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a b s t r a c t

We introduce a one-parameter family of transforms, U t
(m), t > 0, from the Hilbert space of

Clifford algebra valued square integrable functions on the m–dimensional sphere, L2(Sm,

dσm)⊗Cm+1, to the Hilbert spaces,ML2(Rm+1
\{0}, dµt ), of solutions of the EuclideanDirac

equation on Rm+1
\{0} which are square integrable with respect to appropriate measures,

dµt . We prove that these transforms are unitary isomorphisms of the Hilbert spaces and
are extensions of the Segal–Bargman coherent state transform, U(1) : L2(S1, dσ1) −→

HL2(C\{0}, dµ), to higher dimensional spheres in the context of Clifford analysis. In Clifford
analysis it is natural to replace the analytic continuation from Sm to Sm

C as in (Hall, 1994;
Stenzel, 1999; Hall and Mitchell, 2002) by the Cauchy–Kowalewski extension from Sm to
Rm+1

\{0}. One then obtains a unitary isomorphism from an L2–Hilbert space to a Hilbert
space of solutions of the Dirac equation, that is to a Hilbert space of monogenic functions.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In this work, we continue to explore the extensions of coherent state transforms to the context of Clifford analysis started
in [1–4]. In [3], an extension of the coherent state transform (CST) to unitarymaps from the spaces of L2 functions onM = Rm

and on the m–dimensional torus,M = Tm, to the spaces of square integrable monogenic functions on R × M was studied.
We consider the cases when M is an m–dimensional sphere, M = Sm, equipped with the SO(m + 1,R)–invariant metric

of unit radius. These cases are a priori more complicated than those studied before as the transform uses (for m > 1) the
Laplacian and the Dirac operators for the non–flat metrics on the spheres. We show that there is a unique SO(m + 1,R)
invariant measure on R × Sm ∼= Rm+1

\ {0} such that the natural Clifford CST (CCST) is unitary. This transform is factorized
into a contraction operator given by heat operator evolution at time t = 1 followed by Cauchy–Kowalewski (CK) extension,
which exactly compensates the contraction for our choice of measure on Rm+1

\ {0}. In the usual coherent state Segal–
Bargmann transforms [5–10], instead of the CK extension to a manifold with one more real dimension, one considers the
analytic continuation to a complexification of the initial manifold (playing the role of phase space of the system). The CCST
is of interest in Quantum Field Theory as it establishes natural unitary isomorphisms between Hilbert spaces of solutions
of the Dirac equation and one-particle Hilbert spaces in the Schrödinger representation. The standard CST, on the other
hand, studies the unitary equivalence of the Schrödinger representation with special Kähler representations with the wave
functions defined on the phase space.

In the Section 3.2 we consider a one-parameter family of CCST, using heat operator evolution at time t > 0 followed
by CK extension, and we show that, by changing the measure on Rm+1

\ {0} to a new Gaussian (in the coordinate log(|x|))
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measure dµt , these transforms are unitary. As t approaches 0 (so that the first factor in the transform is contracting less than
for higher values of t) the measures dµt become more concentrated around the radius |x| = 1 sphere and as t → 0, the
measure dµt converges to the measure

δ(y) dy dσm ,

where y = log(|x|), supported on Sm.

2. Clifford analysis

Let us briefly recall from [11–18], some definitions and results from Clifford analysis. Let Rm+1 denote the real Clifford
algebra with (m+ 1) generators, ej, j = 1, . . . ,m+ 1, identified with the canonical basis of Rm+1

⊂ Rm+1 and satisfying the
relations eiej + ej ei = −2δij. Let Cm+1 = Rm+1 ⊗ C. We have that Rm+1 = ⊕

m+1
k=1 R

k
m+1, where Rk

m+1 denotes the space of
k-vectors, defined by R0

m+1 = R and Rk
m+1 = spanR{eA : A ⊂ {1, . . . ,m + 1}, |A| = k}, where ei1...ik = ei1 . . . eik .

Notice also that R1 ∼= C and R2 ∼= H. The inner product in Rm+1 is defined by

⟨u, v⟩ =

(∑
A

uAeA,
∑
B

vBeB

)
=

∑
A

uAvA.

The Dirac operator is defined as

D =

m+1∑
j=1

ej ∂xj .

We have that D2
= −∆m+1.

Consider the subspace of Rm+1 of 1-vectors

{x =

m+1∑
j=1

xjej : x = (x1, . . . , xm) ∈ Rm+1
} ∼= Rm+1,

which we identify with Rm+1. Note that x2 = −|x|2 = −(x, x).
Recall that a continuously differentiable function f on an open domain O ⊂ Rm+1, with values on Cm+1, is called (left)

monogenic on O if it satisfies the Dirac equation (see, for example, [11,12,15])

Df (x) =

m+1∑
j=1

ej ∂xj f (x) = 0.

Form = 1, monogenic functions on R2 correspond to holomorphic functions of the complex variable x1 + e1e2 x2.
The Cauchy kernel,

E(x) =
x

|x|m+1 ,

is a monogenic function on Rm+1
\ {0}. In the spherical coordinates, r = ey = |x|, ξ =

x
|x| , the Dirac operator reads

D =
1
r

ξ

(
r∂r + Γξ

)
= e−yξ

(
∂y + Γξ

)
, (2.1)

where Γξ is the spherical Dirac operator,

Γξ = −ξ∂ξ = −

∑
i<j

eij
(
xi∂xj − xj∂xi

)
.

We see from (2.1) that the equation for monogenic functions in the spherical coordinates is, on Rm+1
\ {0}, equivalent to

D(f ) = 0 ⇔ ∂yf = −Γξ (f ) , r > 0. (2.2)

The Laplacian ∆x has the form

∆x = ∂2
r +

m
r

∂r +
1
r2

∆ξ ,

where ∆ξ is the Laplacian on the sphere (for the invariant metric). The relation between the spherical Dirac operator and
the spherical Laplace operator is (see e.g. [12], (0.16) and section II.1)

∆ξ =

(
(m − 1)I − Γξ

)
Γξ . (2.3)
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Let H(m + 1, k) denote the space of (Cm+1–valued) spherical harmonics of degree k. These are the eigenspaces of the self-
adjoint spherical Laplacian, ∆ξ ,

f ∈ H(m + 1, k)

∆ξ (f ) = −k(k + m − 1)f . (2.4)

The spaces H(m + 1, k) are a direct sum of eigenspaces of the self-adjoint spherical Dirac operator

H(m + 1, k) = M+(m + 1, k) ⊕ M−(m + 1, k − 1)

Γξ (Pk(f )) = −kPk(f ) (2.5)

Γξ (Ql(f )) = (l + m)Ql(f ) , f ∈ L2(Sm, dσm) ⊗ Cm+1,

where Pk,Ql, denote the orthogonal projections on the subspaces M+(m + 1, k) and M−(m + 1, l) of L2(Sm, dσm) ⊗ Cm+1.
The functions in M+(m + 1, k) and M−(m + 1, l) are in fact the restriction to Sm of (unique) monogenic functions

P̃k(f )(x) = rk Pk(f )
(

x
|x|

)
Q̃l(f )(x) = r−(l+m) Ql(f )

(
x
|x|

)
, f ∈ L2(Sm, dσm) ⊗ Cm+1, k, l ∈ Z≥0, (2.6)

where, for all f ∈ L2(Sm, dσm) ⊗ Cm+1, P̃k(f ) are monogenic homogeneous polynomials of degree k and Q̃l(f ) are monogenic
functions on Rm+1

\ {0}, homogeneous of degree −(l + m).

3. Clifford coherent state transforms on spheres

3.1. CCST on spheres and its unitarity

Definition 3.1. LetA(Sm) be the space of analytic Cm+1–valued functions on Sm with monogenic continuation to the whole
of Rm+1

\ {0}.

Remark 3.2. Let V denote the space of finite linear combinations of spherical monogenics,

V = spanC
{
Pk(f ),Ql(f ), k, l ∈ Z≥0, f ∈ L2(Sm, dσm) ⊗ Cm+1

}
.

We see from (2.6) that V ⊂ A(Sm). We will denote by Ṽ the space of CK extensions of elements of V toRm+1
\ {0} (see (2.6)),

Ṽ = spanC

{
P̃k(f ), Q̃l(f ), k, l ∈ Z≥0, f ∈ L2(Sm, dσm) ⊗ Cm+1

}
. ♢ (3.1)

In analogywith the casem = 1 and also with the ‘‘usual CST on spheres’’, introduced in [9,10], wewill introduce the CCST

U(m) : L2(Sm, dσm) ⊗ Cm+1 −→ ML2(Rm+1
\ {0}, ρ̃m dm+1x)

U(m) = CKSm ◦ e∆ξ /2
= e−yΓξ

◦ e∆ξ /2 (3.2)

U(m)(f )(x) =

∫
Sm

K̃1(x, ξ ) f (ξ ) dσm ,

where CKSm : A(Sm) −→ M(Rm+1
\ {0}) denotes the CK extension, K1 is the heat kernel on Sm at time t = 1 and K̃1(·, ξ )

denotes the CK extension of K1 to Rm+1
\ {0} in its first variable (see Lemma 3.5, (3.8) and (3.9)). Our goal is to find (whether

there exists) a function ρ̃m on Rm+1
\ {0},

ρ̃m(x) = ρm(y), y = log(|x|)

which makes the (well defined) map in (3.2) unitary. For m = 1 there is a unique positive answer to the above question
given by

ρ1(y) =
1

√
π

e−y2−2y

so that

ρ̃1(x) =
1

√
π

e−log2(|x|)−2 log(|x|).

Our main result in the present paper is the following.
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Theorem 3.3. The map U(m) in (3.2) is a unitary isomorphism for

ρ̃m(x) =
e−

(m−1)2
4

√
π

e−log2(|x|)−2 log(|x|). (3.3)

Remark 3.4. It is remarkable that the only dependence on m of the corresponding function ρm(y) is in the constant

multiplicative factor, e−
(m−1)2

4 . ♢

Given the factorized form of U(m) in (3.2) we have the diagram

ML2(Rm+1
\ {0}, ρ̃m dm+1x)

L2(Sm, dσm) ⊗ Cm+1
↘ ↙

e
∆ξ /2

→→

U(m)

→→

A(Sm),

CKSm = e
−yΓξ

↑↑

(3.4)

We divide the proof of Theorem 3.3 into several lemmas.

Lemma 3.5. Let f ∈ A(Sm) and consider its Dirac operator spectral decomposition or, equivalently, its decomposition in spherical
monogenics,

f =

∑
k≥0

Pk(f ) +

∑
k≥0

Qk(f ). (3.5)

Then its CK extension is given by

CKSm (f )(x) =

∑
k≥0

P̃k(f )(x) +

∑
k≥0

Q̃k(f )(x)

=

∑
k≥0

|x|k Pk(f )
(

x
|x|

)
+

∑
k≥0

|x|−(k+m) Qk(f )
(

x
|x|

)
= e−yΓξ (f ) = |x|−Γξ (f ). (3.6)

Proof. Since f ∈ A(Sm) the two first lines in the right hand side of (3.6) are the Laurent expansion of CKSm (f )(x) in spherical
monogenics (see [12], Theorem 1, p. 189), uniformly convergent on compact subsets ofRm+1

\ {0}. The third line in the right
hand side follows from (2.5) and the fact that Γξ is a self-adjoint operator. ■

Remark 3.6. We thus see that, for f ∈ A(Sm), the operator of CK extension to Rm+1
\ {0} is

CKSm = e−yΓξ ,

in agreement with (2.2) and (3.2). ♢

Lemma 3.7. Let f ∈ L2(Sm, dσm) ⊗ Cm+1 and consider its decomposition in spherical monogenics,

f =

∑
k≥0

Pk(f ) +

∑
k≥0

Qk(f ).

Then the map

U(m) : L2(Sm, dσm) ⊗ Cm+1 −→ M(Rm+1
\ {0})

U(m) = CKSm ◦ e∆ξ /2
= e−yΓξ

◦ e∆ξ /2
,

where M(Ω) denotes the space of monogenic functions on the open set Ω ⊂ Rm+1, is well defined and

U(m)(f )(x) = e−yΓξ
◦ e∆ξ /2(f )(x)

=

∑
k≥0

e−k(k+m−1)/2
|x|k Pk(f )

(
x
|x|

)
+

∑
k≥0

e−(k+1)(k+m)/2
|x|−(k+m) Qk(f )

(
x
|x|

)
=

∫
Sm

K̃1(x, ξ ) f (ξ ) dσm(ξ ), (3.7)

where K1 denotes the heat kernel on Sm at time t = 1 and K̃1 is the CK extension to Rm+1
\ {0} of K1 in its first variable.
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Proof. From (2.3), (2.4) and (2.1) we have

e∆ξ /2(f )(η) =

∑
k≥0

e−k(k+m−1)/2 Pk(f )(η) +

∑
k≥0

e−(k+1)(k+m)/2 Qk(f )(η)

=

∫
Sm

K1(η, ξ ) f (ξ ) dσm(ξ ).

From [12,18] we obtain

K1(η, ξ ) =

∑
k≥0

e−k(k+m−1)/2
(
C+

m+1,k(η, ξ ) + C−

m+1,k−1(η, ξ )
)

, (3.8)

where C−

m+1,−1 = 0,

C+

m+1,k(η, ξ ) =
1

1 − m

[
−(m + k − 1) C (m−1)/2

k (⟨η, ξ⟩) + (1 − m) C (m+1)/2
k−1 (⟨η, ξ⟩) η ∧ ξ

]
,

C−

m+1,k−1(η, ξ ) =
1

m − 1

[
k C (m−1)/2

k (⟨η, ξ⟩) + (1 − m) C (m+1)/2
k−1 (⟨η, ξ⟩) η ∧ ξ

]
, k ≥ 1,

η ∧ ξ =
∑

i<j(ηiξj − ηjξi)eij and Cν
k denotes the Gegenbauer polynomial of degree k associated with ν.

Now we prove that K1(·, ξ ) ∈ A(Sm) for every ξ ∈ Sm+1. From Lemma 3.5 and (3.8) we conclude that if K1(·, ξ ) has a CK
extension then its Laurent series is given by

K̃1(x, ξ ) = K̃+

1 (x, ξ ) + K̃−

1 (x, ξ ) (3.9)

=

∑
k≥0

e−k(k+m−1)/2
|x|k C+

m+1,k

(
x
|x|

, ξ

)
+

∑
k≥1

e−k(k+m−1)/2
|x|−(k+m−1) C−

m+1,k−1

(
x
|x|

, ξ

)
.

Let us now show that this series is uniformly convergent in all compact subsets of Rm+1
\ {0}. From the explicit expressions

for the degree k Gegenbauer polynomials (see e.g. [12], p. 182)

Cm/2
k (⟨η, ξ⟩) =

[k/2]∑
j=0

(−1)j2k−2j(m/2)k−j

j!(k − 2j)!
⟨η, ξ⟩

k−2j,

where (a)j = a(a + 1) · · · (a + j − 1). We see that

|Cm/2
k (⟨η, ξ⟩)| ≤

(m + 2k)!!
(m − 1)!!

[k/2]∑
j=0

2−j

j!(k − 2j)!
≤

(2k + m)!
(m − 1)!

, ∀η, ξ ∈ Sm.

Therefore we obtain that

|C+

m+1,k(η, ξ )| ≤
(2k + m − 1)!

(m − 1)!
(k + m − 1) +

(2k + m − 1)!
m!

m(m − 1)

=
(2k + m − 1)!

(m − 1)!
(k + 2m − 2) , ∀η, ξ ∈ Sm. (3.10)

Let s ∈ (0, 1). From the Stirling formula and (3.10) we conclude that there exists k0 ∈ N such that

|C+

m+1,k(η, ξ )| ≤ esk(k+m−1)/2 , ∀η, ξ ∈ Sm, ∀k > k0,

and therefore

e−k(k+m−1)/2
|C+

m+1,k

(
x
|x|

, ξ

)
| ≤ e−(1−s)k(k+m−1)/2, ∀η, ξ ∈ Sm, ∀k > k0.

Then the series,

K̃+

1 (x, ξ ) =

∑
k≥0

e−k(k+m−1)/2
|x|k C+

m+1,k

(
x
|x|

, ξ

)
,

is uniformly convergent on all compact subsets of Rm+1 and therefore its sum is monogenic on Rm+1 in the first variable.
To prove that the second series in (3.9) is uniformly convergent in compact subsets of Rm+1

\ {0} we use the fact that the
inversion is an isomorphism between M(Rm+1) and M0(Rm+1

\ {0}) (see section 1.6.5 of [12])

f ↦→ If , If (x) =
x

|x|m+1 f
(

x
|x|2

)
.
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It is then equivalent to prove that the series(
(I ⊗ Id)(K̃−

1 )
)
(x, ξ ) =

x
|x|2

∑
k≥1

e−k(k+m−1)/2
|x|k C−

m+1,k−1

(
x
|x|

, ξ

)
,

is uniformly convergent on compact subsets of Rm+1. But this is a direct consequence of the following inequalities for
|C−

m+1,k−1(η, ξ )|, similar to the inequalities (3.10) for |C+

m+1,k(η, ξ )|,

|C−

m+1,k−1(η, ξ )| ≤
(2k + m − 1)!

(m − 1)!
(k + m − 1) , ∀η, ξ ∈ Sm . (3.11)

We have thus established that K̃1(·, ξ ) ∈ M(Rm+1
\ {0}), ∀ξ ∈ Sm with Laurent series given by (3.9). Analogously we can

show that K̃1(·, ·) ∈ C∞(Rm+1
\ {0} × Sm) ⊗ Cm+1.

From (3.10) and (3.11), we also obtain,

|Pk(f )(η)| =

⏐⏐⏐⏐∫
Sm

C+

m+1,k(η, ξ ) f (ξ ) dσm

⏐⏐⏐⏐ ≤
(2k + m − 1)!

(m − 1)!
(k + 2m − 2) ∥f ∥,

|Qk−1(f )(η)| =

⏐⏐⏐⏐∫
Sm

C−

m+1,k−1(η, ξ ) f (ξ ) dσm

⏐⏐⏐⏐ ≤
(2k + m − 1)!

(m − 1)!
(k + m − 1) ∥f ∥, ∀η ∈ Sm .

As in the case of K̃1(·, ξ ), these inequalities imply that, for every f ∈ L2(Sm, dσm)⊗Cm+1, the Laurent series for Um(f ) in (3.7)
is uniformly convergent on compact subsets of Rm+1

\ {0}. ■

Lemma 3.8. The map U(m) in (3.2) and (3.7) is an isometry for the measure factor ρ̃m given by (3.3).

Proof. Given the SO(m + 1,R)–invariance of the measures on Sm and on Rm+1
\ {0} in (3.2) and (3.3), so that (3.5) is an

orthogonal decomposition and so is (3.7), we see that to prove isometricity of U(m) it is sufficient to prove

∥U(m)(Pk(f ))∥ = ∥Pk(f )∥,

∥U(m)(Qk(f ))∥ = ∥Qk(f )∥, (3.12)

for all k ∈ Z≥0 and f ∈ L2(Sm, dσm) ⊗ Cm+1. We have

∥U(m)(Pk(f ))∥2
= e−k(k+m−1)

∫
∞

o
r2kρm(log(r))rmdr ∥Pk(f )∥2,

∥U(m)(Qk−1(f ))∥2
= e−k(k+m−1)

∫
∞

o
r−2(k−1+m)ρm(log(r))rmdr ∥Qk−1(f )∥2 ,

and therefore isometricity is equivalent to the following two infinite systems of equations setting constraints on the Laplace
transform of the function ρm(y). The system coming from the Pk is∫

R
ρm(y) ey(2k+m+1) dy = ek(k+m−1) , k ∈ Z≥0, (3.13)

and the system coming from the Qk is∫
R

ρm(y) e−y(2k+m−3) dy = ek(k+m−1) , k ∈ Z≥0. (3.14)

It is easy to verify that the function ρm corresponding to ρ̃m in (3.3)

ρm(y) =
e−

(m−1)2
4

√
π

e−y2−2y

satisfies both (3.13) and (3.14). ■

Remark 3.9. Notice that each of the two systems (3.13) and (3.14) determines ρm uniquely so that it is remarkable that they
both give the same solution. ♢

Proof. (of Theorem 3.3). From Lemmas 3.5, 3.7 and 3.8 we see that the only missing part is the surjectivity of U(m). But this
follows from the fact that the space Ṽ in (3.1) is dense, with respect to uniform convergence on compact subsets, in the space
ofmonogenic functions onRm+1

\{0} and therefore is also dense onML2(Rm+1
\{0}, ρ̃m dm+1x) since this has finitemeasure.

Since the image of an isometric map is closed and the image of U(m) contains Ṽ we conclude that U(m) is surjective. ■

As we mentioned in the introduction the mechanism for the unitarity of the CST, U(m), was its factorization into a
contraction given by heat operator evolution at time t = 1 followed by Cauchy–Kowalewski (CK) extension, which exactly
compensates the contraction, given our choice of measure on Rm+1

\ {0}.
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3.2. One-parameter family of unitary transforms

In the present sectionwewill consider a one-parameter family of transforms, using heat operator evolution at time t > 0
followed by CK extension.We show that, by changing themeasure onRm+1

\{0} to a newGaussian (in the coordinate log(|x|))
measure

dµt = ρ̃t
m dm+1x,

these transforms are unitary. Thus we consider the transforms

U t
(m) : L2(Sm, dσm) ⊗ Cm+1 −→ ML2(Rm+1

\ {0}, ρ̃t
m dm+1x)

U t
(m) = CKSm ◦ et∆ξ /2

= e−yΓξ
◦ et∆ξ /2 (3.15)

U t
(m)(f )(x) =

∫
Sm

K̃t (x, ξ ) f (ξ ) dσm ,

where K̃t (·, ξ ) denotes the CK extension of Kt to Rm+1
\ {0} in its first variable.

Our goal is to find (whether there exist), for every t > 0, a function ρ̃t
m on Rm+1

\ {0},

ρ̃t
m(x) = ρt

m(y),

which makes the (well defined) map in (3.15) unitary. Again, for m = 1, there is a unique positive answer to the above
question given by

ρt
1(y) =

1
√
tπ

e−
y2
t −2y

so that

ρ̃t
1(x) =

1
√
tπ

e−
1
t log

2(|x|)−2 log(|x|).

We then have

Theorem 3.10. The map U t
(m) in (3.15) is a unitary isomorphism for

ρ̃t
m(x) =

e−
t(m−1)2

4
√
tπ

e−
1
t log

2(|x|)−2 log(|x|). (3.16)

Given the factorized form of U t
(m) in (3.15) we have the diagram

ML2(Rm+1
\ {0}, ρ̃t

m dm+1x)

L2(Sm, dσm) ⊗ Cm+1
↘ ↙

e
t∆ξ /2

→→

U t
(m)

→→

A(Sm),

CKSm = e
−yΓξ

↑↑

(3.17)

Again we divide the proof of Theorem 3.10 into several lemmas. Notice, however, that Lemma 3.5 remains unchanged.

Lemma 3.11. Let f ∈ L2(Sm, dσm) ⊗ Cm+1 and consider its decomposition in spherical monogenics,

f =

∑
k≥0

Pk(f ) +

∑
k≥0

Qk(f ).

Then the map

U t
(m) : L2(Sm, dσm) ⊗ Cm+1 −→ M(Rm+1

\ {0})

U t
(m) = CKSm ◦ et∆ξ /2

= e−yΓξ
◦ et∆ξ /2

,

is well defined and

U t
(m)(f )(x) = e−yΓξ

◦ et∆ξ /2(f )(x)

=

∑
k≥0

e−tk(k+m−1)/2
|x|k Pk(f )

(
x
|x|

)
+

∑
k≥0

e−t(k+1)(k+m)/2
|x|−(k+m) Qk(f )

(
x
|x|

)
=

∫
Sm

K̃t (x, ξ ) f (ξ ) dσm(ξ ), (3.18)

where K̃t is the CK extension to Rm+1
\ {0} of Kt in its first variable.
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Proof. The proof is identical to the proof of Lemma 3.7. The Gaussian form (in k) of the coefficients coming from et∆ξ /2 and
the inequalities (3.10), (3.11) again imply that K̃t (·, ξ ) and U t

(m)(f ) are monogenic on Rm+1
\ {0} and their Laurent series are

given by

K̃t (x, ξ ) = K̃+

t (x, ξ ) + K̃−

t (x, ξ ) (3.19)

=

∑
k≥0

e−tk(k+m−1)/2
|x|k C+

m+1,k

(
x
|x|

, ξ

)
+

∑
k≥1

e−tk(k+m−1)/2
|x|−(k+m−1) C−

m+1,k−1

(
x
|x|

, ξ

)
,

and by (3.18). ■

Lemma 3.12. The map U t
(m) in (3.15) and (3.18) is an isometry for the measure factor ρ̃t

m given by (3.16).

Proof. Given the SO(m+ 1,R)–invariance of the measures on Sm and on Rm+1
\ {0} in (3.15) and (3.16) we see that to prove

isometricity of U t
(m) it is sufficient to prove

∥U t
(m)(Pk(f ))∥ = ∥Pk(f )∥,

∥U t
(m)(Qk(f ))∥ = ∥Qk(f )∥, (3.20)

for all k ∈ Z≥0 and f ∈ L2(Sm, dσm) ⊗ Cm+1. Again, isometricity is equivalent to the following two infinite systems of
equations setting constraints on the Laplace transform of the functions ρt

m(y). The system coming from the Pk is∫
R

ρt
m(y) e

y(2k+m+1) dy = etk(k+m−1) , k ∈ Z≥0, (3.21)

and the system coming from the Qk is∫
R

ρt
m(y) e

−y(2k+m−3) dy = etk(k+m−1) , k ∈ Z≥0. (3.22)

It is easy to verify that the function ρt
m corresponding to ρ̃t

m in (3.16) satisfies both (3.21) and (3.22). ■

Proof. The proof of Theorem 3.10 is completed exactly as the proof of Theorem 3.3 so that we omit it here. ■
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