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This paper proposes a two-dimensional (2D) partial unwinding adaptive Fourier
decomposition method to identify 2D system functions. Starting from Coifman
in 2000, one-dimensional (1D) unwinding adaptive Fourier decomposition and
later a type called unwinding AFD have been being studied. They are based on
the Nevanlinna factorization and a maximal selection. This method provides
fast-converging rational approximations to 1D system functions. However, in
the 2D case, there is no genuine unwinding decomposition. This paper pro-
poses a 2D partial unwinding adaptive Fourier decomposition algorithm that is
based on algebraic transforms reducing a 2D case to the 1D case. The proposed
algorithm enables rational approximations of real coefficients to 2D system
functions of real coefficients. Its fast convergence offers efficient system identifi-
cation. Numerical experiments are provided, and the advantages of the proposed
method are demonstrated.
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1 INTRODUCTION

System identification is to establish mathematical models using the input-output measurements. The models built are
usually approximations to the original systems. System identification plays a key role in various fields such as model-based
control,1-3 signal and image analysis, 4-7 texture synthesis,8 image filtering,9,10 and restoration.11,12 In recent years, the
problem of two-dimensional (2D) system identification has attracted the interest of researchers. To our knowledge, a
number of 2D system identification methods including neural network13 and subspace identification14,15 were proposed
as generalizations of the corresponding one-dimensional (1D) methods.

For the 1D system identification, there have been a lot of studies focusing on using rational functions to approximate
system functions.16-20 Among the various 1D methods, 1D adaptive Fourier decomposition (1D-AFD)20 has promising
approximation effect that depends on the maximal selection principle to adaptively select rational functions. Recently, 1D
unwinding adaptive Fourier decomposition (1D-UAFD)21 was proposed, which combines maximal selection and Nevan-
linna factorization. Among different kinds of rational approximation algorithms,20-26 1D-UAFD outperforms the other
types in fast signal reconstruction.22
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Inspired by 1D-UAFD, it raises a natural question whether one can develop this method in 2D system identification.
There is no genuine 2D-UAFD analogous to the 1D case, for there exist essential differences between 1D and 2D complex
analysis. In the one complex variable case, if f is analytic at z0 and f(z0) = 0, then there exists a function g analytic at
z0, and f(z) = (z − z0)g(z). In higher dimension, the analogous factorization result does not hold. This implies that the
unwinding (factorization) process cannot be implemented in higher dimensions. Due to difficulty in estimating true poles
of 2D system functions,27,28 we instead to obtain fast-converging rational approximations to 2D system functions.

The aim of this paper is to introduce what we call 2D partial UAFD (2D-PUAFD), in which 1D-UAFD is applied to the 2D
case through elementary algebraic operations. The proposed algorithm gives rise to fast convergence. It provides rational
approximations of real coefficients to 2D transfer functions. The necessity of real coefficients is due to the real-valued
impulse response property of the systems under study.

The contributions of this paper include the following:

• The theory of 2D-PUAFD is proposed. The convergence of the algorithm is proved. The computational complexity of
the proposed algorithm is calculated.

• We design a two-step procedure for 2D frequency domain system identification by using the tensor type Cauchy integral
and the proposed 2D-PUAFD algorithm. It yields rational approximations of real coefficients to 2D transfer functions.

• Two examples of 2D system identification are presented. The experimental results show that the proposed algorithm
outperforms 2D Fourier series (2D-FS) and the method in Valenzuela and Salvia.29

This paper is organized as follows. Section 2 gives the problem setting. Section 3 presents the mathematical foundation
of 2D-PUAFD. Section 4 proposes a 2D-PUAFD algorithm and designs a two-step procedure for 2D frequency domain
system identification. Experimental results are presented in Section 5. In Section 6, conclusions are drawn.

2 PROBLEM SETTING

We consider a state-space model for a 2D discrete linear time-invariant (LTI) system, namely, the second
Fornasini-Marchesini model (F-MM II).30 It is given by

x( 𝑗 + 1, k + 1) = A0x( 𝑗, k + 1) + A1x( 𝑗 + 1, k) + B0w( 𝑗, k + 1) + B1w( 𝑗 + 1, k),
𝑦( 𝑗, k) = A2x( 𝑗, k) + B2w( 𝑗, k), (1)

where 𝑗, k ∈ N, x( 𝑗, k) ∈ Rp is the real local state vector at (j, k), w( 𝑗, k) ∈ Rq is the real input vector at (j, k), 𝑦( 𝑗, k) ∈ Rm

is the real output vector at (j, k), and Ai and Bi, i = 0, 1, 2, are real constant matrices of appropriate dimensions. The
transfer function of F-MM II is a proper rational function matrix

T(z1, z2) =
Y (z1, z2)
W(z1, z2)

=

q∑
l,n=0

alnz−l
1 z−n

2

p∑
l,n=0

blnz−l
1 z−n

2

=
∞∑

l,n=0
dlnz−l

1 z−n
2 , (2)

where Y(z1, z2) and W(z1, z2) are the 2D Z-transforms of y(j, k) and w(j, k), respectively, and dln is the impulse response.
Such a system is referred to as a quadrant-causal system.31

Herein, we focus on discrete LTI quadrant-causal single-input single-output (SISO) systems. Besides, we assume that
the transfer function T(z1, z2) of real coefficients has no poles in Dc ×Dc = {(z1, z2) ∶ |z1| ≥ 1, |z2| ≥ 1}.

Through the mappings 1
z1

→ z and 1
z2

→ w, T(z1, z2) is converted to a function f(z,w) in H2(D2) that can be holomor-
phically continued to outside the closed unit poly-disc D2 ∶= D × D = {(z,w) ∶ |z| < 1, |w| < 1}. H2(D2) is the class of
complex holomorphic functions in the poly-disc D ×D satisfying

sup
0≤𝜌1,𝜌2<1 ∫

2𝜋

0 ∫
2𝜋

0
|𝑓 (𝜌1eit, 𝜌2eis)|2dtds < ∞. (3)

It is a Hilbert space equipped with the inner product defined by

⟨𝑓, g⟩ = 1
4𝜋2 ∫

2𝜋

0 ∫
2𝜋

0
𝑓
(

eit, eis) ḡ
(

eit, eis) dtds. (4)
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Because of the assumption of T(z1, z2), the transformation function f(z,w) enjoys the property that 𝑓 (z̄, w̄) = 𝑓 (z,w). It
is noted that 𝑓

(
eit, eis) = T

(
e−it, e−is) and ||𝑓 || = ||T||L2 , where t, s ∈ [0, 2𝜋), ||T||L2 = 1

4𝜋2 ∫ 2𝜋
0 ∫ 2𝜋

0 |T (
eit, eis) |2dtds, and|| · || is the H2 norm.

The problem of 2D frequency domain system identification is set as follows. Given frequency response measurements
{EJ,M

𝑗,m}𝑗=1,2,… J,m=1,2,…M from a 2D system
EJ,M
𝑗,m = 𝑓

(
eit𝑗 , eism

)
, (5)

where 𝑓
(

eit𝑗 , eism
)

= T
(

e−it𝑗 , e−ism
)
, t𝑗 = 2𝜋( 𝑗−1)

J
, sm = 2𝜋(m−1)

M
, J and M are even, find rational functions f N of real

coefficients to f such that in the H2-norm sense
lim

N→∞
𝑓N = 𝑓. (6)

3 PRELIMINARIES

As the proposed real coefficients rational approximation method depends on 1D-UAFD, we provide a brief introduction
to 1D-UAFD.21

Let D denote the unit disc. The Hardy H2(D) space is defined as

H2(D) =
{
𝑓 (z) ∶ 𝑓 is analytic in D, and sup

0≤r<1

1
2𝜋 ∫

2𝜋

0
|𝑓 (reit)|2dt < ∞

}
. (7)

The Szegö kernel in H2(D), namely,

ea(z) =
√

1 − |a|2
1 − āz

, a ∈ D, (8)

enjoys the reproducing property, viz,

⟨𝑓, ea⟩ = √
1 − |a|2𝑓 (a), 𝑓 ∈ H2(D). (9)

Let a1, a2, … , an, … be a sequence of complex numbers in D. Applying the Gram-Schmit orthogonalization process to
ea1 , ea2 , … , ean , … , the associated rational orthonormal system, known as the Takenaka-Malmquist system, is obtained
as

Bk(z) =
√

1 − |ak|2
1 − akz

k−1∏
𝑗=1

z − a𝑗

1 − ā𝑗z
. (10)

Let 𝑓 ∈ H2(D). Through the Nevanlinna factorization,32 there holds

𝑓 (z) = I(z)O(z), (11)

where

O(z) = exp
{

1
2𝜋 ∫

2𝜋

0

eit + z
eit − z

log |𝑓 (eit) |dt
}

(12)

is the outer function and I(z) is the inner function. Furthermore, I(z) = B(z)S(z), where

B(z) = zn
∏
zk≠0

|zk|
zk

zk − z
1 − z̄kz

(13)

is the Blaschke product part that collects all the zeros of f(z), and S(z) is the singular inner function part given by a regular
Borel measure on the circle singular to the Lebesgue measure.

Let 𝑓1 = 𝑓 ∈ H2(D). Taking Nevanlinna factorization32 into consideration, we have f1(z) = O1(z)I1(z). To further
decompose the outer function O1(z) with rapid convergence, we apply the maximal selection principle.21 Because O1 ∈
H2(D), there exists a1 ∈ D satisfying

a1 = arg max
a∈D

|⟨O1, ea⟩|. (14)

Accordingly, f(z) can be further decomposed into

𝑓 (z) = I1(z)⟨O1, ea1⟩ea1 (z) + I1(z)
z − a1

1 − a1z
𝑓2(z), (15)
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where 𝑓2(z) =
O1(z)−⟨O1,ea1 ⟩ea1 (z)

z−a1
1−a1z

. Next, repeat the same process to decompose f2, and so on. After N steps, we have

𝑓 (z) =
N∑

k=1
⟨Ok, eak⟩I(k)(z)Bk(z) + I(N)(z)

N∏
k=1

z − ak

1 − akz
𝑓N+1(z), (16)

where I(k)(z) =
k∏

𝑗=1
I𝑗(z), fk(z) = Ik(z)Ok(z), and 𝑓k+1(z) =

Ok(z)−⟨Ok ,eak
⟩eak

(z)
z−ak

1−akz

. Apart from the Nevanlinna factorization, the

key step in the 1D-UAFD is that each selection of ak satisfies the maximal selection principle

ak = arg max
a∈D

|⟨Ok, ea⟩|. (17)

It was proved in Qian21 that the above decomposition (16) is orthogonal and

𝑓 (z) =
∞∑

k=1
⟨Ok, eak⟩I(k)(z)Bk(z). (18)

Thus, through performing the Nevanlinna factorization and the maximal selection principle, 1D-UAFD generates an
adaptive orthonormal system.

4 ADAPTIVE RATIONAL APPROXIMATION TO 2D FREQUENCY DOMAIN
SYSTEM IDENTIFICATION

In this section, given measurements
{

EJ,M
𝑗,m

}
of 𝑓 (z,w) ∈ H2(D2) on the unit poly-circle 𝜕D × 𝜕D, we give a two-step

procedure to reconstruct f. We first construct a function 𝑓 in H2(D2) to approximate f by using the given measurements.
Then we apply 2D-PUAFD to obtain rational approximations of real coefficients to 𝑓 .

4.1 First-step procedure
The first step is to construct a function 𝑓 (z,w) in H2(D2) as an approximation to the true function f(z,w). Through using
the tensor type Cauchy integral, 𝑓 is computed through the formula

𝑓 (z,w) = − 1
4𝜋2 ∫

2𝜋

0 ∫
2𝜋

0

J∑
𝑗=1

M∑
m=1

EJ,M
𝑗,m𝜒𝑗,m(t, s)

(eit − z)(eis − w)
deitdeis, (19)

where 𝜒 j,m(t, s) is the 2D step function defined as

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜒[t𝑗 ,t𝑗+1)×[sm,sm+1)(t, s), 𝑗 ∈
{

1, … ,
J
2

}
,m ∈

{
1, … ,

M
2

}
𝜒[t𝑗 ,t𝑗+1)×(sm−1,sm](t, s), 𝑗 ∈

{
1, … ,

J
2

}
,m ∈

{M
2

+ 2, … ,M + 1
}

𝜒(t𝑗−1,t𝑗 ]×[sm,sm+1)(t, s), 𝑗 ∈
{ J

2
+ 2, … , J + 1

}
,m ∈

{
1, … ,

M
2

}
𝜒(t𝑗−1,t𝑗 ]×(sm−1,sm](t, s), 𝑗 ∈

{ J
2
+ 2, … , J + 1

}
,m ∈

{M
2

+ 2, … ,M + 1
}

and {EJ,M
𝑗,m} is given by (5). When J and M are large enough,

J∑
𝑗=1

M∑
m=1

EJ,M
𝑗,m𝜒𝑗,m(t, s) is an approximation of f(eit, eis). In addition,

Hardy space theory implies that 𝑓 (z,w) is in H2(D2) and

||𝑓 − 𝑓 || ≤ C
‖‖‖‖‖‖

J∑
𝑗=1

M∑
m=1

EJ,M
𝑗,m𝜒𝑗,m − 𝑓

‖‖‖‖‖‖L2

, (20)
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where C is a constant. Equation 19 shows that

𝑓 (z,w) = − 1
4𝜋2

⎡⎢⎢⎣
J
2∑

𝑗=1

M
2∑

m=1
ln
(

eit𝑗+1 − z
eit𝑗 − z

)
ln
(

eism+1 − w
eism − w

)
EJ,M
𝑗,m +

J+1∑
𝑗= J

2
+2

M+1∑
m= M

2
+2

ln
(

eit𝑗 − z
eit𝑗−1 − z

)
ln
(

eism − w
eism−1 − w

)
EJ,M
𝑗,m

+

J
2∑

𝑗=1

M+1∑
m= M

2
+2

ln
(

eit𝑗+1 − z
eit𝑗 − z

)
ln
(

eism − w
eism−1 − w

)
EJ,M
𝑗,m +

J+1∑
𝑗= J

2
+2

M
2∑

m=1
ln
(

eit𝑗 − z
eit𝑗−1 − z

)
ln
(

eism+1 − w
eism − w

)
EJ,M
𝑗,m

⎤⎥⎥⎦ .
Since EJ,M

𝑗,m = 𝑓 (eit𝑗 , eism ) and 𝑓 (eit𝑗 , eism ) = 𝑓 (e−it𝑗 , e−ism ), we have

𝑓 (z,w) = 𝑓 (z̄, w̄)

= − 1
4𝜋2

⎡⎢⎢⎣
J
2∑

𝑗=1

M
2∑

m=1
ln
(

eit𝑗+1 − z
eit𝑗 − z

)
ln
(

eism+1 − w
eism − w

)
EJ,M
𝑗,m +

J
2∑

𝑗=1

M
2∑

m=1
ln
(

e−it𝑗+1 − z
e−it𝑗 − z

)
ln
(

e−ism+1 − w
e−ism − w

)
EJ,M
𝑗,m

+

J
2∑

𝑗=1

M+1∑
m= M

2
+2

ln
(

eit𝑗+1 − z
eit𝑗 − z

)
ln
(

eism − w
eism−1 − w

)
EJ,M
𝑗,m +

J
2∑

𝑗=1

M+1∑
m= M

2
+2

ln
(

e−it𝑗+1 − z
e−it𝑗 − z

)
ln
(

e−ism − w
e−ism−1 − w

)
EJ,M
𝑗,m

⎤⎥⎥⎦ .

4.2 Rational approximation of real coefficients
The second step is to obtain 2D rational functions of real coefficients approximating to 𝑓 . We propose a 2D-PUAFD
algorithm to achieve rational approximations of real coefficients. As the proposed algorithm depends on 1D-UAFD, we
first modify 1D-UAFD so that it offers 1D rational approximations of real coefficients.

4.2.1 Modify 1D-UAFD
Mi and Qian20 give 1D rational approximations of real coefficients by modifying core 1D-AFD.24 As given below, a key
lemma in Mi and Qian20 promotes the realization of rational approximations of real coefficients.

Lemma 4.1. Assume that 𝑓 ∈ H2(D) satisfies 𝑓 (z̄) = 𝑓 (z). When the chosen parameters {ak}N
k=1 appear as either real

numbers or complex conjugate pairs, the N-partial sum of core 1D-AFD is a rational function of real coefficients in H2(D).

Inspired by the above lemma, we propose the modified 1D-UAFD to allow it to provide 1D rational approximations of
real coefficients. Let F1 = 𝑓 ∈ H2(D). As shown in Section 3, we have F1(z) = O1(z)I1(z) by the Nevanlinna factorization
theorem. To further decompose O1(z) rapidly, we use the modified maximal selection principle. Similar to the proof of
maximal selection principle in Qian,21 there indeed exists a1 ∈ D satisfying

a1 = arg max
a∈D

(|⟨O1, ea⟩|2 + |⟨O1,Ba⟩|2) , (21)

where Ba(z) = eā(z) z−a
1−āz

=
√

1−|ā|2
1−az

z−a
1−āz

. Thus, O1(z) can be decomposed into

O1(z) = ⟨O1, ea1⟩ea1 (z) + ⟨O1,Ba𝟏⟩Ba𝟏 (z) + F2(z)
z − a1

1 − a1z
z − a1

1 − a1z
,

where Ba𝟏 (z) =
√

1−|a1|2
1−a1z

z−a1
1−a1z

and F2(z) =
O1(z)−⟨O1,ea1 ⟩ea1 (z)−⟨O1,Ba𝟏 ⟩Ba𝟏 (z)

z−a1
1−a1z

z−a1
1−a1z

∈ H2(D). Accordingly,

𝑓 (z) = I1(z)
[⟨O1, ea1⟩ea1 (z) + ⟨O1,Ba𝟏⟩Ba𝟏 (z)

]
+ I1(z)F2(z)

z − a1

1 − a1z
z − a1

1 − a1z
.

Next, repeat the same process for F2(z) as for F1(z), and so on. After N steps, we obtain

𝑓 (z) =
N∑

k=1
I(k)(z)

[⟨Ok, eak⟩eak (z) + ⟨Ok,Bak⟩Bak (z)
] k−1∏
𝑗=0

Aaj(z) + I(N)(z)FN+1(z)
N∏
𝑗=1

Aaj (z), (22)

where
Fk(z) = Ik(z)Ok(z), (23)
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ak = arg max
a∈D

(|⟨Ok, ea⟩|2 + |⟨Ok,Ba⟩|2) , (24)

Aaj(z) =

{
1, 𝑗 = 0
z−a𝑗

1−a𝑗z
z−a𝑗

1−a𝑗z
, 𝑗 ≥ 1 , (25)

I(k)(z) =
k∏

𝑗=1
I𝑗(z),Bak (z) =

√
1 − |ak|2
1 − akz

z − ak

1 − akz
, (26)

and

Fk+1(z) =
Ok − ⟨Ok, eak⟩eak (z) − ⟨Ok,Bak⟩Bak (z)

Aak (z)
. (27)

Denote the N-partial sum by

𝑓N(z) =
N∑

k=1
I(k)(z)

[⟨Ok, eak⟩eak (z) + ⟨Ok,Bak⟩Bak (z)
] k−1∏
𝑗=0

Aaj (z). (28)

We note that in (28) all the decomposing terms of f(z) are mutually orthogonal. This can be proved by using Cauchy's
theorem when calculating the inner product between any two of the above decomposing terms. On the other hand, the
modified 1D-UAFD is convergent. The proof of its convergence is similar to that of the convergence of 1D-UAFD. We omit
the proof here.

Theorem 4.1. For an arbitrary function𝑓 ∈ H2(D)under the modified maximal selection principle (24), in the H2-norm
sense, we have

lim
N→∞

𝑓N = 𝑓. (29)

Furthermore, if 𝑓 ∈ H2(D) satisfies the property 𝑓 (z̄) = 𝑓 (z) and can be analytically continued to outside the closed
unit disc, Hardy space theory implies that the singular inner function S(z) of f is constant and that its Blaschke product
has only a finite number of zeros that are either real numbers or complex conjugate pairs. These facts imply that the
inner function part I(k)(z) in (22) is merely a rational function of real coefficients. Meanwhile, Lemma 4.1 indicates that⟨Ok, eak⟩eak (z) + ⟨Ok,Bak⟩Bak (z) is also a rational function of real coefficients. All these mean that the following theorem
holds.

Theorem 4.2. Suppose that 𝑓 ∈ H2(D) satisfies the property 𝑓 (z̄) = 𝑓 (z) and can be analytically continued to outside
the closed unit disc. In the process of modified 1D-UAFD, the N-partial sum fN(z) is a rational function of real coefficients.

For the algorithm design of 1D-UAFD, Mai et al33 proposed first factorizing out a finite Blaschke product B(z) by finding
a finite number of zeros of f and then obtaining the outer function O(z) from O(z) = f(z)∕B(z). Based on the theory of the
modified 1D-UAFD, we modify the algorithm of Mai et al to obtain Algorithm 1.
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Remark 4.1. The 1D-UAFD algorithm of a Hardy H2(D) space signal f involves calculating its inner and outer func-
tions. There are various algorithms first to calculate the outer function O(z). In general, computing the outer function
O(z) involves computing the Hilbert transform of log |𝑓 (eit)|. Due to the reason that f(eit) may approach zero, the
computation of O(z) may be unstable. A lot of methods have been proposed to make the computation of Hilbert trans-
form stable. Some methods are to regularize log |𝑓 (eit)| by adding a small positive number23 or small pure sinusoid.34

However, adding a small positive number or small pure sinusoid in each iteration may result in big errors after itera-
tions. To avoid this deficiency35 gave a mechanical quadrature algorithm to show better stability when calculating the
Hilbert transform of log |𝑓 (eit)|. Due to the instability of the computation of Hilbert transform, Tan and Qian36 found
a way to directly extract the outer function O(z) without computing the Hilbert transform of log |𝑓 (eit)|. This method
is effective for rational functions, but it does not work well for general Hardy space functions. Therefore, we adopt
the method of Mai et al33 first to calculate the inner function B(z). They showed that the method of unwinding only a
finite Blaschke product part guarantees the applicability of 1D-UAFD.

4.2.2 2D-PUAFD
For an arbitrary function f(z,w) in H2(D2), it holds that 𝑓 (z,w) =

∑
l≥0,n≥0

clnzlwn, where
∑

l≥0,n≥0
|cln|2 < ∞. In this subsection,

we do not assume cln = 0 for l = 0 or n = 0. By setting f1 = f and

h(z,w) ≜ 𝑓1(z,w) − 𝑓1(0,w) − 𝑓1(z, 0) + 𝑓1(0, 0), (30)

we have h(z,w) = 0 for z = 0 and any w ∈ D, and h(z,w) = 0 for w = 0 and any z ∈ D. There then follows

h(z,w) = zw𝑓2(z,w), (31)

where f2 belongs to H2(D2). We thus obtain

𝑓 (z,w) = zw𝑓2(z,w) + 𝑓1(0,w) + 𝑓1(z, 0) − 𝑓1(0, 0), (32)

where

𝑓2(z,w) = 𝑓1(z,w) − 𝑓1(0,w) − 𝑓1(z, 0) + 𝑓1(0, 0)
zw

. (33)

Next, by repeating the same process on f2(z,w) as on f1(z,w), we get

𝑓 (z,w) = (zw)2𝑓3(z,w) + zw [𝑓2(0,w) + 𝑓2(z, 0) − 𝑓2(0, 0)] + 𝑓1(0,w) + 𝑓1(z, 0) − 𝑓1(0, 0),

where

𝑓3(z,w) = 𝑓2(z,w) − 𝑓2(0,w) − 𝑓2(z, 0) + 𝑓2(0, 0)
zw

. (34)

Repeating the process for N times, we obtain

𝑓 (z,w) =
N∑

k=1
(zw)k−1 [𝑓k(0,w) + 𝑓k(z, 0) − 𝑓k(0, 0)] + (zw)N𝑓N+1(z,w), (35)

where

𝑓k+1(z,w) = 𝑓k(z,w) − 𝑓k(0,w) − 𝑓k(z, 0) + 𝑓k(0, 0)
zw

. (36)

Denoting

SN( 𝑓 )(z,w) =
N∑

k=1
(zw)k−1 [𝑓k(0,w) + 𝑓k(z, 0) − 𝑓k(0, 0)] (37)

and

RN( 𝑓 )(z,w) = (zw)N𝑓N+1(z,w), (38)

where fN + 1 belongs to H2(D2), we have
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FIGURE 1 Energy distribution regions of RN (f) and R̃N (𝑓 )

𝑓 (z,w) = SN( 𝑓 )(z,w) + RN( 𝑓 )(z,w). (39)

Denote the classical 2D Fourier series N-partial sum by

𝑓 (z,w) = S̃N( 𝑓 )(z,w) + R̃N( 𝑓 )(z,w), (40)

where S̃N( 𝑓 )(z,w) =
∑

0≤l,n≤N−1
clnzlwn. Fourier analysis theory implies that ||R̃N( 𝑓 )||2 =

∑
l or n≥N

|cln|2 → 0. Figure 1 shows

that R̃N(𝑓 ) spreads over the region a ∪ b ∪ c, whereas RN(f) spreads over only the region b. We further show that SN(f)
converges rapidly to f in the H2-norm. Moreover, if f can be holomorphically continued to outside the closed unit poly-disc,
an exponential decay rate can be achieved.

Theorem 4.3. Suppose 𝑓 (z,w) ∈ H2(D2). It holds that

||𝑓 − SN( 𝑓 )|| → 0 for N → ∞. (41)

Furthermore, if f can be holomorphically continued to (1 + 𝜎1)D × (1 + 𝜎2)D = {(z,w)| |z| < 1 + 𝜎1 and |w| < 1 + 𝜎2},
𝜎i > 0, i = 1, 2, we have the H2-norm of RN(f) decays exponentially.

Proof. Because of the uniqueness of power series expansion of a holomorphic function, RN(f) is equal to the sum of
the power series entries clnzlwn with both l ≥ N and n ≥ N. The energy of RN(f) is the square sum of the norms of the
Fourier coefficients indexed by the integer pairs in the region b of Figure 1, that is, ||𝑓 − SN(𝑓 )||2 =

∑
l≥N,n≥N

|cln|2 →

0, N → ∞. In addition, let 𝑓 (z,w) ∈ H2(D2) be holomorphically continued to (1+𝜎1)D×(1+𝜎2)D, 𝜎i > 0, i = 1, 2.
By letting 𝛿1 = 1 + 𝜎1

2
and 𝛿2 = 1 + 𝜎2

2
, we have cln𝛿

l
1𝛿

n
2 → 0 for either l → ∞ or n → ∞. Thus, we can find a positive

number C1 such that |cln| < C1
𝛿l

1𝛿
n
2

for any l ≥ 0 and n ≥ 0. This yields ||𝑓 −SN( 𝑓 )||2 ≤ ∑
l≥N,n≥N

C2
1

𝛿2l
1 𝛿

2n
2

= C2
1

1
𝛿2N

1 𝛿2N
2

𝛿2
2

𝛿2
2−1

𝛿2
1

𝛿2
1−1

.

So we have the desired result ||𝑓 − SN(𝑓 )|| ≤ C2aN
1 , where C2 = C1𝛿1𝛿2√

(𝛿2
1−1)(𝛿2

2−1)
and a1 = 1

𝛿1𝛿2
< 1.

The iterative process (35) for a Hardy H2(D2) space function f that can be holomorphically continued to outside the
closed unit poly-disc shows that fk(z,w) belongs to H2(D2) for any k ≥ 1 and can be holomorphically continued to outside
the closed unit poly-disc. From this, we can show readily that the univariate functions fk(0,w) and fk(z, 0) are both in
H2(D) and can be analytically continued to outside the closed unit disc. In addition, since 𝑓 (z̄,w) = 𝑓 (z,w), fk(0,w)
and fk(z, 0) enjoy the properties that 𝑓k(0, w̄) = 𝑓k(0,w) and 𝑓k(z̄, 0) = 𝑓k(z, 0), respectively. We note from Theorem
4.2 that both fk(0,w) and fk(z, 0) can be approximated by 1D rational functions of real coefficients using the modified
1D-UAFD. Further combining (22) and (35), we obtain modified 1D-UAFD–based 2D-PUAFD. Algorithm 2 illustrates
how the proposed 2D-PUAFD is implemented. Such the algorithm achieves 2D rational approximations of real coefficients
to transfer functions in the F-MM II model.
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Given processes (22) and (35), we get the 2D partial unwinding adaptive rational system consisting of
{
(zw)m−1}∞

m=1,{
(zw)𝑗−1I(k)(z)eak (z)

k−1∏
p=0

Aap(z)

}∞

𝑗,k=1

,

{
(zw)𝑗−1I(k)(z)Bak (z)

k−1∏
p=0

Aap (z)

}∞

𝑗,k=1

,

{
(zw)l−1I(n)(w)ean(w)

n−1∏
q=0

Aaq (w)

}∞

l,n=1

, and

{
(zw)l−1I(n)(w)Ban(w)

n−1∏
q=0

Aaq (w)

}∞

l,n=1

. The adaptivity of the above system is due to that of the modified 1D-UAFD.

The computational complexity of Algorithm 2 is computed below. An input 2D discrete signal f is assumed to be of size
K × K.

• The complexity of calculating the zeros of the finite Blaschke product in step 5 is (MK),37 where M is the number of
the discrete points in D.

• The complexity of choosing parameters through the modified maximal selection principle in step 5 is (MK2).38

• The computational complexity of step 6 is (K2).

Therefore, the computational complexity of the 2D-PUAFD algorithm is (K2).

5 EXPERIMENTAL RESULTS

We use the proposed 2D-PUAFD to approximate the transfer functions given in Valenzuela and Salvia.29 In Valenzuela and
Salvia,29 Valenzuela and Salvia identify the transfer functions by directly computing the coefficients of the polynomials of
two complex variables in the numerator and denominator. As well as comparing the proposed algorithm with the method
in Valenzuela and Salvia,29 we will also compare it with 2D-FS. In fact, 2D-FS is the generalization of the FIR model in
the 2D case.

We use the relative error (RE) and color graph to test the accuracy of the approximation function. Given the mea-
surements EJ,M

𝑗,m = 𝑓 (eit𝑗 , eism ), j = 1, 2, … J,m = 1, 2, …M, the RE between f and its approximation f N is defined as

RE =

J∑
𝑗=1

M∑
m=1

|||𝑓N (
eit𝑗 , eism

)
− 𝑓

(
eit𝑗 , eism

)|||2
J∑

𝑗=1

M∑
m=1

|||𝑓 (eit𝑗 , eism
)|||2

, (42)

where t𝑗 = 2𝜋( 𝑗−1)
J

, sm = 2𝜋(m−1)
M

, and N is the decomposition level. Color graph is drawn to show log10
|||𝑓N (

eit𝑗 , eism
)|||2 that

reflects the details of f N at the frequency
(

eit𝑗 , eism
)
.
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FIGURE 2 Comparison of relative errors (REs) between different methods. 2D-FS, two-dimensional Fourier series; 2D-PUAFD,
two-dimensional partial unwinding adaptive Fourier decomposition [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Comparison of REs between 2D-FS and
2D-PUAFD at decomposition level N = 3, 4, 5

N 2D-FS 2D-PUAFD

3 2.46e-01 6.10e-03
4 1.12e-01 2.48e-04
5 5.57e-02 1.01e-04

Abbreviations: 2D-FS, two-dimensional Fourier series;
2D-PUAFD, two-dimensional partial unwinding adaptive
Fourier decomposition; RE, relative error.

Example 5.1. The transfer function is

T(z1, z2) =
(
1 + z−1

1
)
+
(
3 + z−1

1
)

z−1
2(

1 + .6z−1
1 + .36z−2

1 + .048z−3
1
) (

1 + .7z−1
2
) .

Through the mappings 1
z1

→ z and 1
z2

→ w, T(z1, z2) is transformed into a function f(z,w) in H2(D2) that can be holo-
morphically continued to outside the closed unit poly-disc. We apply the proposed method and 2D-FS to f and select
l = m = 256 discrete points in (42).29 gives the RE of 0.0154. Figure 2 compares the REs between 2D-FS and the proposed
2D-PUAFD at different decomposition levels and method in Valenzuela and Salvia.29 Table 1 gives the comparison values
of RE between 2D-FS and 2D-PUAFD at decomposition level N = 3, 4, 5. The comparison results of color graphs between
2D-FS and the proposed 2D-PUAFD at N = 5 and method in Valenzuela and Salvia29 are displayed in Figure 3. Figure 2
shows that when N increases the REs of 2D-FS and 2D-PUAFD decrease. Besides, the RE of 2D-PUAFD is significantly
smaller than that of 2D-FS at the same decomposition level. Meanwhile, 2D-PUAFD achieves smaller RE starting from
N = 3 than the method in Valenzuela and Salvia.29 We further see from Table 1 that when N = 5, the RE of 2D-PUAFD is
two orders of magnitude smaller than that of 2D-FS and method in Valenzuela and Salvia,29 respectively. Figure 3 shows
that the proposed 2D-PUAFD at N = 5 demonstrates best detail effect at each frequency between the tested methods.

Valenzuela and Salvia29 give estimation of the same degree as the transfer function in below

T̂(z1, z2) =
1 + 1.0364z−1

1 + 3.2713z−1
2 + 1.0485z−1

1 z−1
2(

1 − .6027z−1
1 + .3897z−2

1 − .0551z−3
1
) (

1 + .6978z−1
2
) .

Although the proposed method cannot give the same degree estimation, its fast convergence makes it better to approxi-
mate the transfer function.

Example 5.2. The transfer function is

T(z1, z2) =
(
2 + z−1

1
)
+
(
3 − .5z−1

1
)

z−1
2(

1 − 1.6z−1
1 + 1.4z−2

1 − .48z−3
1
) (

1 − .6z−1
2 + .25z−2

2
) .

http://wileyonlinelibrary.com
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FIGURE 3 Color graph comparison of three methods. A, Original transfer function. B, 2D-FS at N = 5. C, Method in Valenzuela and
Salvia.29 D, 2D-PUAFD at N = 5. 2D-FS, two-dimensional Fourier series; 2D-PUAFD, two-dimensional partial unwinding adaptive Fourier
decomposition

TABLE 2 Comparison of REs between 2D-FS and
2D-PUAFD at different decomposition levels

N 2D-FS 2D-PUAFD

1 9.85e-01 7.41e-01
2 1.36e-01 8.80e-02
3 5.72e-02 3.80e-02
4 1.87e-02 3.20e-03
5 1.23e-02 8.98e-04

Abbreviations: 2D-FS, two-dimensional Fourier series;
2D-PUAFD, two-dimensional partial unwinding adaptive
Fourier decomposition; RE, relative error

Similar to the transformation of the transfer function in the above example, we apply the proposed method to the
transformation function f. Here, we also choose l = m = 256 discrete points. Table 2 compares the REs between 2D-FS
and 2D-PUAFD at different decomposition levels. The RE given in Valenzuela and Salvia29 is 0.0027. We omit the color
graphs for this example.

As given in Table 2, the REs of 2D-FS and 2D-PUAFD become increasingly smaller with the increase of N. Meanwhile,
2D-PUAFD achieves smaller RE compared to 2D-FS at the same decomposition level. Furthermore, we note that the RE of
2D-PUAFD is smaller than 10−3 from N = 5. Therefore, the proposed algorithm achieves the best rational approximations
of real coefficients among the tested three methods.

6 CONCLUSIONS

In this paper, we propose the novel 2D partial unwinding adaptive Fourier decomposition 2D-PUAFD algorithm to solve
2D system identification. The proposed algorithm is based on the modified 1D-UAFD to adaptively choose parameters.
It provides rational approximations of real coefficients to transfer functions. Its fast convergence offers efficient system
identification. Further study on the system identification with noise will be explored in future work.
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