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Abstract

Aveiro Method is a sparse representation method in reproducing kernel Hilbert
spaces (RKHS) that gives orthogonal projections in linear combinations of reproducing
kernels over uniqueness sets. It, however, suffers from determination of uniqueness sets
in the underlying RKHS. In fact, in general spaces, uniqueness sets are not easy to
be identified, let alone the convergence speed aspect with Aveiro Method. To avoid
those difficulties we propose an anew Aveiro Method based on a dictionary and the
matching pursuit idea. What we do, in fact, are more: The new Aveiro method will be
in relation to the recently proposed, the so called Pre-Orthogonal Greedy Algorithm
(P-OGA) involving completion of a given dictionary. The new method is called Aveiro
Method Under Complete Dictionary (AMUCD). The complete dictionary consists of all
directional derivatives of the underlying reproducing kernels. We show that, under the
boundary vanishing condition, bring available for the classical Hardy and Paley-Wiener
spaces, the complete dictionary enables an efficient expansion of any given element in
the Hilbert space. The proposed method reveals new and advanced aspects in both the
Aveiro Method and the greedy algorithm.

1 Introduction

We first give a revision on the theory of reproducing kernel Hilbert spaces (e.g. [1, 2, 3]).
Let H be a Hilbert space, and E an abstract set and h a H-valued function on E. Then,
consider the linear transformation

f(p) = 〈f ,h(p)〉H, f ∈ H , (1.1)

from H into the linear space F(E) comprising all the complex valued functions on E. Con-
truct a positive definite quadratic form function

K(p, q) = 〈h(q),h(p)〉H on E×E. (1.2)

The following is the basic theory of reproducing kernel Hilbert spaces.

This work was supported by University of Macau research grant MYRG116(Y1-L3)-FST13-QT and
Macau Government FDCT 098/2012/A3.
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Proposition 1.1 (I) The range of the linear mapping (1.1) by H is characterized as the
reproducing kernel Hilbert space HK(E) admitting the reproducing kernel K(p, q) whose
characterization is given by the two properties: (i) K(·, q) ∈ HK(E) for any q ∈ E and,
(ii) for any f ∈ HK(E) and for any p ∈ E, 〈f(·), K(·, p)〉 = f(p).

(II) In general, we have the inequality

‖f‖ ≤ ‖f‖H.

Here, for any member f of HK(E) there exists a uniquely determined f∗ ∈ H satisfying

f(p) = 〈f∗,h(p)〉H on E

and
‖f‖ = ‖f∗‖H. (1.3)

(III) In general, we have the inversion formula in (1.1) in the form

f 7→ f∗ (1.4)

in (II) by using the RKHS HK(E).

For more information on reproducing kernel Hilbert space (RKHS), please see [1, 11, 12].
In [2, 3] S. Saitoh et al propose the so-called Aveiro Method aiming to construct an

approximating function of f∗ involving a finite number of sampling points of E.

Proposition 1.2 Suppose that {pj}nj=1 are n distinct points in E. Define a Hermitian matrix
An with the elements

aj,k = 〈h(pk),h(pj)〉H, (1.5)

and further assume that An is positive definite.
For

f(p) = 〈f ,h(p)〉H, f ∈ H , (1.6)

we have

f∗An =
n∑
j=1

n∑
k=1

f(pj)ã
(n)
j,kh(pk) (1.7)

satisfying
f(pj) = 〈f∗An ,h(pj)〉H, (1.8)

where ã
(n)
j,k ’s are the elements of A−1

n (here we use the notation ã
(n)
j,k because elements of A−1

n

depend on n). Moreover, if there exists any g ∈ H such that

f(pj) = 〈g,h(pj)〉H,

we have
||f∗An||H ≤ ||g||H.

The convergence of f∗An is based on the following Proposition.
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Proposition 1.3 Let {pj}∞j=1 be a sequence of distinct points in E, that is of the positive
definiteness property set as in Proposition 1.2 for any n, and a uniqueness set for the RKHS
HK; that is, for any f ∈ HK, if f(pj) = 0 for all pj, then f ≡ 0. Then, in the space H

lim
n→∞

f∗An = f∗ (1.9)

for f∗ given in Proposition 1.1.

As shown in Proposition 1.3, the convergence of f∗An depends on the assumption that
{pj}∞j=1 is a uniqueness set. The effectiveness of Aveiro Method is not guaranteed in prac-
tical use due to the following reasons: (1) The knowledge of uniqueness sets of a RKHS is
usually not sufficient, and uniqueness sets are not easy to be identified; and (2) For a unique-
ness set {pj}∞j=1, there do not exist results addressing convergence behavior in terms of An.
What is known would be only that the series converges to f∗. In this paper we propose an
modified Aveiro Method over a given dictionary, as well as the matching pursuit idea (e.g.
[6, 13]). Owing to these features it becomes practical. By doing this we not only avoid the
uniqueness set issue but also increase the convergence speed. More specifically, the proposed
theory and algorithm depend on a recently proposed concept, the completion of the dictio-
nary originally given ([8]). We call the proposed method Aveiro Method Under Complete
Dictionary (AMUCD).

Within the above axiomatic formulation of RKHS we will be working with the simple
cases in which H = HK(E), and thus H itself is a RKHS. In the original Aveiro Method,
by the definition of the Aveiro representation, f ∗An is meaningless if pj = pk for some j 6= k.
The proposed AMUCD, in a sense, allows the cases pj = pk for j 6= k. It is done by involving
the complete dictionary consisting of the original dictionary elements together with all the
possible directional derivatives, reducing to derivatives in particular cases, of the dictionary
elements. In our case a dictionary consists of reproducing kernels. It is by introducing the
complete dictionary concept that enables Qian to propose a new type of greedy algorithm
called Pre-Orthogonal Greedy Algorithm (P-OGA) in [8]. It is shown that P-OGA is among
the most effective matching pursuit methods. Applying the same idea, in AMUCD the
matrices An can involve derivatives of the reproducing kernels. In the meantime, as in AFD
(see [10], [8]), the representation and its derivatives are of interpolation property at the
selected points. AMUCD is, in fact, an alternative representation of AFD. In such way the
capacity of Aveiro method is considerably lifted up. Denote by f̃ ∗An the revised f ∗An . For n
points {pj}nj=1 in E, we select the next point that satisfies

p∗n+1 = arg min
pn+1∈E

||f − f̃ ∗An+1
||. (1.10)

By using a complete dictionary, the existence of p∗n+1 is evident when the remainder energy
approaches to zero at the boundary (see Lemma 2.1). We call such property “boundary
vanishing condition (BVC)”. If BVC holds and each element of {pj}∞j=1 is selected according
to the principle (1.10), then {pj}∞j=1 does not have to be a uniqueness set of H. Thus the

convergence of f̃ ∗An is not a conclusion of Proposition 1.3, and, instead, requires a separate

proof. We give a proof of the convergence of such formulated f̃ ∗An in §2.
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In §3 we perform AMUCD to two special cases, the Hardy space H2(D) and the Paley-
Wiener space W (π

h
), h > 0. For H2(D), we show that BVC holds (see also [14]). For W (π

h
)

we are able to show a weak BVC property.
In this study we show that AMUCD is identical with P-OGA (see §2). AMUCD has the

advantage of not working out the related orthonormal system. As a matter of fact, in many
cases P-OGA do not have explicit formulas for the related orthonormal system functions like
the Takenaka-Malmquist (TM) system case in the classical Hardy spaces case.

The writing plan of the paper is as follows. In §2 we present AMUCD, giving a set
of sufficient conditions for existence of p∗n+1 and proving the convergence of f̃ ∗An without
assuming {pj}∞j=1 being a uniqueness set. In §3 we implement our method to the Hardy and
Paley-Wiener spaces.

2 Aveiro Method Under Complete Dictionary

In this section, we present a revised f∗An . Then, we present AMUCD. In particular, we are
concerned with the cases H = HK(E), where E is a domain in C and h(p) = K(·, p).

By Proposition 1.2, we have

f ∗An(p) =
n∑
j=1

n∑
k=1

f(pj)ã
(n)
j,kK(p, pk), p ∈ E, (2.11)

where all pk are distinct points. We need to study what will happen if pj = pk, for j 6= k.
(2.11) depends on the matrix An = (aj,k)n×n, where aj,k = K(pj, pk). Evidently, An is
singular if pj = pk, j 6= k. Therefore, f ∗An is meaningless in such case.

Now we interpret f ∗An as follows. Set kpj = K(·, pj). Suppose that {kp1 , ..., kpn} are
linearly independent in HK(E) when {pk}nk=1 are distinct from each other. Let {β1, ..., βn}
be the orthogonalization of {kp1 , ..., kpn} through the Gram-Schmidt (G-S) orthogonalization
process. By the G-S orthogonalization process, we know that βk is a linear combination of
{kp1 , ..., kpn}. When this relation is combined with the reproducing property (1.8), we have

f ∗An =
n∑
k=1

〈f ∗An , βk〉βk =
n∑
k=1

〈f, βk〉βk. (2.12)

Based on (2.12), we can revise f ∗An for the situation that pj = pk, j 6= k. More precisely,

we use {β̃1, ..., β̃n}, the generalization of {β1, ..., βn} in the above situation, to revise f ∗An .

{β̃1, ..., β̃n} in the contexts of one complex variable and quaternionic variable has been dis-

cussed in [10, 7]. Recently, {β̃1, ..., β̃n} is formulated in general Hilbert spaces in [8]. As
result, the concept, Complete Dictionary, is deduced in [8]. The treatment here follows the
same line.

For the purpose of convenience, we only interpret {β̃1, ..., β̃n} for n = 2. Suppose that p1

is fixed. We further assume that kp(q) = K(q, p) is holomorphic in q and anti-holomorphic
in p (e.g. the Szegö kernel ). Set p = p1 + z, where z = reiθ. By the G-S orthogonalization
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process, we have

α{p1} = α1 = kp1 , α{p1,p2,...,pk} = αk = kpk −
k−1∑
j=1

〈kpj ,
αj
‖α‖
〉 αj
‖α‖

, k = 1, ..., n,

and

{β1, ..., βn} = { α1

‖α1‖
, ...,

αn
‖αn‖

}.

Now we consider the following limit

lim
p→p1

β{p1,p} = lim
p→p1

α{p1,p}
||α{p1,p}||

= lim
p→p1

α{p1,p} − α{p1,p1}√
〈α{p1,p} − α{p1,p1}, α{p1,p} − α{p1,p1}〉

= lim
p→p1

e−iθ
α{p1,p}−α{p1,p1}

z√
〈α{p1,p}−α{p1,p1}

z
,
α{p1,p}−α{p1,p1}

z
〉

= e−iθ
d
dp
α{p1,p}|p=p1

|| d
dp
α{p1,p}|p=p1 ||

= e−iθ
d
dp
kp|p=p1 − 〈 d

dp
kp|p=p1 , α1

||α1||〉
α1

||α1||

|| d
dp
kp|p=p1 − 〈 d

dp
kp|p=p1 , α1

||α1||〉
α1

||α1|| ||
,

(2.13)

where θ is the phase of the difference p − p1 = z that keeps to be a constant in the process
p→ p1.

We define β̃{p1,p1} = limp→p1 β{p1,p}. (2.13) also means that β̃{p1,p1} is the product of e−iθ

and the term generated by involving the derivative d
dp
kp|p=p1 in the G-S orthogonalization

process.
In such situation, we can choose a special direction with θ = 0. We can inductively define

β̃k by involving dmk
d(p)mk

kp|p=pk , if necessary, in the G-S orthogonalization process, where mk is

the cardinality of the set {j; pj = pk, j < k}. Notice that reproducing kernels in H2(D) and
W (π

h
) are anti-holomorphic in the second variable. Now we define a revised f ∗An as follows.

Let {pk}nk=1 be a sequence of points in E, mk be the cardinality of the set {j : pj = pk, j < k}
for each pk and

K̃(·, pk) =
dmk

d(p)mk
kp|p=pk ,

and An = (a
(n)
j,k )n×n, where

a
(n)
j,k = 〈K̃(·, pk), K̃(·, pj)〉. (2.14)

Define

f̃ ∗An =
n∑
k=1

〈f, β̃k〉β̃k =
n∑
j=1

n∑
k=1

〈f, K̃(·, pj)〉ã
(n)
j,k K̃(·, pk), (2.15)
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where ã
(n)
j,k represents a typical element of A−1

n . (2.15) is well defined because of the following

facts: (1) β̃k is a linear combination of {K̃(·, p1), ..., K̃(·, pk)}; (2)

〈f̃ ∗An , K̃(·, pk)〉 = 〈f, K̃(·, pk)〉 = f (mk)(pk). (2.16)

Notice that when all the elements in {pk}nk=1 are distinct with each other, then f̃ ∗An = f ∗An .

In such sense f̃ ∗An generalizes f ∗An . Hereafter, we adopt the same notation f ∗An for both the
distinct and non-distinct cases.

Next we consider

p∗n+1 = arg min
pn+1∈E

||f − f ∗An+1
||. (2.17)

The existence of p∗n+1 is evident under the conditions (2.18) and (2.19), as given in

Lemma 2.1 For f ∈ HK(E), where K(·, p) is anti-holomorphic in p, if

lim
pn+1→∂E

|〈f, K̃(·, pn+1)〉|
√
an+1,n+1

= 0, (2.18)

and

lim
pn+1→∂E

|aj,n+1|√
an+1,n+1

= 0, j = 1, 2...n, (2.19)

then
lim

pn+1→∂E
||f − f ∗An+1

|| = ||f − f ∗An||,

where {p1, ..., pn} are fixed.

Proof: Firstly, let Cn = (c
(n)
1 , c

(n)
2 , ..., c

(n)
n ) and Fn = (〈f, K̃(·, p1)〉, 〈f, K̃(·, p2)〉, ..., 〈f, K̃(·, pn)〉).

By (2.15), we have

f ∗An =
n∑
k=1

c
(n)
k K̃(·, pk),

where Cn = FnA−1
n . It is easy to verify that

||f − f ∗An||
2 = ||f ||2 − CnAnCT

n .

Since An is a Hermitian and positive definite matrix, we have CnAnC
T
n = FnA

−1
n AnA−1

n

T
F T
n =

FnA
−1
n F T

n . So,

||f − f ∗An||
2 = ||f ||2 − FnA−1

n F T
n (2.20)

and

||f − f ∗An+1
||2 = ||f ||2 − Fn+1A

−1
n+1F

T
n+1. (2.21)
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From now on we denote

An+1 =


a1,1 · · · · · · a1,n a1,n+1

a2,1 · · · · · · a2,n a2,n+1
...

...
. . .

...
...

an,1 · · · · · · an,n an,n+1

an+1,1 · · · · · · an+1,n an+1,n+1

 .

Secondly, let adj(An+1) = (Aj,k)
T
(n+1)×(n+1) be the adjugate matrix of An+1, where Aj,k, (·)T

and | · | denote the (j, k) cofactor of An+1, the transpose of a matrix and the determinant of

a matrix, respectively. Let (b
(n)
j,k )n×n denote the inverse matrix of An. Hence,

(b
(n+1)
j,k )(n+1)×(n+1) = A−1

n+1 =
adj(An+1)

|An+1|
. (2.22)

The (j, k) cofactor of An+1 is the product of (−1)j+k and the (j, k) minor of AN+1. The
(n+ 1)-th row expansion of |An+1| is

|An+1| =
N∑
j=1

an+1,jAn+1,j + an+1,n+1An+1,n+1.

Let adj(An) = (Bj,k)
T
n×n, where Bj,k denotes the (j, k) cofactor of An. Let (a

(j,k)
l,m )n×n denotes

the matrix that results from deleting the j-th row and the k-th column of An+1 and A
(j,k)
l,m be

the (l,m) cofactor of (a
(j,k)
l,m )n×n. For j, k = 1, 2, ..., n, it is obvious that

a(j,k)
n,m = an+1,m,m ≤ k − 1,

a(j,k)
n,m = an+1,m+1, k ≤ m ≤ n,

a
(j,k)
l,n = al,n+1, l ≤ j − 1,

a
(j,k)
l,n = al+1,n+1, j ≤ l ≤ n,

A(j,k)
n,n =

Bj,k

(−1)j+k
.

(2.23)

For j = 1, 2, ..., n, since An+1,j is the product of (−1)n+1+j and the (n+ 1, j) minor of An+1,
we have

An+1,j = (−1)n+1+j

n∑
k=1

A
(n+1,j)
k,n ak,n+1.

Therefore,

|An+1| =
n∑
j=1

n∑
k=1

(−1)n+1+jA
(n+1,j)
k,n an+1,jak,n+1 + an+1,n+1An+1,n+1

= an+1,n+1(|An|+
n∑
j=1

n∑
k=1

(−1)n+1+jA
(n+1,j)
k,n

an+1,jak,n+1

an+1,n+1

).

(2.24)
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For j, k = 1, 2, ..., n, we consider the n-th row expansion of Aj,k,

Aj,k = (−1)j+k
n−1∑
m=1

A(j,k)
n,m a

(j,k)
n,m + (−1)j+kA(j,k)

n,n a
(j,k)
n,n

= (−1)j+k
n−1∑
m=1

A(j,k)
n,m a

(j,k)
n,m +Bj,kan+1,n+1.

For m = 1, 2, ..., n− 1, the (n− 1)-th column expansion of A
(j,k)
n,m is

A(j,k)
n,m =

n−1∑
l=1

d
(j,k)
m,l a

(j,k)
l,n ,

where d
(j,k)
m,l depends on the cofactor of the matrix that results from deleting the n-th row

and the m-th column of (a
(j,k)
l,m )n×n.

Thus,

Aj,k = (−1)j+k
n−1∑
m=1

A(j,k)
n,m a

(j,k)
n,m + (−1)j+kA(j,k)

n,n a
(j,k)
n,n

= an+1,n+1(Bj,k +
n−1∑
m=1

n−1∑
l=1

(−1)j+kd
(j,k)
m,l

a
(j,k)
l,n a

(j,k)
n,m

an+1,n+1

).

(2.25)

Therefore, for j, k = 1, 2, ..., n, by (21), (2.22), (2.24) and (2.25)

b
(n+1)
j,k =

Ak,j
|An+1|

=
(Bk,j +

∑n−1
m=1

∑n−1
l=1 (−1)j+kd

(k,j)
m,l

a
(k,j)
l,n a

(k,j)
n,m

an+1,n+1
)

(|An|+
∑n

j=1

∑n
k=1(−1)n+1+jA

(n+1,j)
k,n

an+1,jak,n+1

an+1,n+1
)

→ b
(n)
j,k , as |pn+1| → ∂E.

(2.26)

Similarly, for j = 1, 2, ..., n,

An+1,j = (−1)n+1+j

n∑
k=1

A
(n+1,j)
k,n ak,n+1,

b
(n+1)
j,n+1 =

An+1,j

|An + 1|

=
(−1)n+1+j

∑n
k=1A

(n+1,j)
k,n ak,n+1

an+1,n+1(|An|+
∑n

j=1

∑n
k=1(−1)n+1+jA

(n+1,j)
k,n

an+1,jak,n+1

an+1,n+1
)

8



and for k = 1, 2, ..., n,

Ak,n+1 = (−1)n+1+k

n∑
j=1

A
(k,n+1)
n,j an+1,j,

b
(n+1)
n+1,k =

Ak,n+1

|An + 1|

=
(−1)n+1+k

∑n
j=1A

(k,n+1)
n,j an+1,j

an+1,n+1(|An|+
∑n

j=1

∑n
k=1(−1)n+1+jA

(n+1,j)
k,n

an+1,jak,n+1

an+1,n+1
)

and

An+1,n+1 = |An|,

b
(n+1)
n+1,n+1 =

|An|
|An+1|

=
|An|

an+1,n+1(|An|+
∑n

j=1

∑n
k=1(−1)n+1+jA

(n+1,j)
k,n

an+1,jak,n+1

an+1,n+1
)
.

Finally, from (2.21),

||f − f ∗An+1
|| = ||f ||2 − Fn+1A

−1
n+1F

T
n+1

= ||f ||2 −
n+1∑
k=1

〈f, K̃(·, pk)〉
n+1∑
j=1

〈f, K̃(·, pj)〉b
(n+1)
j,k

= ||f ||2 −
n∑
k=1

〈f, K̃(·, pk)〉
n∑
j=1

〈f, K̃(·, pj)〉b
(n+1)
j,k

− 〈f, K̃(·, pn+1)〉
n+1∑
j=1

〈f, K̃(·, pj)〉b
(n+1)
j,n+1 − 〈f, K̃(·, pn+1)〉

n∑
k=1

〈f, K̃(·, pk)〉b
(n+1)
n+1,k.

(2.27)

By (2.26), when pn+1 → ∂E, the second term of the third equality of (2.27) tends to∑n
k=1〈f, K̃(·, pk)〉

∑n
j=1 〈f, K̃(·, pj)〉b

(n)
j,k = FnA

−1
n F T

n . According to (2.18) and (2.19), the last
two terms of the third equality of (2.27) tend to 0 when pn+1 → ∂E.
Therefore,

lim
pn+1→∂E

||f − f ∗An+1
|| = ||f − f ∗An||.

2

Given a sequence of points {pk}n+1
k=1 , we call the property

lim
pn+1→∂E

|〈f, K̃(·, pn+1)〉|
||K̃(·, pn+1)||

= 0

9



the “boundary vanishing condition (BVC).” Since in Lemma 2.1 we consider the case that
{p1, ..., pn} are fixed, the BVC is then reduced to

lim
pn+1→∂E

|〈f,K(·, pn+1)〉|
||K(·, pn+1)||

= 0. (2.28)

Note that pn+1 must be different from {p1, ..., pn} when pn+1 → ∂E. We call (2.28) the weak
BVC. Thus, under the assumption of Lemma 2.1, the conditions (2.18) and (2.19) follows
from the weak BVC. In some HK(E), we can indeed show that the BVC holds.

Under the (weak) BVC assumption we have the selection principle (2.17) that implies the
convergence of f ∗An , as given in

Theorem 2.2 Suppose that all elements of {pj}∞j=1 are selected under the principle (2.17).
For f ∈ H = HK(E), we have

lim
n→∞

||f − f ∗An|| = 0. (2.29)

Proof: By (2.15) and the Riesz-Fischer theorem, there exists f ∗A∞ ∈ HK(E) such that

lim
n→∞

||f ∗An − f
∗
A∞|| = 0. (2.30)

Suppose that

g = f − f ∗A∞ (2.31)

and
||g|| = ||f − f ∗A∞|| 6= 0.

We must have b 6∈ {pj}∞j=1 such that

|g(b)| = δ0 > 0. (2.32)

On one hand,

δ0 = |g(b)| = |f(b)− f ∗A∞(b)| ≤ |f(b)− f ∗An(b)|+ |f ∗A∞(b)− f ∗An(b)|. (2.33)

By (2.30), there exists N1 such that n > N1, the second term of (2.33)

|f ∗A∞(b)− f ∗An(b)| < δ0

2
.

Hence,

|f(b)− f ∗An(b)| > δ0

2
.

On the other hand, combining b 6∈ {pj}∞j=1 and (2.16), we have

f(b) = f ∗An,b(b), (2.34)
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where An,b is defined by (2.14) corresponding to (p1, ..., pn, b). By (2.17), we have

||f ||2 − ||f ∗An,b ||
2 = ||f − f ∗An,b||

2 ≥ ||f − f ∗An+1
||2 = ||f ||2 − ||f ∗An+1

||2. (2.35)

Hence there exists N2 such that n > N2,

|f(b)− f ∗An(b)| = |f ∗An,b(b)− f
∗
An(b)|

≤ ||f ∗An,b − f
∗
An||||K(z, b)||,

≤ L(
√
||f ∗An,b||2 − ||f

∗
An
||2),

≤ L(
√
||f ∗An+1

||2 − ||f ∗An||2)

≤ L||f ∗An+1
− f ∗An||

<
δ0

2
,

(2.36)

where L depends on b. If n > max{N1, N2}, then we arrive a contradiction. This proves the
theorem. 2

From now on, when performing AMUCD to a particular HK(E) what we need to verify
is the BVC.

In the next section, we are concerned with AMUCD on the RKHSs H2(D) and W (π
h
) that

requires verifying their respective BVCs. Indeed, it is not so obvious that the BVC holds in
W (π

h
). For W (π

h
), we, instead, verify the weak BVC that turns to be also sufficient.

Remark
(1) Notice that one can also obtain the result given in Lemma 2.1 by using formula (2.12).

We refer the interested readers to [7, Section 3].
(2) We also conclude that AMUCD is identical with P-OGA. Here we briefly introduce

the idea of P-OGA with the complete dictionary that is the collection of all the directional
derivatives of the reproducing kernels of HK(E). Denote by D = {kp, p ∈ E} the complete
dictionary. P-OGA is formulated as follows. For f ∈ HK(E), let

f =
n−1∑
j=1

〈f, β̃j〉β̃j + fn,

where {β̃1, ..., β̃n−1} is the G-S orthogonalization of {kp1 , ..., kpn−1} in the generalized sense
and fn denotes the orthogonal remainder. We are to choose, for the fixed kp1 , ..., kpn−1 , a next
dictionary element kpn to satisfy

|〈fn, β̃n〉| = sup{|〈fn, β̃′n〉| : kp ∈ D},

where, with a general testing element kp ∈ D, {β̃1, ..., β̃n−1, β̃
′
n} is the G-S orthogonalization

of {kp1 , ..., kpn−1 , kp}. In [8] the convergence of P-OGA is proved, and the convergence rate
estimation is obtained. For more details about P-OGA, please see [8]. In §3 we give more
details about the relation between AMUCD and P-OGA in H2(D).
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(3) For a general RKHS HK the BVC may not hold. We note that the techniques used in
the proofs of Lemma 3.2 and Lemma 3.4 (see §3) do not work for proving the BVC in W (π

h
).

In order to implement AMUCD in general HK spaces other than H2(D), we have to verify
the related BVC case by case.

3 Applications

3.1 Hardy space

In this section, we are concerned with H2(D). We say f ∈ H2(D), if f is analytic on the
open unit disc D and

‖f‖2
H2(D) = sup

0≤r<1

1

2π

∫ 2π

0

|f(reit)|2dt <∞. (3.37)

H2(D) is a RKHS equipped with the inner product

〈f, g〉H2(D) =
1

2π

∫ 2π

0

f(eit)g(eit)dt, f, g ∈ H2(D),

where the values of f(eit) and g(eit) are, respectively, the non-tangential boundary limit
functions of f and g. Its reproducing kernel is the Szegö kernel

KS(z, w) =
1

1− wz
, w, z ∈ D.

One can immediately obtain the following result from Proposition 1.2.

Theorem 3.1 For any f ∈ H2(D) and distinct points {zj}nj=1 in the unit disc, we have

f ∗An(z) =
n∑
j=1

n∑
k=1

f(zj)ã
(n)
j,kKS(z, zk), (3.38)

where An is a matrix with entries aj,k = KS(zj, zk) = 1
1−zkzj

,

and if {zj}∞j=1 is a uniqueness set of H2(D),

f(z) = lim
n→∞

f ∗An(z) in H2(D). (3.39)

Notice that if {zj}∞j=1 satisfies
∞∑
j=1

(1− |zj|) =∞,

then {zj}∞j=1 is a uniqueness set of H2(D). The converse result also holds. Those are conse-
quences of the result that zeros of any f 6≡ 0 ∈ H2(D) satisfy

∞∑
j=1

(1− |zj|) <∞.
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Let {zk}nk=1 be a sequence of points in D, mk be the cardinality of the set {j : zj = zk, j <
k} for each zk and

K̃S(z, zk) =
dmk

d(z)mk
KS(·, z)|z=zk =

(mk + 1)!zmk

(1− zkz)mk+1
.

The minimization problem (2.17) for H2(D) is stated as follows

z∗n+1 := arg min
zn+1∈D

||f − f ∗An+1
||H2(D). (3.40)

As shown by Lemma 2.1 , to justify the existence of z∗n+1, we only need to verify the weak
BVC in H2(D). Indeed, we can show the BVC in H2(D).

Lemma 3.2 For any f ∈ H2(D) and any fixed integer k ≥ 0,

lim
|z|→1−

|〈f, wk

(1−zw)k+1 〉H2(D)|

|| wk

(1−zw)k+1 ||H2(D)

= 0. (3.41)

This result was proved in [14]. For the self-containing purpose, we include a proof.
Proof: In fact, (3.41) is a consequence of the following facts. Since polynomials is dense in
H2(D), for any f ∈ H2(D) and any ε > 0, there exists N such that

||f − PN ||H2(D) <
ε

2
,

where PN is a polynomial. We also know that

|| wk

(1− zw)k+1
||2H2(D) =

1

2π

∫ 2π

0

∣∣∣∣ eikt

(1− zeit)k+1

∣∣∣∣2 dt.
Due to Theorem 1.7 in [16], we have two constants c′ > 0 and C ′ > 0 such that

c′

(1− |z|2)2k+1
≤ || wk

(1− zw)k+1
||2H2(D) ≤

C ′

(1− |z|2)2k+1
.

Therefore, when |z| → 1−,

|〈f, wk

(1−zw)k+1 〉H2(D)|

|| wk

(1−zw)k+1 ||H2(D)

≤
|〈f − PN , wk

(1−zw)k+1 〉H2(D)|

|| wk

(1−zw)k+1 ||H2(D)

+
|〈PN , wk

(1−zw)k+1 〉H2(D)|

|| wk

(1−zw)k+1 ||H2(D)

≤ ||f − PN ||H2(D) +
P

(k)
N (z)

(k + 1)!

(1− |z|2)k+ 1
2

√
c′

≤ ε

2
+
ε

2
,

where P
(k)
N (z) is the k-th derivative of PN(z). 2

Notice that (2.19) in H2(D) is a special case of (3.41). Hence, the existence of z∗n+1 follows
from (3.41). In the following content, we give more details about the equivalence relation
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of AMUCD and P-OGA. Then, we can also conclude the convergence of f ∗An by using the
results given in [10].

We consider the modified Blaschke products corresponding to the sequence {zj}n+1
j=1

Bj(z) = B{z1,...,zj}(z) :=

√
1− |zj|2

1− z̄jz

j−1∏
k=1

z − zk
1− z̄kz

, j = 1, 2, · · · , n+ 1,

where {B1, ..., Bn+1} is generated by the G-S orthogonalization on {K̃S(·, z1), ..., K̃S(·, zn+1)}.
By (2.15), we have

f ∗An+1
=

n+1∑
j=1

〈f ∗An+1
, Bj〉H2(D)Bj =

n+1∑
j=1

〈f,Bj〉H2(D)Bj. (3.42)

Then, based on the orthonormal property of {B1, ..., Bn+1}, we have

||f − f ∗An+1
||2H2(D) = ||f ||2H2(D) −

n∑
j=1

|〈f,Bj〉H2(D)|2 − |〈f,Bn+1〉H2(D)|2.

Hence, (3.40) is equal to

z∗n+1 := arg max
zn+1∈D

|〈f,Bn+1〉H2(D)|

= arg max
zn+1∈D

√
1− |zn+1|2|gn+1(zn+1)|,

(3.43)

where gn+1(z) = (f −
∑n

k=1〈f,Bk〉H2(D)Bk)
∏n

l=1
1−z̄lz
z−zl

and gn+1 ∈ H2(D). The existence of

z∗n+1 in (3.43) and the convergence of f ∗An have been proved by Qian et al in [10, 9]. Indeed,
the study in this paper is originally motivated by the above observations in H2(D).

3.2 Paley-Wiener space

In this section, we consider the following integral transform, for F ∈ L2([−π
h
, π
h
]), (h > 0),

f(z) =
1

2π

∫ π/h

−π/h
F (t)e−iztdt. (3.44)

The image space of (3.44) is called the Paley-Wiener space W
(
π
h

)
comprised of all analytic

functions of exponential type satisfying, for some constant C,

|f(z)| ≤ C exp

(
π|z|
h

)
, |z| → ∞

and

||f ||2L2(−∞,∞) =

∫
R
|f(x)|2dx <∞.

W
(
π
h

)
is a RKHS, and its reproducing kernel is

Kh(z, w) =
sin π

h
(z − w)

π(z − w)
. (3.45)
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For more information on properties of W
(
π
h

)
, please see e.g. [4, 5, 15].

Immediately, we have

Theorem 3.3 For any f ∈ W
(
π
h

)
and n distinct points {zj}nj=1 in the complex plane, we

have

f ∗An(z) =
n∑
j=1

n∑
k=1

f(zj)ã
(n)
j,kKh(z, zk), (3.46)

where An is a matrix with entries aj,k = Kh(zj, zk) =
sin π

h
(zj−zk)

π(zj−zk)
,

and if {zj}∞j=1 is a uniqueness set of W
(
π
h

)
, then

f(z) = lim
n→∞

f ∗An(z). (3.47)

Notice that Theorem 3.3 is the Shannon sampling theorem if {zj}∞j=1 is replaced by {jh}∞j=−∞.

In fact, {jh}∞j=−∞ is a uniqueness set of W
(
π
h

)
(see e.g. [15]).

In fact, we do not know whether the BVC holds in W (π
h
). However, as mentioned previ-

ously, the weak BVC is sufficient for our study. Without loss of generality, we take h = 1.
The minimization problem is stated as follows

z∗n+1 : = arg min
zn+1∈C

||f − f ∗An+1
||L2(−∞,∞). (3.48)

The following lemma shows that the weak BVC holds in W (π).

Lemma 3.4 If f ∈ W (π), then

lim
|z|→∞

|f(z)|√
sinπ(z−z)
π(z−z)

= lim
|z|→∞

|f(z)|√
e2πy−e−2πy

4πy

= 0. (3.49)

Proof: Since f ∈ W (π), there exists F ∈ L2([−π, π]) such that

f(z) =
1

2π

∫ π

−π
F (t)e−iztdt, z = x+ iy,

Assume |y| → ∞ as |z| → ∞. In this situation, we first prove the above result under the
condition F ∈ Lp([−π, π]), 2 < p ≤ ∞.
For q satisfying 1

p
+ 1

q
= 1, by Hölder’s inequality, we have

|f(z)| ≤ 1

2π

∫ π

−π
|F (t)|eytdt

≤ 1

2π
(

∫ π

−π
|F (t)|pdt)

1
p (

∫ π

−π
eqytdt)

1
q

≤ 1

2π
(

∫ π

−π
|F (t)|pdt)

1
p (
eπqy − e−πqy

qy
)
1
q .
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Hence,

|f(z)|√
e2πy−e−2πy

4πy

≤ 1

2π
(

∫ π

−π
|F (t)|pdt)

1
p

( e
πqy−e−πqy

qy
)
1
q√

e2πy−e−2πy

4πy

.

Then, we only need to prove

lim
|y|→∞

( e
πqy−e−πqy

qy
)
2
q

e2πy−e−2πy

4πy

= 0. (3.50)

When y → +∞, we have

( e
πqy−e−πqy

qy
)
2
q

e2πy−e−2πy

4πy

≤ 4πy

(qy)
2
q

(eπqy)
2
q

e2πy − e−2πy

=
4π

(q)
2
q y

2
q
−1

e2πy

e2πy − e−2πy

→ 0,

where 1 ≤ q < 2. Therefore, (3.50) follows. Similarly, for y → −∞, we have (3.50). This
indicates that we have proved (3.49) under the condition F ∈ Lp([−π, π]), 2 < p ≤ ∞.
For F ∈ L2([−π, π]), we first note that Lp([−π, π])(2 < p ≤ ∞) is dense in L2([−π, π]). In
other words, for F ∈ L2([−π, π]) and any ε > 0, there exists G ∈ Lp([−π, π]), 2 < p ≤ ∞,
such that

||F −G||L2([−π,π]) < πε.

Then, for F ∈ L2([−π, π]), when |y| → ∞,

|f(z)|√
e2πy−e−2πy

4πy

≤
1

2π

∫ π
−π |F (t)−G(t)|eytdt√

e2πy−e−2πy

4πy

+
1

2π

∫ π
−π |G(t)|eytdt√
e2πy−e−2πy

4πy

≤
1

2π
||F −G||L2([−π,π])||eyt||L2([−π,π])

||eyt||L2([−π,π])

+
1

2π
||G||Lp([−π,π])||eyt||Lq([−π,π])

||eyt||L2([−π,π])

<
ε

2
+
ε

2
,

where 1
p

+ 1
q

= 1. In the next step, we prove that (3.49) is still true in the situation that

|y| ≤ y0 <∞ as |z| → ∞.
In fact, the dominator of (3.49) is bounded in this situation. We only need to prove

lim
|x|→∞

|f(x+ iy)| = 0.

Since span{ sinπ(z−j)
π(z−j) ; j ∈ Z} is dense in W (π), we simplify the remaining discussion. Specifi-

cally, we need to prove, for any fixed j ∈ Z,

lim
|x|→∞

∣∣∣∣sinπ(z − j)
π(z − j)

∣∣∣∣ = 0. (3.51)
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By directly calculating, |sin π(z − j)| is bounded, when |y| ≤ y0 <∞. Then we have (3.51).
In the last step, we prove that (3.49) without any restriction. Indeed, we can conclude this
by using the previous two conclusions i.e.

lim
|y|→∞

|f(z)|√
sinπ(z−z)
π(z−z)

= 0, uniformly in x ∈ R (3.52)

and

lim
|x|→∞

|f(z)|√
sinπ(z−z)
π(z−z)

= 0, for |y| ≤ y0 <∞. (3.53)

We want to show

lim
|z|→∞

|f(z)|√
sinπ(z−z)
π(z−z)

= 0.

Thus means for any given ε > 0, we need to find M such that for |z| > M

|f(z)|√
sinπ(z−z)
π(z−z)

< ε.

By (3.52) (note that (3.52) is uniformly in x) we can choose M1 such that for |y| > M1

|f(z)|√
sinπ(z−z)
π(z−z)

< ε.

For M1 being fixed and |y| ≤ M1, by (3.53) we can find M2 large enough such that for
|x| > M2

|f(z)|√
sinπ(z−z)
π(z−z)

< ε.

Combining the above facts, we have the following conclusion. For any ε > 0, we can find
M2 = M2

1 +M2
2 such that for |z| > M

|f(z)|√
sinπ(z−z)
π(z−z)

< ε.

Hence

lim
|z|→∞

|f(z)|√
sinπ(z−z)
π(z−z)

= 0.

2
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