable set {ϕ

j,k
¯

: (j, k
¯

) ∈ Z × Z
n} defined in

(4.15) is a frame of L2(Rn).

Proof. The condition (5.23) implies that there exists some positive constant
C such that

η(t
¯
) ≤ C

n∏

j=1

(1 + |tj |)−(1+ε).

Thus we have

∑

k
¯

∈Zn\{0}

[
η(2πω−1

0 k
¯
)η(−2πω−1

0 k
¯
)
] 1

2 ≤
∑

k
¯

∈Zn\{0}
C

n∏

j=1

(1 + |2πω−1
0 |kj ||)−(1+ε)

≤ C

n∏

j=1

⎛

⎝
∑

kj∈Z\{0}

1
(1 + 2πω−1

0 |kj |)1+ε

⎞

⎠ .

Since the series
∑∞

k=1

1
(t + k)1+ε

is uniformly convergent in R+, we can

define the function u(t) =
∑∞

k=1

1
(1 + 2πkt−1)1+ε

, t ∈ R+. Note that u

is continuous and increasing in R+ and satisfies that limt→0 u(t) = 0 and
limt→+∞ u(t) = +∞. Then the range of u(R+) = [0,+∞). Considering∏n

j=1(
∑

kj∈Z\{0}
1

(1+2πω−1
0 |kj |)1+ε

) as a function in terms of ω0, we know that



Vol. 27 (2017) A Frame Theory of Hardy Spaces 1093

its range is also [0,+∞). Therefore, there exists a constant ω̃0 satisfying
∑

k
¯

∈Zn\{0}

[
η(2πω̃−1

0 k
¯
)η(−2πω̃−1

0 k
¯
)
] 1

2 < ess infx
¯

∈Ba0\B1

∑

j∈Z

|ϕ(a−j
0 |x

¯
|)|2.

(5.24)
Therefore, C1 and C2 in (5.20) and (5.21) are strictly positive and bounded.
Hence {ϕ

j,k
¯

: (j, k
¯
) ∈ Z × Z

n} defined in (4.15) with ω0 = ω̃0 constitutes a
frame of L2(Rn). For the case ω0 < ω̃0, since the function u is increasing, it
indicates that (5.24) is still valid. We therefore conclude that for all ω0 < ω̃0

the set {ϕj,k
¯

: (j, k
¯
) ∈ Z × Z

n} is a frame of L2(Rn). �

6. Frame-Type Inequalities in the Clifford Algebra Setting

For function pairs f(x
¯
) =

∑
s
fs(x¯

)es and g(x
¯
) =

∑
s
gs(x¯

)es with fs, gs ∈
L2(Rn), mapping R

n to R
(n), define their inner product by

[f ,g] :=
∫

Rn

f(x
¯
)g(x

¯
)dx

¯
. (6.1)

When f(x
¯
) =

∑n

j=1
fj(x¯

)ej and g(x
¯
) =

∑n

k=1
gk(x

¯
)ek with fj , gk ∈ L2(Rn),

we have

[f ,g] =
∫

Rn

f(x
¯
)g(x

¯
)dx

¯
=

n∑

j=1

n∑

k=1

〈fj , gk〉(−ejek), (6.2)

and in particular,

[f , f ] =
n∑

j=1

‖fj‖2
2.

For a Clifford number of the form x0 +
∑n

h=1 xheh +
∑n

j=1

∑n
k=1 xj,kejek,

we introduce a quantity, that is needed in the following, denoted by ‡ · ‡, that
is

‡x0 +
n∑

h=1

xheh +
n∑

j=1

n∑

k=1

xj,kejek‡2 � |x0|2 +
n∑

h=1

|xh|2 +
n∑

j=1

n∑

k=1

|xj,k|2.

For f(x
¯
) =

∑n

j=1
fj(x¯

)ej and g(x
¯
) =

∑n

k=1
gk(x

¯
)ek with fj , gk ∈ L2(Rn),

by (6.2), we have

‡ [f ,g]‡2 :=
n∑

j=1

n∑

k=1

|〈fj , gk〉|2. (6.3)

The Hardy space H
2(Rn

1,+) is defined as the set of left monogenic func-
tions with the constraint

‖F‖2
H2 = sup

x0>0

∫

Rn

|F(x0 + x
¯
)|2dx

¯
< +∞.

For two Hardy space functions from R
n
1,+ to R

n
1 , their inner product is

defined as that of the corresponding boundary-valued functions. That is, if
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F(x) =
∑n

j=1
Fj(x)ej ∈ H2(Rn

1,+) and G(x) =
∑n

j=1
Gj(x)ej ∈ H2(Rn

1,+),

and f(x
¯
) = limx0→0+ F (x) and g(x

¯
) = limx0→0+ G(x), the inner product of

F and G is

[F,G] := [f ,g]. (6.4)

For j = 1, . . . , n, the jth Riesz transform of a complex-valued function
f on R

n is defined as

Rjf(x
¯
) = cn lim

ε→0+

∫

Rn\B(0,ε)

xj − tj
|x
¯

− t|̄n+1
f(t

¯
)dt

¯
, x

¯
∈ R

n,

where cn = 2
Ωn+1

= Γ((n+1)/2)
π(n+1)/2 and B(0, ε) is the ball centered at the origin

with radius ε.
The Hilbert transform H in Clifford sense is the transformation

Hf(x
¯
) := −

n∑

j=1

Rjf(x
¯
)ej , x

¯
∈ R

n

for f ∈ L2(Rn), which maps R
n to R

n. In the Fourier domain, Hf is identified
by

F(Hf)(ξ) = i
ξ

|ξ|F(f)(ξ), ξ ∈ R
n.

For each R
n-valued function f(x

¯
) =

∑n

j=1
fj(x¯

)ej with fj(x) ∈ L2(Rn),

define

H̃f(x
¯
) :=

n∑

j=1

Hfj(x¯
)ej = −

n∑

k=1

n∑

j=1

Rkfj(x¯
)ekej . (6.5)

Therefore, for any f ∈ L2(Rn)

H̃Hf(x
¯
) =

n∑

k=1

n∑

j=1

RkRjf(x
¯
)ejek = −

n∑

k=1

R2
kf(x

¯
) = f(x

¯
).

Combining (6.1) and (6.5), we have

[f ,Hg] = −[H̃f , g], (6.6)

where f =
∑n

j=1
fjej : R

n → R
n is a Clifford-valued function with fj ∈

L2(Rn) and g is a scalar-valued function in L2(Rn). Now we prove (6.6):
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[f ,Hg] =
∫

Rn

fHgdx
¯

=
∫

Rn

n∑

j=1

fj(x¯
)ej [−

n∑

k=1

Rkg(x
¯
)ek]dx

=
∫

Rn

n∑

j=1

n∑

k=1

fj(x¯
)Rkg(x

¯
)ejekdx

¯

=
∫

Rn

n∑

j=1

n∑

k=1

f̂j(ξ)[−i
ξk

|ξ|g(ξ)]ejekdξ

= −
∫

Rn

n∑

j=1

n∑

k=1

(−i
ξk

|ξ| )f̂j(ξ)ĝ(ξ)ejekdξ

= −
∫

Rn

n∑

j=1

n∑

k=1

Rkfj(x¯
)g(x

¯
)ejekdx

¯

=
∫

Rn

n∑

k=1

n∑

j=1

Rkfj(x¯
)g(x

¯
)ekejdx

¯

= −[H̃f , g].

We try to extend the inequality (5.1) to the Clifford setting. Suppose
that {ϕ

j,k
¯

: (j, k
¯
) ∈ Z × Z

n} is a frame of L2(Rn). For x = x0 + x
¯

∈ R
n
1,+,

define

Φj,k
¯
(x) =

1
(2π)n

∫

Rn

ei〈x
¯

,ξ〉e−x0|ξ|χ+(ξ)F(ϕj,k
¯
)(ξ)dξ (6.7)

where χ+(ξ) = 1
2 (1 + i

ξ

|ξ| ). In particular, set Φ(x) = Φ0,0(x), x ∈ R
n
1,+. The

functions Φ
j,k
¯

are well defined since ϕ
j,k
¯

∈ L2(Rn). It is easy to show that
each Φ

j,k
¯

is left monogenic for x0 > 0. By using the identity

F
(
ei〈x

¯
,·〉e−x0|·|χ+(·)

)
(ξ) = c̃n

x − ξ

|ξ − x|n+1
= c̃nE(ξ − x)

with c̃n = 2n−1π(n−1)/2Γ((n + 1)/2), a Cauchy-type formula for Φj,k
¯

arises

Φj,k
¯
(x) =

1
Ωn+1

∫

Rn

E(x − ξ)ϕj,k
¯
(ξ)dξ.

The Sokhotskyi–Plemelj formula then gives

lim
x0→0+

Φ
j,k
¯
(x) =

1
2
(ϕ

j,k
¯
(x
¯
) + iH(ϕ

j,k
¯
)(x

¯
)). (6.8)

For F =
∑n

j=1
Fjej ∈ H

2(Rn
1,+), we have the following theorem on the

frame-type inequalities.
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Theorem 6.1. Suppose that {ϕj,k
¯

: (j, k
¯

) ∈ Z×Z
n} is a frame of L2(Rn) with

bounds A and B and Φj,k
¯

is defined in (6.7). Then for any F =
∑n

j=1
Fjej ∈

H
2(Rn

1,+), the following frame-type inequalities hold

A

2
[F,F] ≤

∑

j∈Z

∑

k
¯

∈Zn

‡[F,Φj,k
¯

]‡2 ≤ B

2
[F,F]. (6.9)

Proof. Denote by f =
∑n

j=1
fjej the boundary limit of F when x0 → 0+.

By (6.4), Sokhotskyi–Plemelj formula and (6.6), we have

[F,Φj,k
¯
] =

[
f ,

1
2
(ϕj,k

¯
+ iHϕj,k

¯
)
]

=
1
2
[f − iH̃f , ϕj,k

¯
].

Recalling that

f(x
¯
) − iH̃f(x

¯
) =

n∑

s=1

fs(x¯
)es + i

n∑

l=1

n∑

s=1

Rlfs(x¯
)eles,

it gives that

‡[F,Φj,k
¯
]‡2 =

1
4

n∑

s=1

|〈fs, ϕj,k
¯
〉|2 +

1
4

n∑

l=1

n∑

s=1

|〈Rlfs, ϕj,k
¯
〉|2.

We therefore obtain
∑

j∈Z

∑

k
¯

∈Zn

‡[F,Φ
j,k
¯
]‡2 =

1
4

n∑

s=1

∑

j∈Z

∑

k
¯

∈Zn

|〈fs, ϕj,k
¯
〉|2

+
1
4

n∑

l=1

n∑

s=1

∑

j∈Z

∑

k
¯

∈Zn

|〈Rlfs, ϕj,k
¯
〉|2.

Applying the frame inequalities (5.1) to the functions fs,Rlfs in L2(Rn), it
follows

A

4

n∑

s=1

‖fs‖2
2 +

A

4

n∑

l=1

n∑

s=1

‖Rlfs‖2
2 ≤

∑

j∈Z

∑

k
¯

∈Zn

‡[F,Φj,k
¯
] ‡2

≤ B

4

n∑

s=1

‖fs‖2
2 +

B

4

n∑

l=1

n∑

s=1

‖Rlfs‖2
2.

Using the identity
∑n

j=1
‖Rjf‖2

2 = ‖f‖2
2 for any f ∈ L2(Rn), we get

A

2

n∑

s=1

‖fs‖2
2 ≤

∑

j∈Z

∑

k
¯

∈Zn

‡[F,Φj,k
¯
]‡2 ≤ B

2

n∑

s=1

‖fs‖2
2.

Recall that [F,F] = [f , f ] =
∑n

s=1
‖fs‖2

2, where f is the boundary limit of F.
We conclude the frame-type inequalities (6.9). �

For any Clifford-valued function F =
∑n

j=0
Fjej ∈ H

2(Rn
1,+), we have

the following result.
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Theorem 6.2. Suppose that {ϕj,k
¯

: (j, k
¯

) ∈ Z×Z
n} is a frame of L2(Rn) with

bounds A and B and Φj,k
¯

is defined in (6.7). Then for any F =
∑n

j=0
Fjej ∈

H
2(Rn

1,+), the following frame-type inequalities hold

A

2
[F,F] ≤

∑

j∈Z

∑

k
¯

∈Zn

‡[F,Φj,k
¯

]‡2 ≤ B

2
[F,F]. (6.10)

Proof. Rewrite F as sca(F) + vec(F) with sca(F) = F0e0 and vec(F) =∑n

j=1
Fjej . Then the boundary limit of F has the similar decomposition

f = sca(f)+vec(f) with sca(f) = f0e0 and vec(f) =
∑n

j=1
fjej . We establish

two inequalities. The first one is

A

2
[vec(F), vec(F)] ≤

∑

j∈Z

∑

k
¯

∈Zn

‡[vec(F),Φ
j,k
¯
]‡2 ≤ B

2
[vec(F), vec(F)], (6.11)

which is directly from (6.9). The second one is

A

2
‖sca(F)‖2 ≤

∑

j∈Z

∑

k
¯

∈Zn

‡[sca(F),Φj,k
¯
]‡2 ≤ B

2
‖sca(F)‖2. (6.12)

To prove (6.12), using the definition of Φj,k
¯
, Sokhotskyi–Plemelj formula and

R∗
l = Rl, we get

‡[sca(F),Φj,k
¯
]‡2 =

1
4
|〈sca(f), ϕj,k

¯
〉|2 +

1
4

n∑

l=1

|〈Rl (sca(f)) , ϕj,k
¯
〉|2.

Summing both sides of above identity over j, k
¯
, recalling the frame properties

of the system {ϕj,k
¯
} and utilizing the identity

∑n

j=1
‖Rjf‖2

2 = ‖f‖2
2 again,

it gives the inequalities (6.12).
Finally, recalling two identities ‡[F,Φ

j,k
¯
]‡2 = ‡[sca(F),Φ

j,k
¯
] ‡2 + ‡

[vec(F),Φj,k
¯
]‡2 and [F,F] = ‖sca(F)‖2 + [vec(F), vec(F)], combining (6.11)

with (6.12) together, we conclude (6.10). �

7. Frames in Quaternion-Hardy Space

We will build up a theory of frames in the quaternion-valued Hardy space.
We work on the quaternions Q over the real numbers R, the only associa-
tive normed division algebra that extends the complex numbers. To distin-
guish it from the complexified quaternions, we call it real-quaternions. A

real-quaternion x ∈ Q is of the form x =
∑3

j=0
xjej , where xj ∈ R and the

basis elements ej(0 ≤ j ≤ 3) satisfy

e0 = 1, ejek + ekej = −2δj,k, j, k = 1, 2, 3, (7.1)
e1e2 = e3, e2e3 = e1, e3e1 = e2. (7.2)
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Note that (7.1) means that the basis elements e1, e2 and e3 satisfy the usual
assumptions on the basis elements of the Clifford algebra. The additional con-
dition (7.2) amounts to saying that they are, in fact, the basis elements of the
quaternionic algebra, viz., and respectively, i, j,k in the usual notation. Based
on these relations one defines the quaternionic multiplication and addition
by linearity and distributive law, which is the same as the general Clifford
algebra case. Together with the multiplication low, real-quaternions Q be-
comes a four-dimensional, normed division, associative but non-commutative
algebra. It is easy to see that the embedding relations R ⊂ C ⊂ Q hold. As
a vector space, or a topological space, Q is linearly identified with the four
dimensional Euclidean space R

4.

We are benefited from the closeness of multiplication of quaternion num-
bers, that is, any pair q1,q2 ∈ Q implies q1q2 ∈ Q.

Denote Q+ the half space

Q+ = {x = x0 + x
¯

∈ Q : x0 > 0}.

A function F : Q+ → Q is called a left monogenic function if it satisfies

∂F =
3∑

j=0

ej
∂F
∂xj

= 0.

The quaternionic Hardy space H
2(Q+) is defined as the set of left monogenic

functions with the constraint

‖F‖2
H2 = sup

x0>0

∫

R3

|F(x0 + x
¯
)|2dx

¯
< +∞.

Adopting the notation in (6.1) and (6.4), it is easy to see

‖F‖2
H2 = [F,F] = [f , f ],

where f(x
¯
) = limx0→0 F(x0 + x

¯
), the non-tangential boundary limit of F.

There exists a natural isometry between H
2(Q+) and its boundary-value

space H
2(∂Q+).

For x = x0 + x
¯

∈ Q+, define

Φj,k
¯
(x) =

1
(2π)3

∫

R3

ei〈x
¯

,ξ〉e−x0|ξ|χ+(ξ)F(ϕj,k
¯
)(ξ)dξ (7.3)

with χ+(ξ) = 1
2 (1 + i

ξ

|ξ| ), ξ = ξ1e1 + ξ2e2 + ξ3e3.

We write (7.3) into its Cauchy integral form

Φj,k
¯
(x) =

1
Ω4

∫

R3

E(x − ξ)ϕj,k
¯
(ξ)dξ, x = x0 + x

¯
∈ Q+

with E(x) = x̄
|x|4 , x ∈ Q+. Applying the Sokhotskyi–Plemelj formula in

quaternionic case and adopting the same arguments for the proofs of (6.9)
and (6.10), we have
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Theorem 7.1. Suppose that {ϕj,k
¯

: (j, k
¯

) ∈ Z×Z
3} is a frame of L2(R3) with

bounds A and B and Φj,k
¯

is defined in (7.3). Then for any F =
∑3

j=0
Fjej ∈

H
2(Q+), the following frame-type inequalities hold

A

2
[F,F] ≤

∑

j∈Z

∑

k
¯

∈Z3

‡[F,Φj,k
¯

]‡2 ≤ B

2
[F,F]. (7.4)
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