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One important problem in the theory of Hardy space is to find the best rational 
approximation of a given order to a function in the Hardy space H2 on the unit 
disk. It is equivalent to finding the best Blaschke form with free poles. The cyclic 
adaptive Fourier decomposition method is based on the grid search technique. Its 
approximative precision is limited by the grid spacing. This paper proposes two
enhanced methods of the cyclic adaptive Fourier decomposition. The proposed 
algorithms utilize the gradient descent optimization to tune the best pole-tuple 
on the mesh grids, reaching higher precision. Their performances are confirmed by 
several examples.

© 2019 Published by Elsevier Inc.

1. Introduction

Throughout the paper, we denote by D the open unit disc, and H2 = H2(D) the Hardy H2-space on D:

H2 = {f(z) =
∞∑
k=0

ckz
k :

∞∑
k=0

|ck|2 < ∞},

which is equipped with the inner product
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〈f, g〉 = 1
2πi

˛

∂D

f(z)zg(z) dz = 1
2πi

˛

∂D

f(z)g(z)
z

dz, f, g ∈ H2,

and || · || = 〈·, ·〉 1
2 . Now we recall the classical definition of best n-rational approximation. Let p and q be 

polynomials, and all zeros of q be outside the closed unit disc. In this paper, we always assume that p and 
q are coprime so that all rational functions of the form of p/q are non-degenerate. The order of a rational 
function p/q is defined by ord(p/q) = max{deg(p), deg(q)}. A best n-rational approximation to f ∈ H2 is 
an n-order rational function p1/q1 that satisfies

‖f − p1/q1‖ ≤ ‖f − p/q‖, ord(p/q) ≤ n.

An important type of rational approximation is Blaschke form approximation, which is briefly introduced 
in the following: For a given n-vector a = [a1, · · · , an]T ∈ D

n, the n-Takenaka–Malmquist orthonormal 
rational function system {Bk}nk=1 is defined by

Bk(z) =
√

1 − |ak|2
1 − ākz

k−1∏
j=1

z − aj
1 − ājz

.

It is known that the linear subspace of H2 spanned by {Bk}nk=1 is invariant under the permutations of a. 
We denote it by L(A), where A is the n-tuple {a1, a2, · · · , an}, and call a function in L(A) n-Blaschke form. 
Then, the n-Blaschke form

fn =
n∑

k=1

〈f,Bk〉Bk (1)

is the orthogonal projection of f ∈ H2 to L(A). We define the squared H2-error of the projection (1) by

A(f ;A) = ‖f − fn‖2 = ‖f‖2 −
n∑

k=1

|〈f,Bk〉|2,

where n is the approximation degree and E(f, A) =
∑n

k=1 |〈f, Bk〉|2 the energy of f (at A). We say that 
B = B(n) = {b1, b2, · · · , bn} is a best n-tuple if it induces an n-best Blaschke form approximation to f in 
the sense that A(f, B) = minA⊂D A(f, A), which is equivalent to

B = arg max
A⊂D

E(f,A).

The existence of the minimum of A(f, A) and, correspondingly, the maximum of E(f, A), has long been 
proved ([10]). The relation between n-Blaschke form and n-order rational approximation was specified in [12]. 
Since the methods and algorithms for them are similar, in this paper we focus on only n-best Blaschke forms, 
whose properties are discussed in [7,9–12].

Rational approximation is of great significance in both pure and applied mathematics. As an example, 
in system identification, one wishes to approximate system functions by rational functions.

Although the study of the n-best rational approximation has a long history [1,6,7,10], practical algorithms 
for finding the approximation are still under research. In literature, Baratchart’s group in [2,4] proposed 
the method based on the second derivative test, treating the coefficients of the polynomial q as parameters. 
Qian’s group proposed the adaptive Fourier decomposition algorithm (AFD) [11] and its improvement cyclic 
AFD (CAFD) [12], which used the poles of the approximative rational function as parameters. In practice, 
a search scheme is created to find the best tuple over the rectangular grids ([11,12]).
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In a pole-tuple search algorithm, a main issue is how to ensure accuracy of the best tuple within an 
acceptable search time. Assume that the values f(eitj), 1 ≤ j ≤ J , are known, and the search is taken over 
an n-dimensional tensor product net Mn, where the one-dimensional rectangular ε-net M ⊂ D, has N ×M

nodes. Then an exhaustive search on Mn needs O((JNM)n) times of operations, which is unpractical when 
the approximation degree n is large. To reduce the computational cost, Qian introduced coordinate maximum
[12, Definition 1] and proved that it is identical with the best n-tuple if the target function satisfies a certain 
condition. Based on this fact, AFD suggests n rounds of coordinate-by-coordinate search on M. In each 
round, it finds the maximum for only a variable over M: b̂j = arg maxaj⊂M E(f, A), 1 ≤ j ≤ n. Therefore, 
AFD needs only O(JNM) operations, dramatically reducing the time used in an exhaustive search. The 
nature of AFD is finding §n§-best parameters not simultaneously, but sequentially. CAFD improves AFD by 
running several cycles of AFD till the coordinate maximum on Mn is obtained, which provides a practical 
algorithm for finding the best n-tuple. In CAFD the accuracy of the best n-tuple is significantly effected by 
the grid gap ε and the number J . In a certain sense, to improve the accuracy of CAFD, one must choose a 
smaller ε and a larger J , both of which would increase the time cost.

In this paper we apply complex gradient descent (CGD) method in the optimization of E(f, A). Theo-
retically, CGD method can exactly locate the best n tuple in Dn, breaking through the limitation of the 
grid gap. We initialize the CGD using either a randomly selected n-tuple or an n-tuple found by CAFD. 
Furthermore, we utilize the polar-type mesh grids in CAFD, which enables us to employ the fast Fourier 
transformation to accelerate the search. To clarify the notations, we denote by CAFDr and CAFDp the 
CAFD with rectangular mesh grids and polar-type mesh grids, respectively, and denoted by CAFD-CGD 
the CGD method with an initial n-tuple found by CAFDp.

The paper is organized as follows: In Section 2, we develop the complex gradient descent algorithm (CGD). 
In Section 3, we study the uniqueness of the best n-tuple, followed by the introduction of polar-type mesh 
grids and the algorithm of CAFD-CGD. In the last section, we give several illustrative examples to show 
the performance of the proposed methods and the comparison of CAFDr, CAFDp, CGD, and CAFD-CGD.

2. Complex gradient descent algorithm (CGD)

We first introduce some notions and notations. For z = [z1, · · · , zn]T ∈ C
n, its conjugate is denoted by 

z̄ = [z̄1, · · · , ̄zn]T ∈ C
n. Write z = x+iy, r = [x, y], and c = [z, ̄z]. Hence, a complex function f(z) : Cn → C, 

with a little abuse of notation, has the following different forms:

f(z) = f(z, z̄) = f(c) = f(x,y) = f(r).

As usual, we define the cogradient operator by ∂
∂z =

[
∂

∂z1
, ∂
∂z2

, · · · , ∂
∂zn

]
, the conjugate cogradient operator 

by ∂
∂z̄ =

[
∂

∂z̄1
, ∂
∂z̄2

, · · · , ∂
∂z̄n

]
, and the gradient of a differentiable function f(z, ̄z) by ∇zf =

(
∂f
∂z

)H

, where 

(·)H denotes the Hermitian transpose. We also denote by 〈a, b〉 = aHb the inner product of two complex 
n-vectors a, b ∈ C

n.
We now assume that a ∈ C

n is a local minimal-value point of a real-valued function g(z). Let a0 be the 
initial guess of a, which resides in a neighborhood of a. In a gradient descent method, a is found as the 
limit of the sequence of (ak):

ak+1 = ak − tk∇g(ak), k = 0, 1, 2, · · · , (2)

where ∇g in (2) is Lipschitz continuous with constant L > 0, i.e.,

‖∇g(a) −∇g(b)‖ ≤ L‖a − b‖.
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In this paper, we adopt backtracking line search, in which a fixed β, 0 < β < 1, is employed for formulating 
tk by tk = βtk−1, t1 = 1. Then the iteration is terminated when

g(ak − tk∇g(ak)) > g(ak) −
tk
2 ‖∇g(ak)‖2. (3)

We call the method above Complex Gradient Descent Method (CGD). The convergence theorems of the real 
gradient descent methods in [3,5,8] can also be applied for CGD.

In our algorithm, we set g = −E in (2), where E(a) = E(f, A) is the energy function of f at A. Besides, 
to guarantee that after each iterative step the new n-tuple ak is still in Dn, tk in (3) must satisfy

ak + tk∇E(ak) ∈ Nak
∩ D

n,

where Nak
= {z; ‖(ak)j − zj‖ < r, 1 ≤ j ≤ n}.

An effective formulation of the gradient −∇E (= ∇A) is essential for CGD. We establish it as follows: 
Write

ea(z) =
√

1 − |a|2
1 − āz

, a ∈ D,

and let P�, l = 1, · · · , n, be the permutation of the index set {1, 2, · · · , n} such that P�(n) = �. For a given 
analytic function f ∈ H2, we inductively define n functions fP�(j), 1 ≤ j ≤ n, by

fP�(1)(z) = f(z),

fP�(j)(z) =
1 − zāP�(j−1)

z − aP�(j−1)

(
fP�(j−1)(z) − 〈fP�(j−1), eaP�(j−1)〉eaP�(j−1)(z)

)
.

(4)

It was proved that all fP�(j)(z) are analytic in D [9]. Since the energy function E(a) is invariant under the 
permutation, it has n different representations:

E(a) =
n∑

j=1

(
1 − |aP�(j)|2

) ∣∣fP�(j)(aP�(j))
∣∣2 , � = 1, · · · , n. (5)

Note that the variable a� = aP�(n) occurs in only the last term of the sum in (5). Since fP�(n) is analytic, 
we have 

fP�(n)
∂z�

= 0, so that

∂(−E(a))
∂z�

= fP�(n)(a�)
(
a�fP�(n)(a�) − (1 − |a�|2)f ′

P�(n)(a�)
)
, � = 1, · · · , n, (6)

where f ′
P�(n)(z) can be computed by

f ′
P�(n)(z) = 1

2π

π̂

−π

fP�(n)(eiθ)e−iθ

(1 − ze−iθ)2 dθ.

Remark 1. The permutation P� is not unique. In practice, we choose P� = P �, where P is the 1-shift
permutation: P (1, 2, · · · , n) = (2, · · · , n, 1).

We present the pseudo code of CGD in Algorithm 1. Its inputs consist of the function f ∈ H2, an initial 
n-tuple a, a tolerance ε, and the parameter β in the backtracking line search. Here, the initial n-tuple a can 
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be chosen randomly or found by Algorithm 3 (CAFDp) in the next section. When the tolerance condition 
‖∇E(a)‖2 < ε holds, the algorithm terminates.

Remark 2. In fact, in practice (see Section 4) we set β = 1
||f ||2 if ||f ||2 > 1; or β = 1

2K ||f ||2 if ||f ||2 ≤ 1, 
where K is an integer such that 2K ||f ||2 > 1. Such a setting of β in this paper is just to ensure that ak ∈ D

n

at each step, but we note that this is not an optimal choice of β. We note that the parameters tk, which 
are essentially determined by β, greatly affect the accuracy and the effectiveness of Algorithm 1 (CGD).

Algorithm 1 CGD: Complex gradient descent algorithm for finding the best tuple.
Require: a, f, β, neighbor size r, and the tolerance ε.
1: Compute ∇E(a) using f and a.
2: while ‖∇E(a)‖2 > ε do
3: Find s1 > 0, s2 > 0 such that ‖a + s1∇E(a)‖∞ = 1 and ‖s2∇E(a)‖∞ = r. Set s = min(s1, s2).
4: Compute c = a + s∇E(a).
5: while E(c) < E(a) + s

2‖∇E(a))‖2 do
6: Update s: s = βs.
7: Update c: c = a + s∇E(a).
8: end while
9: Update a: a = c.

10: Re-compute ∇E(a).
11: end while
12: Set the output: b = a.
Ensure: b

3. CAFD on a polar mesh grid

A main difficulty for best n-tuple search algorithms is that the energy function E(a) lacks the uniqueness 
of critical points. Therefore, a coordinate maximum of E(a) is not necessarily a global one. Besides, lack of 
the uniqueness of the critical points discourages the approach of globally convex optimization.

Example 3.1. Let f(z) = zk, k ∈ N. We consider its Blaschke-form approximation of degree 1. By (5), the 
error function A(a) has the form of

‖f‖2 − (1 − |a|2)|f(a)|2 = 1 − (1 − |a|2)|a|2k,

which reaches the global minimum when |a| =
√

k
k+1 .

The example shows that, when the approximation degree is one, the global minimum may occur on a 
manifold.

When the approximation degree n > 1, due to the invariance of the energy function E(z) under the 
permutations of z, E(z) reaches its global maximum at least at n! distinct points in Dn, of which each is 
a permutation of another one. This fact totally denies the uniqueness of the n-best tuple. When n > 1, we 
have the following result on the set of best n-tuples.

Theorem 1. When n > 1, the set of best n-tuples of the Blaschke-form approximation of degree n for a 
function f ∈ H2 cannot contain a continuous curve in Dn.

Proof. Denote by S the set of the best n-tuples of the approximation. Then ∇E(a) = 0 for any a ∈ S. 
By (6), ∂E(a)

∂zk
= 0 if and only if either fPk(n)(ak) = 0, or

akfPk(n)(ak) − (1 − |ak|2)f ′
Pk(n)(ak) = 0. (7)

By (5), E(a) does not have the maximum value when fPk(n)(ak) = 0. Therefore, if a ∈ S, (7) must hold for 
each k.
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Assume there is a continuous curve Γ ⊂ S. Denote by Γk the projection of Γ on the k-th coordinate 
(complex) plane. Then at least one Γk is a continuous curve in D. Assume k = n and Pn = I. Then by (7),

anfn(an) − (1 − |an|2)f ′
n(an) = 0, ∀an ∈ Γn.

It follows that

zf ′
n(z)

fn(z) = |z|2
1 − |z|2 , ∀z ∈ Γn.

Hence, g(z) = zf ′
n(z)

fn(z) is real-valued and has no poles on Γn. Therefore, g(z) is analytic and g(z) = c on O, 
where O is a connected domain with Γn ⊂ O. It follows that fn(z) = rzc on D. However, by the formula 
(4), fn(z) has at least n distinct zeros in D, which leads to a contradiction. The proof is complete. �

According to Theorem 1, we make the following conjecture:

Conjecture 1. When n > 1, the energy function E(z) in (5) has exactly n! best n-tuples, i.e., all of its best 
n-tuples are permutations of a single point in Dn.

Assume the conjecture holds. By the similar argument given in the proof of [12, Corollary 4], we can 
confirm that a coordinate maximum point for E(z) is also a global maximum point. In this case, on given 
grids, we can employ CAFD to find an n-tuple, which is nearest to a best n-tuple.

Considering the geometric structure of the unit disk, we suggest making the CAFD search over a polar 
grid set.

3.1. Fast evaluation algorithm (FEVAL)

Definition 1. Let M > 1 and N > 1 be two positive integers, and ε = 1
M , δ = 1

N . A set of polar ε–δ grids 
on D is the node set

G = {z; z = mεe2nδπi, 1 ≤ m < M, 1 ≤ n ≤ N}.

To find an initial n-tuple for CAFD-CGD algorithm, we employ CAFDp, which is carried out over polar 
mesh grids.

Evaluating f�(z) in (5), (which needs the evaluations of 〈f�, ez〉 in (4)) for all z in a mesh grid set 
costs most time in CAFD. For instance, over an N ×M rectangular mesh grid set M, we need O(JNM)
operations for the evaluations assuming the sample values f(eitj ), 1 ≤ j ≤ J , are given. Adopting Fast 
Fourier Transform (FFT), the following FEVAL algorithm estimates the evaluations over a polar mesh 
grids set G using only O(NM logN) operations for J = N . Recall that the Fourier coefficients are defined 
as

f̂(n) = 1
2π

π̂

−π

f(eit)e−int dt, f ∈ H2.

For f ∈ H2 and z = reit, 0 < r < 1, by the definition of H2 we have

〈f, ez〉 =
√

1 − r2f(z) =
√

1 − r2
∞∑

rkf̂(k)eikt. (8)

k=0
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For an infinite sequence c = (c0, c1, · · · , ck, · · · ) ∈ �2, we define the scaling operator Rr : �2 → �2 : d =
Rr(c), where dk = rkck, k = 0, 1, 2, · · · . We also denote by F : H2 → �2: F(f(eit)) =

(
f̂(k)

)∞

k=0
the discrete 

Fourier Transform. Then its inverse F−1 has the form F−1(f̂) =
∑∞

k=0 f̂(k)eikt = f(eit). Thus, we can write 
f(z) as f(reit) = F−1 ◦Rr ◦ F(f(eit)).

Based on (8), we present the pseudo code of FEVAL in Algorithm 2, where f = [f1, · · · , fN ]T is the 
vector of sample values of f ∈ H2 at T = {t1, · · · , tN}, tj = e

2jπi
N ; F (m, n) ≈ 〈f, ez〉, z = (mε)e 2nπi

N ∈ G; 
and F = [F (m, n)]M,N

m,n=1.

Algorithm 2 FEVAL: Evaluating 〈f, ez〉 over the mesh grid set G.
Require: M, N, ε and f .
1: Initialization: Compute f̂(0) = FFT(f) and scale it to f̂(1) = Rε(f̂(0)).
2: Output the first row of Fe: F (1, :) =

√
1 − ε2IFFT(f̂(1)).

3: for m = 2 : M do
4: Compute the Fourier coefficient sequence on the m-th circle: f̂(m) = Rmε(f̂(1)).
5: Output the m-th row of Fe: F (m, :) =

√
1 − m2ε2IFFT(f̂(m)).

6: end for
Ensure: F

3.2. CAFDp

In CAFDp, the search starts from a randomly chosen n-vector a ∈ Gn. Fixing a1, · · · , an−1, the algorithm 
first finds the maximal-value point ãn for |〈fn, ez〉| over the grid set G. Then, after an is replaced by ãn and 
a is permuted by the 1-shift permutation, the search process above will be repeated till no replacement can 
be made. We present CAFDp in the following:

Algorithm 3 CAFDp: CAFDp for finding the best tuple.
Require: a, f, ε, δ, and the tolerance η.
1: Create the polar-type (ε, δ)-grid set G on D.
2: Randomly select a = [a1, · · · , an] ∈ D

n as the starting n-tuple for the algorithm.
3: Create the function fn and compute the partial energy V = |〈fn, ean

〉|.
4: Initialize parameter for WHILE loop and set the WHILE-LOOP light s = 1.
5: while s �= 0 do
6: Reset s = 0.
7: for j = 1 → n do
8: Compute Vt = maxz∈G |〈fn, ez〉|, at = arg maxz∈G |〈fn, ez〉|.
9: if Vt > V + η then

10: Update: an = at, V = Vt, s = s + 1.
11: end if
12: Permute a using a = Pa = [an, a1, · · · , an−1].
13: Update fn based on the new a.
14: Update V = |〈fn, ean

〉|.
15: end for
16: end while
Ensure: a

In Algorithm 3, the inputs consist of a function f ∈ H2, a randomly selected n-tuple a ∈ D
n, two 

parameters ε > 0 and δ > 0 for polar grid set G, and a tolerance η > 0. It outputs an n-tuple.

4. Illustrative examples

In this section, we illustrate the accuracy and effectiveness of CGD and CAFD-CGD algorithms in 
approximating the functions in H2 and in recovering the tuple of a Blaschke form. In the experiments we 
compare the four methods: CAFDr, CAFDp, CGD, and CAFD-CGD.

For making fair comparisons, we sample the functions at J equidistant points on the unit circle for all 
experiments, where J would be respectively equal to 26, 27, 28 and 29. Moreover, we use the same randomly 
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Fig. 1. Real parts of 1 + τ2 + τ4 + 1/(3 + τ2), cos τ2, cos 6τ2

2+τ2 .

Table 1
Comparison of CAFDr, CAFDp, CGD and CAFD-CGD in approximation (Example 4.1).

Sample 26 (64) 27 (128) 28 (256) 29 (512)
Err Ord Err Ord Err Ord Err Ord

1 + τ2 + τ4 + 1
3+τ2

CAFDr 8.0 × 10−4 5 6.8 × 10−4 5 6.9 × 10−4 5 7.0 × 10−4 5
CAFDp 0.0119 5 0.0073 5 0.0034 5 0.0039 5
CGD 6.9 × 10−7 5 7.0 × 10−7 5 7.0 × 10−7 5 7.1 × 10−7 5
CAFD-CGD 1.6 × 10−6 5 8.8 × 10−7 5 1.3 × 10−6 5 1.5 × 10−6 5

cos τ2

CAFDr 9.5 × 10−4 5 0.0011 5 0.0011 5 0.0011 5
CAFDp 0.0016 5 0.0015 5 8.8 × 10−4 5 0.0013 5
CGD 3.5 × 10−6 5 3.5 × 10−6 5 3.4 × 10−6 5 3.4 × 10−6 5
CAFD-CGD 3.5 × 10−6 5 3.5 × 10−6 5 3.5 × 10−6 5 3.4 × 10−6 5

cos 6τ2

(2+τ2)
CAFDr 0.0121 14 0.0024 14 0.0019 14 0.0019 14
CAFDp 0.0065 14 0.0056 14 0.0034 14 0.0050 14
CGD 0.0063 14 3.8 × 10−5 14 3.6 × 10−5 14 3.6 × 10−5 14
CAFD-CGD 0.0072 14 3.5 × 10−5 14 3.5 × 10−5 14 3.3 × 10−5 14

selected initial n-tuple in each experiment for all the methods. In CGD, β is set as in Remark 2. In CAFDp, 
we set ε = 0.033 and δ = 1

J , which produce Jε nodes on the polar mesh grid set. In CAFDr, we set the grid 
gap to 0.02, which produces 7089 nodes on the rectangular mesh grid set.

To our experience, usually the accuracies of CAFDr and CAFDp could not be improved significantly 
even smaller grip gaps are used. Note that we apply only CAFDp to find an initial tuple in our CAFD-CGD 
algorithm. We also note that the step size tk in (2) is crucial for accuracy and effectiveness of CGD and 
CAFD-CGD.

For convenience, in all examples we write τ = eit, where t is equidistantly sampled on [−π, π).

4.1. Approximating functions in H2

In this subsection, we illustrate an example in approximating functions in H2. The graphs show only the 
real parts of the complex-valued functions.

Example 4.1. In this example, we consider three functions: f1(τ) = 1 + τ2 + τ4 + 1/(3 + τ2), f2(τ) = cos τ2

and f3(τ) = cos 6τ2

2+τ2 , where we use 5-order, 5-order and 14-order to approximate them, respectively. The 
results are shown in Fig. 1, and the comparison is given in Table 1. In all cases, the performances of CGD 
and CAFD-CGD are better than those of CAFDr and CAFDp. As the number of samples increases, the 
accuracies of all methods are not significantly improves.
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Table 2
Comparison of CAFDr, CGD and CAFD-CGD in approximation and tuple-distance (f4). “Err” is the L2-relative error, and 
“TDis” is the tuple distance.

Samples 26 (64) 27 (128) 28 (256) 29 (512)
Err TDis Err TDis Err TDis Err TDis

CAFDr 0.1292 1.3426 0.0522 1.0725 0.0022 0.2128 0.0022 0.2128
CGD 0.2463 1.5678 0.1017 1.3207 1.1 × 10−8 0.0010 7.0 × 10−11 0.0001
CAFD-CGD 0.0433 0.8920 0.0592 0.8036 1.1 × 10−8 0.0010 1.6 × 10−8 0.0001

4.2. Recovering tuple of Blaschke form

In this subsection, we recover n-tuple b = [b1, · · · , bn] of the n-Blaschke form

f(τ) =
n∑

k=1

ckBb1,··· ,bk(τ). (9)

When b is recovered, the coefficient vector c = [c1, · · · , cn] in (9) can be computed by (1). To recover an 
n-tuple, the approximation degree has to be n too. Because we only input a finite number of values of f(τ)
on the unit circle in a numerical algorithm, its output tuple will be deviated with recovering errors. We 
measure such an error by the following tuple distance, which is defined as follows: Let P be the set of all 
permutations on a vector u = [u1, · · · , un]. The distance between two n-tuples u and v in Dn is

d(u,v) = min
P∈P

‖Pu − v‖.

Because we employ CAFDp to initialize the tuple of CAFD-CGD only, we exclude it in the algorithm 
comparisons in this subsection.

Example 4.2. In the following, we give the experimental results of a Blaschke form functions f4. The results 
of f4 are given as follows. Note that f4 is the 7-Blaschke form as given in (9), where

b = [−0.3424 + 0.7947i, 0.6862 + 0.0548i,−0.0462 − 0.7202i, 0.8778 + 0.0707i, 0.7157 + 0.4333i,

0.6468 − 0.1387i,−0.3625 + 0.7803i].

c = [0.5405 − 0.5808i,−1.4449 + 0.8751i,−0.9677 + 1.3954i, 0.2021 + 0.3210i,−0.3479 + 1.6234i,

1.2901 + 1.0624i, 1.3412 + 0.2141i].

The initial guess 7-tuple for this example is chosen at random:

a0 = [−0.0341 + 0.3272i, 0.1736 + 0.8756i, 0.2296 − 0.3632i,−0.3373 − 0.4516i,−0.0290 + 0.0595i,

−0.6847 + 0.0060i,−0.3766 − 0.0745i].

The comparisons of L2-relative error and the tuple distance are given in Table 2, and the 7-tuples recovered 
by CAFDr, CGD, and CAFD-CGD are shown in Fig. 2. From Table 2 and Fig. 2 we see that the performances 
of CGD and CAFD-CGD beat CAFDr, and the recovering errors of CGD and CAFD-CGD significantly 
decrease as the number of samples increases.

4.3. Conclusion

Our experiments confirm the improvement of the proposed methods (CGD and CAFD-CGD) both in 
L2 approximation and best n-tuple recovering, comparing with CAFDr and CAFDp. In most cases, the 
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Fig. 2. Example 4.2.

performances of CGD and CAFD-CGD are similar. The experiments indicate the importance of the cardi-
nality of given samples in the proposed algorithms. It seems that 28 is a suitable cardinality for CGD and 
CAFD-CGD. Besides, the parameter tk in (2) is crucial for CGD because it greatly influences the accuracy 
and effectiveness of CGD and CAFD-CGD. How to choose a suitable tk at each iterative step of CGD and 
CAFD-CGD needs a further study.
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