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Abstract Any analytic signal fa(eit) can be written as a product of its minimum-phase signal part (the

outer function part) and its all-phase signal part (the inner function part). Due to the importance of such

decomposition, Kumarasan and Rao (1999), implementing the idea of the Szegő limit theorem (see below),

proposed an algorithm to obtain approximations of the minimum-phase signal of a polynomial analytic signal

fa(e
it) = eiN0t

M∑
k=0

ake
ikt, (0.1)

where a0 ≠ 0, aM ̸= 0. Their method involves minimizing the energy

E(fa, h1, h2, . . . , hH) =
1

2π

∫ 2π

0

∣∣∣∣1 +
H∑

k=1

hke
ikt

∣∣∣∣2|fa(eit)|2dt (0.2)

with the undetermined complex numbers hk’s by the least mean square error method. In the limiting procedure

H → ∞, one obtains approximate solutions of the minimum-phase signal. What is achieved in the present paper

is two-fold. On one hand, we rigorously prove that, if fa(eit) is a polynomial analytic signal as given in (0.1),

then for any integer H > M , and with |fa(eit)|2 in the integrand part of (0.2) being replaced with 1/|fa(eit)|2,
the exact solution of the minimum-phase signal of fa(eit) can be extracted out. On the other hand, we show

that the Fourier system eikt used in the above process may be replaced with the Takenaka-Malmquist (TM)

system, rk(e
it) :=

√
1−|αk|2eit

1−αke
it

∏k−1
j=1

eit−αj

1−αjeit
, k = 1, 2, . . . , r0(eit) = 1, i.e., the least mean square error method

based on the TM system can also be used to extract out approximate solutions of minimum-phase signals for any

functions fa in the Hardy space. The advantage of the TM system method is that the parameters α1, . . . , αn, . . .

determining the system can be adaptively selected in order to increase computational efficiency. In particular,

adopting the n-best rational (Blaschke form) approximation selection for the n-tuple {α1, . . . , αn}, n > N, where

N is the degree of the given rational analytic signal, the minimum-phase part of a rational analytic signal can

be accurately and efficiently extracted out.
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1 Introduction

Let D denote the open unit disc in the complex plane and ∂D its boundary. Let L2(∂D) denote the

Hilbert space of all square-integrable 2π-periodic functions. For f(eit) ∈ L2(∂D), we have the Fourier

series expansion

f(eit) =
∞∑

n=−∞
cn(f)e

int,

where cn(f) =
1
2π

∫ 2π

0
f(eit)e−intdt is the n-th Fourier coefficient of f(eit), and the convergence is in the

L2-norm sense. For f ∈ L2(∂D), a well-accepted way to define the concepts instantaneous amplitude,

phase and frequency of f will now be given. First, we define the circular Hilbert transform (or briefly

Hilbert transform) of f as

(H̃f)(eit) =
∞∑

n=−∞
(−i)sgn(n)cn(f)e

−int = lim
ϵ→0+

1

2π

∫
ϵ<|t−x|62π

f(eix) cot

(
t− x

2

)
dx, (1.1)

where sgn(n) := n
|n| if n ̸= 0 and sgn(n) = 0 if n = 0. We have the relation

f(eit) + i(H̃f)(eit) = −c0(f) + 2
∞∑

n=0

cn(f)e
int.

Further define fa to be the associated analytic signal of f :

fa(e
it) :=

1

2
(f(eit) + i(H̃f)(eit) + c0(f)) =

∞∑
n=0

cn(f)e
int. (1.2)

The complex-valued function fa, in fact, coincides with f+ in the Hardy space decomposition f = f++f−,

where f+ is the non-tangential boundary limit of the in-disc Cauchy integral of f, namely,

C+(f)(z) =
1

2πi

∫
∂D

f(ζ)

ζ − z
dζ.

Since f is real-valued, one has the simple relationship between fa and f,

f(eit) = 2Refa(e
it)− c0(f).

In such way analysis of a real-valued signal f reduces to that of the Hardy space function fa, the associated

analytic signal of f.

There is a unique amplitude-phase representation for the complex-valued fa, i.e., fa(e
it) = ρ(t)eiθ(t),

where

ρ(t) = |fa(eit)| > 0;

and the phase θ(t) is accordingly a real-valued function. Note that the phase function θ is not uniquely

defined due to periodicity of the trigonometric exponential function: In general, a canonical and unique

phase function does not exist. In some cases the phase derivative θ′(t), as a function, may be uniquely

defined up to a Lebesgue null set (see [25]). The above defined functions ρ(t) and θ(t) are, respectively,

called the (analytic) amplitude and phase of f(eit). The derivative function θ′(t), if can be defined, is

referred as instantaneous frequencies of f(eit) (see [8, 25]).

By H2(∂D) we denote the Hilbert space consisting of all functions f(eit) ∈ L2(∂D), whose Fourier

coefficients cn(f) = 0 for n < 0. This space is identical with the space of the non-tangential boundary

limits of the functions in the Hardy H2(D) space. Signals in H2(∂D) are called analytic signals. If an

analytic signal fa(e
it) ∈ H2(∂D) only has a finite number of non-zero Fourier coefficients, then fa(e

it) is

a polynomial (analytic) signal. Every polynomial signal can be represented as

fa(e
it) = eiN0t

M∑
k=0

ake
ikt,
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where N0 is a non-negative integer, a0 ̸= 0 and aM ̸= 0. If such a polynomial analytic signal fa(z) does

not have zero points on ∂D, then fa(e
it) can be factorized as

fa(e
it) = a0e

iN0t
P∏

k=1

(1− pke
it)

Q∏
k=1

(1− qke
it)

= Ac

P∏
k=1

(1− pke
it)

Q∏
k=1

(
1− 1

qk
eit

)
︸ ︷︷ ︸

fmin(t)

× eiN0t

Q∏
k=1

eit − 1/qk
1− (1/qk)eit︸ ︷︷ ︸
fall(t)

, (1.3)

where P + Q = M , Ac = a0
∏Q

k=1(−qk), |pk| < 1 and |qk| > 1 (see [22]). Putting pk = |pk|eiθk and

qk = |qk|eiϕk , it is known in [13] that fmin(e
it) can be further represented as

fmin(e
it) = Ac

P∏
k=1

(1− pke
it)

Q∏
k=1

(
1− 1

qk
eit

)
= eiγ exp{ln |Ac|+ iH̃ ln |Ac|+ α(t) + iH̃α(t)}

= eiγ exp{ln |fa|(eit) + iH̃(ln |fa|)(eit)}, (1.4)

where γ is a real constant and

α(eit) =
∞∑

m=1

[ P∑
k=1

−|pk|m

m
cos(mt+mθk) +

Q∑
k=1

−1/|qk|m

m
cos(mt+mϕk)

]
.

While the instantaneous frequency of fall(e
it), i.e.,

fall(e
it) = eiθall(t) = eiN0t

Q∏
k=1

eit − 1/qk
1− (1/qk)eit

is

θ′all(e
it) = N0 +

Q∑
k=1

1− 1
|qk|2

1− 2 1
|qk| cos(t+ ϕk) +

1
|qk|2

> 0. (1.5)

In signal analysis and system theory (see [22]), a polynomial circular signal fa(e
it) can be recognized as

the counterpart of the frequency response of a finite impulse response (FIR) filter. The signal fmin(z)

and fall(z) are referred as the minimum-phase (MinP) signal or the outer function part, and the all-

phase signal or the inner function part, respectively, of the given analytic signal fa(z). Moreover, fmin(z)

can be uniquely determined by the amplitude |fa(eit)| within a multiplicative constant difference. The

characteristic property of minimum-phase signals as analytic functions of one complex variable is that

they do not have zeros inside the unit disc. The instantaneous frequency of fall(e
it), as a function,

is positive everywhere, and, in fact, expressed as a finite sum of the Poisson kernels at the zeros of the

corresponding complex inner function (see [12,24]). More generally, if an analytic signal fa(e
it) ∈ H2(∂D)

has an infinite number of non-zero Fourier coefficients, which usually corresponds to an infinite impulse

response filter (IFIR), the analytic signal fa(e
it) can still be factorized into two parts of which one is

a minimum-phase and the other an all-phase signal. The minimum-phase and the all-phase signals of

infinite series possess the same properties as those of analytic polynomials (see [12,25]).

There have been continuing studies on minimum-phase and all-phase signals of which the recent ones

include (see [7, 10, 11, 18, 25]). In particular, a comprehensive study on analytic signals with positive

analytic phase derivatives, viz., mono-components, and expansions of general analytic signals into mono-

components, has been well-pursued in recent publications (see [16, 23–26, 28]). Classical and operator-

valued inner and outer functions are crucial subjects in the recent seminal work of Ball and Bolotnikov

[4,5] that brings separate but closely related, and, in fact, equivalent four topics together, viz., operator-

valued inner functions, shift-invariant subspaces (the Beurling-Lax theorem), conservative discrete-time
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input/state/output linear systems, and C·0 Hilbert-space contraction operators. The most recent interest

on mono-components expansions in relation to inner and outer functions would be one called unwinding

Blaschke decomposition, that has a close relationship with the development of the so called adaptive

Fourier decomposition (AFD) by Alpay et al. [2, 3], Qian and Wang [28] and Qian [26, 27]. Unwinding

decomposition was first studied by Nahon [21] in the form of a PhD thesis in Yale University in 2000, which

was followed by a formal publication in 2016 (see [9]). Unwinding Blaschke expansion was independently

studied by Qian [26] since 2010. It is noted that extracting the minimum-phase part or, equivalently, the

all-phase part of an analytic signal is a crucial step of applications of the unwinding decomposition. The

unwinding decomposition itself and the related computation issues are described as follows.

Let F (z) = F1(z) be a function in the complex Hardy H2(D) space and F1 = I1O1 its Nevanlinna

factorization into a product of an inner function and an outer function. The inner function I1 can be

further factorized into I1 = B1S1, where B1 is a Blaschke product, collecting all the zeros of F1, finitely

or infinitely many, and S1 is a singular inner function induced by a Borel measure singular with respect

to the Lebesgue measure on the circle. Note that O1 and S1 do not have zeros inside the unit disc, and all

the related functions B1, S1 and O1 are unique up to unimodular constants (see [12]). Correspondingly,

we can also write F1 = B1G1, where G1 = S1O1. Coifman and Steinerberger [9] reproved this result.

If F1 is a finite polynomial or a rational function, or F1 has an analytic continuation across the unit circle,

or with other suitable conditions, then S1 becomes trivial and ignorable, being equal to a unimodular

constant, and then F1 = B1G1 with G1 = O1. Below we will assume this case at each of the recursive

steps. We proceed as

F (z) = F1(z) = B1(z)G1(z)

= B1(z)[G1(0) + (G1(z)−G1(0))]

= a1B1(z) +B1(z)F2(z)

= a1B1(z) +B1(z)B2(z)G2(z)

· · ·

=

n∑
k=1

akB1(z) · · ·Bk(z) +B1(z) · · ·Bn(z)Fn+1(z),

where for each k, ak = Gk(0), Fk+1(z) = Gk(z) − Gk(0), Fk = BkGk, and Bk is a (finite or infinite)

Blaschke product, and Gk is an outer function. It is shown in [26] (see also [9, Example 4.3]) that

lim
n→∞

∥B1 · · ·BnFn+1∥2 = 0,

and so, in the L2-sense on the boundary,

F (z) =
∞∑
k=1

akB1(z) · · ·Bk(z).

There are several variations of the described decomposition (see [9, 26]). We note that at each recursive

step Bk does not necessarily collect all the zeros of Gk. Taking this as granted, Fourier series expansion

is seen to be a particular case of the general decomposition. The advantages of such type decompositions

include that each entry of the sum has a well-defined positive phase derivative function (see [25]), which is

defined to be the instantaneous frequency of the entry; and the fast convergence, being expected to be of

the exponential speed. The decomposition is also robust with noise corruption. There are, however, some

inconveniences with implementation of the unwinding decomposition due to the difficulty of computing

the outer function and the inner function parts. Finding zeros is a difficult task even for polynomials

of finite degree, let alone for infinite series with infinitely many zeros. Some attempts along this line

are made in [17]. On the other hand, computing the outer function part of an analytic signal involves

computation of Hilbert transform. Hilbert transform is a singular integral whose computation itself is

a hard problem having attracted ample studies (see [9, 21]). Various ways for additional stabilization
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have been proposed for the algorithm based on Hilbert transform: the stabilizing effect of adding a small

positive constant was investigated by Nahon [21], whereas Letelier and Saito [15] proposed adding a small

pure sinusoid. Adaptive Fourier decomposition, n-best approximation by Blaschke forms and unwinding

Fourier decomposition have effective applications in signal analysis and system identification (see [17,19,

20]). In the related studies algorithm to extract outer and inner functions has central importance.

In this paper, we study effective algorithms to extract the minimum-phase part from an analytic

signal fa(e
it). There have been several feasible methods. First, one can find the Fourier coefficients

of fa(e
it), then find the roots of the obtained polynomial that is to find pi and qi, and then group them

as in (1.3). Alternatively, one can compute the log-envelope of fa(e
it), i.e., ln |fa(eit)|, and subsequently

compute its Hilbert transform (see [9, 22]), etc. Computation of a Hilbert transform itself, however,

is not an easy task in mathematical computation. Recently, based on Szegő’s idea, Kumaresan and

Rao [13], Rao and Kumaresan [29], and Kumarasan and Wang [14] proposed a new method to extract

the minimum-phase part from a polynomial analytic signal

fa(e
it) = eiN0t

M∑
k=0

ake
ikt,

which does not require computation of roots of the polynomial, nor Hilbert transform of ln |fa(eit)|. This
method, due to its effectiveness, has been adopted in signal analysis and speech analysis. The method,

however, has a great room to be discussed and improved.

Their algorithm is based on minimizing the energy E(fa, h1, . . . , hH). Indeed, for any coefficients

h1, . . . , hH , we have

E(fa, h1, . . . , hH) =
1

2π

∫ 2π

0

∣∣∣∣1 + H∑
k=1

hke
ikt

∣∣∣∣|fmin(e
it)|2dt

=
1

2π

∫ 2π

0

∣∣∣∣(1 + H∑
k=1

hke
ikt

)(
c0(fmin) +

∞∑
k=1

ck(fmin)e
ikt

)∣∣∣∣2dt
> |c0(fmin)|2. (1.6)

For a fixed positive integer H, let

PH
min(e

it) = 1 +
H∑

k=1

hmin
k eikt

denote the function at which E(fa, h1, . . . , hH) attains the minimum energy. From (1.6), we know that

the energy E(fa, h1, . . . , hH) would be able to attain the minimum |c0(fmin)|2 if PH
min(e

it) could be chosen

as c0(fmin)/fmin(e
it). For a polynomial fmin(e

it) and a finite H, one, however, cannot expect the relation

PH
min(e

it) = c0(fmin)/fmin(e
it) to hold. This relation can approximately hold when H goes to the infinity.

This last assertion can be proved by the well-known Szegő limit theorem (see [30]). The Szegő theorem

states that if |fa(eit)| > 0 and fa(e
it) ∈ L1(∂D), then

lim
H→∞

PH
min(e

it) =
exp{ 1

2π

∫ 2π

0
ln |fa(eit)|dt}

exp{ln |fa|(eit) + iH̃(ln |fa|)(eit)}
=

fmin(0)

fmin(eit)
,

where the numerator identity is obtained by evaluating the outer space function given by (3.1) at z = 0.

We note that both the numerator and the denominator of the right-hand-end are obtained through

the representation of the minimum-phase signal in terms of the boundary data ln |fa(eit)| = ln |fmin(e
it)|.

Hence, for a large H, the function fmin(0)/P
H
min(e

it) can be seen as an approximation to the minimum-

phase component of fa(e
it).

In the present paper we make a number of improvements to the method proposed by Kumaresan and

Rao [13]. We show in Section 2 that if fa(e
it) is a polynomial analytic signal, as given by fa(e

it) =

eiN0t
∑M

k=0 ake
ikt under the mentioned conventions on N0, a0 and aM , then the minimum-phase signal of
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fa(e
it) can be exactly extracted out through the least mean square error method solving the extremal

problem (0.2) for any fixed H > M, but replacing fa(e
it) with 1

fa(eit)
in (0.2). Furthermore, in Section 3,

replacing eikt by the Takenaka-Malmquist (TM) system

rk(e
it) :=

√
1− |αk|2eit

1− αkeit

k−1∏
j=1

eit − αj

1− αjeit

for k > 1, we show that the same least mean square error method but based on the TM system can also

be used to extract out approximations of the minimum-phase part of any analytic signal. Comparing

with the trigonometric basis, the TM system has the advantage of flexible choices of the parameters

α1, . . . , αn, . . . We show that for any rational analytic signal fa of degree n by using the n-best choice of

the n-tuple {α1, . . . , αn} (see [27]), the minimum-phase part of fa can be exactly and efficiently extracted

out. The proofs of the results of this paper implement and further develop the techniques of Szegő [30]

in proving analogous results for polynomials.

2 The decomposition algorithm based on Trigonometric system

In this section, we assume that fa(e
it) is a polynomial analytic signal fa(e

it) = eiN0t
∑M

k=0 ake
ikt, where

a0 ̸= 0 and aM ̸= 0. We show that if, instead of minimizing the error signal e(eit) = fa(e
it)PH(eit)

(see [13]) we minimize the energy of an error signal e(eit) = PH(eit)
fa(eit)

, then the function fmin(e
it) of fa(e

it)

can be exactly extracted out for any H > M . The proof uses the knowledge of orthogonal projection

into a finite dimensional space in the Hilbert space induced by a weighted Lebesgue measure.

Theorem 2.1. Let fa(e
it) = eiN0t

∑M
k=0 ake

ikt be a polynomial circular analytic signal and |fa(eit)|
> 0, where a0 ̸= 0 and aM ̸= 0. Then for any H > M the function

PH
min(e

it) = 1 +
H∑

k=1

hmin
k eikt

minimizing the integral

1

2π

∫ 2π

0

∣∣∣∣1 +∑H
k=1 hke

ikt

fa(t)

∣∣∣∣2dt
is identical with

PH
min(e

it) =
fmin(e

it)

fmin(0)
=

P∏
k=1

(1− pke
it)

Q∏
k=1

(
1− 1

qk
eit

)
,

where M = P + Q, pk and qk are, respectively, the zeros of F (z) =
∑M

k=0 akz
k outside and inside the

unit circle.

Proof. Let {ϕµ
0 (e

it), ϕµ
1 (e

it), . . . , ϕµ
H(eit)} be the orthonormal system obtained through applying the

Gram-Schmidt orthogonalization process to {1, eit, ei2t, . . . , eiHt} with respect to the measure dµ(t) =

dt/|fa(eit)|2. Then the minimum error energy is

1

2π

∫ 2π

0

∣∣∣∣PH
min(e

it)

fa(eit)

∣∣∣∣2dt = 1

2π

∫ 2π

0

|eiHtPH
min(e

it)|2

|fa(eit)|2
dt

= min{d0,d1,...,dH−1}
1

2π

∫ 2π

0

∣∣∣∣eiHt +
H−1∑
k=0

dke
ikt

∣∣∣∣2 1

|fa(eit)|2
dt

=
1

2π

∫ 2π

0

∣∣∣∣eiHt −
H−1∑
k=0

⟨eiHt, ϕµ
k(e

it)⟩µϕµ
k(e

it)

∣∣∣∣2 1

|fa(eit)|2
dt.

This implies that

eiHtPH
min(e

it) = eiHt −
H−1∑
k=0

⟨eiHt, ϕµ
k(e

it)⟩µϕµ
k(e

it).
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As a consequence, eiHtPH
min(e

it) is orthogonal with ϕµ
k(t) with respect to the measure dµ(t) = dt/|fa(eit)|2

for k = 0, 1, . . . , H − 1. In the following, we show the identification

eiHtPH
min(e

it) = eiHt

[
fmin(eit)

fmin(0)

]
for H > M , where fmin(e

it) is the polynomial minimum-phase component of order M given in (1.4). We

first show that eiHt[ fmin(eit)
fmin(0)

] is orthogonal to ϕµ
k(e

it) with respect to the measure dµ(t) = dt/|fa(eit)|2.

Since ϕµ
k(e

it) is a trigonometric polynomial of degree k, it suffices to prove that eiHt[ fmin(eit)
fmin(0)

] is orthogonal

with an arbitrary polynomial signal ρk(e
it) of order k with respect to the measure

dµ(t) = dt/|fa(eit)|2 = 1/|fmin(e
it)|2.

Let ρk(e
it) =

∑k
m=0 bke

imt and k 6 H − 1. By the Cauchy theorem, we have

1

2πfmin(0)

∫ 2π

0

eiHtfmin(eit)ρk(eit)
1

fmin(eit)fmin(eit)
dt =

1

2πfmin(0)

∮
|z|=1

zHρk(1/z)

fmin(z)

dz

iz
= 0,

where ρk(z) =
∑k

m=0 bkz
k and

fmin(z) =
P∏

k=1

(1− pkz)

Q∏
k=1

(
1− 1

qk
z

)
.

We note that PH
min(e

it) is assumed to have the form PH
min(z) = 1 +

∑H
k=1 h

min
k zk. Thus, PH

min(0) = 1

= fmin(0)
fmin(0)

. This proves the relation

eiHtPH
min(e

it) = eiHt

[
fmin(t)

fmin(0)

]
.

Therefore, by (1.4), we have

PH
min(e

it) =
fmin(e

it)

fmin(0)
=

P∏
k=1

(1− pke
it)

Q∏
k=1

(
1− 1

qk
eit

)
,

where pk and qk, respectively denote the zeros of F (z) =
∑M

k=0 akz
k inside and outside the unit circle.

From the above theorem, we learn that given a polynomial signal fa(e
it) = eiN0t

∑M
k=0 ake

ikt, its

minimum-phase signal f−1
min(0)fmin(e

it) can be exactly extracted out through minimizing the energy of

the error signal e(t) = hH(eit)
fa(eit)

for H > M . In order to show the efficiency of the new algorithm cor-

responding to Theorem 2.1, we apply the algorithm to an example used in [13]. Before that we first

review the algorithm design. By the properties of the least mean square error (see [30]), the coefficients

{hmin
1 , . . . , hmin

H } at which the integral (0.2) attains the minimum can be obtained by solving the following

linear equation: 
⟨l1, l1⟩µ ⟨l1, l2⟩µ · · · ⟨l1, lH⟩µ
⟨l2, l1⟩µ ⟨l2, l2⟩µ · · · ⟨l2, lH⟩µ

...
...

. . .
...

⟨lH , l1⟩µ ⟨lH , l2⟩µ · · · ⟨lH , lH⟩µ




hmin
1

hmin
2

...

hmin
H

 = −


⟨l1, l0⟩µ
⟨l2, l0⟩µ

...

⟨lH , 10⟩µ

 , (2.1)

where lk(t) = eikt for k = 0, 1, . . . , H, dµ(t) = dt/|fa(eit)|2 and the inner product ⟨li, lj⟩µ is defined by

⟨li, lj⟩µ =
1

2π

∫ 2π

0

li(t)lj(t)µ(t)dt, i = 1, . . . ,H, j = 0, 1, . . . , H.
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(a) Re(fmin(t  )) extracted by choosing e(t  ) = PH (t  )fp(t ) and H = 60  
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(b) Re(fmin(t )) extracted by choosing e(t ) = PH (t )/fp(t ) and H = 8
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Figure 1 The real part of the minimum phase signal of fp(t)

Denoting L,hmin
H and e the matrices/vectors from left to right in (2.1), the solution vector hmin

H is

given by

hmin
H = L−1e,

where L−1 denotes the inverse matrix of L. In order to implement the algorithm by the computer, we

need discrete sample values of the signal. Let µ[n] and lk[n] respectively denote the samples of the given

functions µ(t) and lk(t) at tk = k∆t, where ∆t = 2π
N and n = 0, 1, . . . , N. Through replacing ⟨li, lj⟩µ by

⟨li, lj⟩µ ≈ 1
N

∑N−1
k=0 li[k]lj [k]µ[n], a simulation result of the vector h̃min

H can be given by

h̃min
H ≈ −(HTH)−1HTU (2.2)

where U = [µ1/2(0), µ1/2(1), . . . , µ1/2(N)]T and

H =


µ1/2(0), 0 · · · · · · 0

0 µ1/2(1) 0 · · · 0
...

...
. . .

...
...

0 0 · · · 0 µ1/2(N)

×


l1(0) l2(0) · · · lH(0)

l1(1) l2(1) · · · lH(1)
...

...
. . .

...

l1(N) l2(N) · · · lH(N)

 , (2.3)

where the capital letter T on the right-shoulder of a matrix stands for the conjugate transpose of the

matrix.

Kumaran and Rao [13] used the following example to test their algorithm. We will now use the same

example for comparison between their algorithm and ours. We note that their examples are on practical

functions of, in general, T -periodicity, not 2π-periodicity, the latter being convenient for implementation

of function theory of one complex variable as we have been doing in this paper. These two settings are

easily converted to each other through a linear change of variable. In the general T -periodicity case, in

the following example and the next one as well, we adopt the easy function notation fa(e
iΩt),ΩT = 2π,

instead of fa(e
it), and so on.

Let fp(e
iΩt) be the polynomial consisting of nine harmonic waves as

fp(e
iΩt) = 1 + 3.37e−i0.3eiΩt + 3.42e−i1.3ei2Ωt + 9.45e−i3.1ei3Ωt + 15.76ei2.8ei4Ωt + 5.4ei2.7ei5Ωt

+ 5.4e−1.3ei6Ωt + 3.72e−i0.9ei7Ωt + 1.5e−i0.6ei8Ωt,
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where Ω = 2π×200 Hz. By a simple computation, fp(e
iΩt) corresponds to a mixed phase signal consisting

of four zeros inside and four zeros outside the unit circle. They use H = 60 with the error signal

e(eit) = PH(eiΩt)fp(e
iΩt) to approximate the minimum-phase component of fp(e

iΩt). The real part of the

minimum-phase component of fp(e
iΩt) extracted by their algorithm is shown in Figure 1(a). If we employ

e(t) = PH(eiΩt)
fp(eiΩt)

, using the algorithm corresponding to Theorem 2.1 under H = 8, the minimum-phase

component of fp(e
iΩt) can be exactly extracted out. The simulation result is shown in Figure 1(b).

3 The decomposition algorithm based on the Takenaka-Malmquist system

It is a fact that the minimum-phase signal of an analytic signal fa(e
it) is uniquely determined by the

log-amplitude of fa(e
it), i.e.,

fmin(e
it) = exp{ln |fa|(eit) + iH̃ ln |fa|(eit)}.

If the values of |fa(eit)| are not almost everywhere enclosed in a compact interval of (0,∞), then ln |fa(eit)|
will be essentially unbounded. The unboundedness causes unstability of the decomposition algorithm.

In order to avoid such situation, we focus on the subspace A0(∂D) of H2(∂D), where A0(∂D) consists

of all functions fa(e
it) in H2(∂D) that are, moreover, continuous on ∂D and |fa(eit)| > 0. Obviously,

the polynomial circular analytic signals discussed in Section 2 belong to A0(∂D). For general fa(e
it)

∈ A0(∂D), it can be shown that its all-phase part is the non-tangential boundary limit of a finite

Blaschke product, i.e., fa(e
it) can be decomposed as

fa(e
it) = eiγ exp{ln |fa|(eit) + iH̃(ln |fa|)(eit)}︸ ︷︷ ︸

fmin(eit)

N∏
k=1

eit − αk

1− αkeit︸ ︷︷ ︸
fall(eit)

,

where γ is a real constant, α1, . . . , αN are points in the unit disc D (see [31]). The minimum-phase signal

fmin(e
it), on the other hand, is the non-tangential boundary limit function of the outer function fmin(z),

z = reit, 0 6 r < 1, with

fmin(z) = eiγ exp

{
1

2π

∫ 2π

0

eiθ + z

eiθ − z
ln |fa(eiθ)|dθ

}
. (3.1)

In this section, we will show that, replacing the trigonometric series eikt with the rational orthogonal

basis rk(e
it) in (0.2), an approximation to the minimum-phase signal of fa(e

it) ∈ A0(∂D) can also be

obtained by minimizing the integral

1

2π

∫ 2π

0

∣∣∣∣1 + H∑
k=1

hkrk(e
it)

∣∣∣∣2 1

|fa(eit)|2
dt, (3.2)

where {hk}Hk=1 is a set of H complex numbers, rk(e
it) is given by

r0(e
it) = 1, rk(e

it) =

√
1− |αk|2eit

1− αkeit

k−1∏
j=1

eit − αj

1− αjeit
, k > 1. (3.3)

When all αk are chosen to be zero, the rational orthogonal system {rk(eit)}∞k=0 reduces to the trigono-

metric series {eikt}∞k=0. When all αk = b, 0 < |b| < 1, the rational orthogonal system {rk(eit)}∞k=0 reduces

to the Lagurre basis {
1,

√
1− |b|2eit

1− beit

(
eit − b

1− beit

)k−1}∞

k=1

.
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The rational orthogonal series {rk(eit)}∞k=0, sometimes being referred as Takenaka-Malmquist (TM) sys-

tem, has been widely studied and applied to system identification, rational approximation, positive-

frequency representation of signals, and so on (see [1,6,28,32]). If the points αk ∈ D satisfy the condition

∞∑
k=1

(1− |αk|) = ∞, (3.4)

then {rk(eit)}∞k=0 is an orthonormal basis ofH2(∂D). We will call each rk(e
it) a modified Blaschke product

and {rk(eit)}Hk=0 an H-TM system, in brief.

Assume that RH
min(α1, . . . , αH , eit) is a function at which the integral (3.2) attains the minimum energy.

Then we have

EH
min(fa, α1, . . . , αH) =

1

2π

∫ T

0

|RH
min(α1, . . . , αH , eit)|2 1

|fa(eit)|2
dt

= min
h1,...,hH

1

2π

∫ 2π

0

∣∣∣∣1 + H∑
k=1

hkrk(e
it)

∣∣∣∣2 1

|fa(eit)|2
dt

= min
RH(eit)∈NRH(∂D)

1

2π

∫ 2π

0

|RH(eit)|2 1

|fa(eit)|2
dt,

where NRH(∂D) = {r(eit) ∈ RH(∂D) | r(0) = 1} is the space of zero-term normalized rational functions

in RH(∂D), the latter stands for the rational function space spanned by {rk(eit)}Hk=0. A minimizer

function RH
min(α1, . . . , αH , eit) belongs to NRH(∂D).

Let {ϕr
0(e

it), ϕr
1(e

it), . . . , ϕr
H(eit)} be an orthonormal system obtained by the Gram-Schmidt orthog-

onalization of {r0(eit), r1(eit), . . . , rH(eit)} with respect to the positive measure dµ(t) = dt/|fa(eit)|2.
Denote the reproducing kernel of RH(∂D) by SH(w, z), i.e.,

SH(w, z) =
H∑

k=0

ϕr
k(w)ϕ

r
k(z).

In the following theorem, we prove that RH
min(α1, . . . , αH , eit) is a minimum-phase signal, and, further-

more, we establish the relation between RH
min(α1, . . . , αH , eit) and SH(0, z).

Theorem 3.1. Assume that fa ∈ A0(∂D), H is an arbitrary but fixed positive integer, and RH
min(α1,

. . . , αH , eit) is a function in NRH(∂D) at which the integral (3.2) attains the minimum. Then RH
min(α1,

. . . , αH , eit) is a minimum-phase signal and

RH
min(α1, . . . , αH , eit) =

SH(0, eit)

SH(0, 0)
= c exp{ln |RH

min(α1, . . . , αH , eit)|+ iH̃(ln |RH
min(α1, . . . , αH , ·)|)(eit)}.

Furthermore,

EH
min(fa, α1, . . . , αH) =

1

2π

∫ 2π

0

|RH
min(α1, . . . , αH , eit)|2 1

|fa(eit)|2
dt =

1

SH(0, 0)
,

where c is a complex constant of modular 1.

Proof. Since RH
min(α1, . . . , αH , eit) is a function in NRH(∂D), it has H nonzero roots and can be

factorized as

RH
min(α1, . . . , αH , eit) =

∏H
j=1(1− β−1

i eit)∏H
j=1(1− αjeit)

.

Now we show that for all k = 1, . . . , H, |βk| > 1. If there held, for some k, |βk| < 1, then we have

|RH
min(α1, . . . , αH , eit)| =

∣∣∣∣
∏H

j=1(1− β−1
j eit)∏H

j=1(1− αjeit)

∣∣∣∣
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=

∣∣∣∣ (1− β−1
k eit)

∏H
j=1
j ̸=k

(1− β−1
j eit)∏H

j=1(1− αjeit)

∣∣∣∣
= |β−1

k R′
H(eit)|, (3.5)

where

R′
H(eit) =

(1− βke
it)

∏H
j=1
j ̸=k

(1− β−1
j eit)∏H

j=1(1− αjeit)
.

The last equality (3.5) is due to the unimodular property of the Möbius transform at βk, that amounts

to the relation

|β−1
k (1− βke

it)| = |1− β−1
k eit|.

The assumption |βk| < 1 then would imply

1

2π

∫ 2π

0

|RH
min(α1, . . . , αH , eit)|2

|fa(eit)|2
dt =

|βk|−2

2π

∫ 2π

0

|R′
H(eit)|2

|fa(eit)|2
dt >

1

2π

∫ 2π

0

|R′
H(eit)|2

|fa(eit)|2
dt.

This contradicts with the assumption that RH
min(α1, . . . , αH , z) gives rise to the minimum integral value.

Hence, RH
min(α1, . . . , αH , z) contains no zeros in the unit disk and so RH

min(α1, . . . , αH , eit) is a minimum-

phase signal. It, therefore, can be expressed as

RH
min(α1, . . . , αH , eit) = c exp{ln |RH

min(α1, . . . , αH , eit)|+ iH̃(ln |RH
min(α1, . . . , αH , ·)|)(eit)},

where c is a unimodular constant.

Since SH(0,eit)
SH(0,0) ∈ NRH(∂D), we have

min
RH(eit)∈NRH(∂D)

1

2π

∫ 2π

0

|RH(eit)|2 1

|fa(eit)|2
dt

6 1

2π

∫ 2π

0

|SH(0, eit)|2

|SH(0, 0)|2
1

|fa(eit)|2
dt

6 1

|SH(0, 0)|2
1

2π

∫ 2π

0

[ H∑
k=0

ϕr
k(0)ϕ

r
k(e

it)

][ H∑
k=0

ϕr
k(0)ϕ

r
k(e

it)

]
1

|fa(eit)|2
dt

=
1∑H

k=0 |ϕr
k(0)|2

.

On the other hand, any RH(eit) ∈ NRH(∂D) can be expressed as

RH(z) =
H∑

k=0

⟨RH(eit), ϕr
k(e

it)⟩ 1

|fa(eit)|2
ϕr
k(z),

where

⟨RH(eit), ϕr
k(e

it)⟩ 1

|fa(eit)|2
=

1

2π

∫ 2π

0

RH(eit)ϕr
k(e

it)
1

|fa(eit)|2
dt

is the weighted inner product. Hence we have

1

2π

∫ 2π

0

|RH(eit)|2 1

|fa(eit)|2
dt =

H∑
k=0

|⟨RH(eit), ϕr
k(e

it)⟩ 1

|fa(eit)|2
|2.

Since RH(0) = 1, we have

1 =

∣∣∣∣ H∑
k=0

⟨RH(eit), ϕr
k(e

it)⟩ 1

|fa(eit)|2
ϕr
k(0)

∣∣∣∣ 6 [ H∑
k=0

|⟨RH(eit), ϕr
k(e

it)⟩ 1

|fa(eit)|2
|2
]1/2[ H∑

k=0

|ϕr
k(0)|2

]1/2
.
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Hence,

1

2π

∫ 2π

0

|RH(eit)|2 1

|fa(eit)|2
dt =

H∑
k=0

|⟨RH(eit), ϕr
k(e

it)⟩ 1

|fa(eit)|2
|2 > 1∑H

k=0 |ϕr
k(0)|2

.

We obtain

min
RH(eit)∈NRH(2π)

1

2π

∫ 2π

0

|RH(eit)|2

|fa(eit)|2
dt =

1

2π

∫ 2π

0

∣∣∣∣SH(0, eit)

SH(0, 0)

∣∣∣∣2 1

|fa(eit)|2
dt =

1∑H
k=0 |ϕr

k(0)|2
,

as desired. The proof is completed.

If the points αk defining the TM system satisfy the hyperbolic non-separable condition
∑∞

k=1(1

− |αk|) = ∞, then the classical Szegő theorem can be generalized to the TM system, i.e., as H

goes to infinity, RH
min(α1, . . . , αH , eit) goes to f−1

min(0)fmin(e
it) in the L2-norm sense, where fmin(0) =

eiγ exp{ 1
2π

∫ 2π

0
ln |fa(eit)|dt}.

Theorem 3.2. Let a nonzero function fa(e
it) ∈ A0(∂D). If the points αk’s satisfy

∑∞
k=1(1−|αk|) = ∞,

then

lim
H→∞

EH
min(fa, α1, . . . , αH) =

1

|fmin(0)|2
= exp

{
− 1

π

∫ 2π

0

ln |fa(eit)|dt
}

and

lim
H→∞

∥∥∥∥Rmin
H (α1, . . . , αH , eit)− 1

fmin(0)
exp{ln |fa(eit)|+ iH̃ ln |fa(eit)|}

∥∥∥∥2 = 0.

Proof. The monotonous property EH+1
min (fa, α1, . . . , αH+1) 6 EH

min(fa, α1, . . . , αH) implies the existence

of the limit limH→∞ EH
min(fa, α1, . . . , αH) = Emin(fa, α), and Emin(fa, α) > 0, where

α = {α1, α2, . . . , αH , . . .}.

By Jessen’s inequality, we have

EH
min(fa, α1, . . . , αH) =

1

2π

∫ 2π

0

|RH
min(α1, . . . , αH , eit)|2

|fa(eit)|2
dt

> exp

{
1

2π

∫ 2π

0

ln |fa(eit)|−2dt

}
exp

{
1

2π

∫ 2π

0

ln |RH
min(α1, . . . , αH , eit)|2dt

}
=

1

|fmin(0)|2
|RH

min(α1, . . . , αH , 0)|2 =
1

|fmin(0)|2
. (3.6)

Therefore, EH
min(fa, α1, . . . , αH) > |fmin(0)|−2 and Emin(fa, α) > |fmin(0)|−2.

On the other hand, since fa(e
it) ∈ A0(∂D), there exists δ > 0 such that |fa(eit)| > δ, and, if the

points αk satisfy
∞∑
k=1

(1− |αk|) = ∞,

there exists a rational function ϕ(eit) ∈ RH(∂D) such that |ϕ(eit)| > δ
2 and |fa(eit) − ϕ(eit)| < ϵ. Let

ϕmin(e
it) be the minimum-phase of ϕ(eit). From the above inequalities involving fa we have∣∣∣∣1− |ϕ(eit|)

|fa(eit)|

∣∣∣∣ < δ−1ϵ.

Using the elementary inequality ln y < y − 1 for y ≈ 1, we have

|ϕmin(0)| = |fmin(0)|
|ϕmin(0)|
|fmin(0)|

= |fmin(0)| exp
{

1

2π

∫ 2π

0

ln

∣∣∣∣ ϕ(eit)fa(eit)

∣∣∣∣dt}
6 |fmin(0)|eδ

−1ϵ
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and
1

2π

∫ 2π

0

|ϕ(eit)|2

|fa(eit)|2
dt 6 1

2π

∫ 2π

0

|1 + δ−1ϵ|2dt < (1 + δ−1ϵ)2.

This shows that

1

|f2
min(0)|

6 Emin(fa, α) 6 EH
min(fa, α1, . . . , αH)

6 1

|ϕmin(0)|2
1

2π

∫ 2π

0

|ϕ(eit)|2

|fa(t)|2
dt 6 1

|f2
min(0)|

e2δ
−1ϵ(1 + ϵδ−1)2.

Since ϵ is an arbitrary small positive number,

Emin(fa, α) = lim
H→∞

EH
min(fa, α1, . . . , αH) =

1

|fmin(0)|2
= exp

{
−2

2π

∫ 2π

0

ln |fa(eit)|dt
}
. (3.7)

Now

1

2π

∫ 2π

0

∣∣∣∣Rmin
H (α1, . . . , αH , eit)

fmin(eit)
− f−1

min(0)

∣∣∣∣2dt = 1

2π

∫ 2π

0

∣∣∣∣Rmin
H (α1, . . . , αH , eit)

fmin(eit)

∣∣∣∣2dt+ 1

|fmin(0)|2

− 2ℜ
{

1

fmin(0)

1

2π

∫ 2π

0

Rmin
H (α1, . . . , αH , eit)

fmin(eit)
dt

}
= EH

min(fa, α1, . . . , αH)− 1

|fmin(0)|2
. (3.8)

By (3.7), we obtain

lim
H→∞

1

2π

∫ 2π

0

∣∣∣∣RH
min(α1, . . . , αH , eit)

fmin(eit)
− f−1

min(0)

∣∣∣∣2dt = 0.

The proof is completed.

For a fixed H, the minimum energy EH
min(fa, α1, . . . , αn) based on the H-TM system depends on the

choices of α1, . . . , αH . The following theorem shows that if fa is a rational function, then based on an

n-best choice of {α1, . . . , αn}, the exact solution of the minimum-phase part of fa can be extracted out.

Theorem 3.3. Let fa(e
it) be a rational circular analytic signal with the form

fa(e
it) = a0

∏P
k=1(1− pke

it)∏U
k=1(1− ukeit)

Q∏
k=1

(1− qke
it),

where a0, pk, uk and qk are complex numbers, |pk| < 1, |uk| < 1 and |qk| > 1. Then the energy

min
α1,...,αn∈D

En
min(fa, α1, . . . , αn) = min

α1,...,αn∈D

1

2π

∫ 2π

0

|Rmin
n (α1, . . . , αn, e

it)|2

|fa(eit)|2
dt =

1

|f2
min(0)|

and

Rn
min(α

min
1 , αmin

2 , . . . , αmin
n , eit) = f−1

min(0)fmin(e
it) =

∏P
k=1(1− pke

it)
∏Q

k=1(1− 1/qke
it)∏U

k=1(1− ukeit)
, (3.9)

where n > max{P + Q,U}, αmin
1 , . . . , αmin

n are the parameters at which En
min(fa, α1, . . . , αn) attains

minimum energy.

Proof. For any given sequence {α1, . . . , αn} in the unit disc D, by (3.6), we have that

min
α1,...,αn

En
min(fa, α1, . . . , αn) >

1

|fmin(0)|2
.

Let

h(t) =
fmin(e

it)

fmin(0)
.
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The condition n > max{P +Q,U} implies

min
α1,...,αn

En
min(fa, α1, . . . , αn) 6 En

min(fa, u1, . . . , uU )

6 1

2π

∫ 2π

0

|
∏P

k=1(1− pke
it)

∏Q
k=1(1− 1/qke

it)|2

|
∏U

k=1(1− ukeit)|2
dt

|fa(eit)|2

6 1

2π

∫ 2π

0

|fmin(e
it)|2

|fmin(0)|2|fa(eit)|2
dt =

1

|fmin(0)|2
.

Combining the above two results, we have

min
α1,...,αn

1

2π

∫ 2π

0

|Rn
min(α1, . . . , αn, e

it)|2

|fa(eit)|2
dt =

1

|fmin(0)|2
.

Assume that αmin
1 , . . . , αmin

n are the parameters at which

1

2π

∫ 2π

0

|Rn
min(α

min
1 , . . . , αmin

n , eit)|2

|fa(eit)|2
dt =

1

|fmin(0)|2
.

By (3.8), we have that

1

2π

∫ 2π

0

∣∣∣∣Rn
min(α

min
1 , . . . , αmin

n , eit)

fmin(eit)
− f−1

min(0)

∣∣∣∣2dt = 0.

Hence,

Rn
min(α

min
1 , . . . , αmin

n , eit) = f−1
min(0)fmin(e

it) =

∏P
k=1(1− pke

it)
∏Q

k=1(1− 1/qke
it)∏U

k=1(1− ukeit)
.

This completes the proof.

Compared with the algorithm of Kumaresan and Rao [13] based on Fourier series, the algorithm based

on TM system has the advantage of adaptive choices of {α1, α2, . . . , αn}. We use the example

fr(e
iΩt) =

(1− 0.3eiΩt)(1− 2eiΩt)

(1− 0.2eiΩt)(1− 0.9eiΩt)(1− 0.99eiΩt)
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Figure 2 The column on the left is the real part of the minimum phase signal of fr(t); the column on the left is the error

between the real one and the extracted by different choices of αk
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to analyze the advantage of flexible choices of the parameters {α1, α2, . . . , αn}, where Ω = 2π × 0.2. We

first observe that since the poles of fr(e
iΩt) are very close to 1, the function values ln |fr(eiΩt)| are very

large at some points. It is shown in [21] that the algorithm based on Hilbert transform will be unstable

for this case. The minimizing energy method under this study can suppress the unstability in numerical

calculation by choosing suitable points αk. On fixed parameters {α1, . . . , αn} the TM-system minimum

energy method

min
hk∈C

1

T

∫ T

0

∣∣∣∣1 + n∑
k=1

hkrk(e
iΩt)

∣∣∣∣2 1

|fr(eiΩt)|2
dt,

to extracted minimum-phase signal of fr(t) is sometimes still not so good to fit the spikes. This can

be seen in Figures 2(a)–2(d) by respectively choosing all αk = 0 or all αk = 0.5, H = 40. When all

αk = 0, the algorithm corresponds to what is given in Theorem 2.1 that already improves the method by

Kumarasan and Rao [13]. But if the parameters αk are chosen based on the best rules, i.e.,

min
αk∈D

min
hk∈C

{∫ T

0

∣∣∣∣1 + n∑
k=1

hkrk(e
iΩt)

∣∣∣∣2 1

|fr(eiΩt)|2
dt

}
,

where rk(e
iΩt) is given as in (3.3), then the minimum-phase component of fr(e

iΩt) can be extracted much

more efficiently. The effectiveness of the algorithm corresponding to Theorem 3.3 is explicitly shown in

Figures 2(e) and 2(f) by choosing

H = 3 and {|αk| < 0.995}3k=1.

The best rules of choosing αk may be consulted with the n-best rational approximation methods as given,

for example, in [6, 27].
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