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1. Introduction
1.1. Background

The Paley—Wiener theorem describes the properties of the Fourier spectrum of a function, which is the
non-tangential limit of one in the classic Hardy space HP associated with the upper half-plane CT = {z =
x+ iy : y > 0}, in terms of the location of the support of its Fourier transform. When p = 2, it is the
classical one-dimensional Paley—Wiener Theorem.

Theorem A (Paley—Wiener). ([4,11]). F € H*(C7T) if and only if there exists a function f € L*[0,00) such
that F(z) = [;° f(t)e*™™*dt for z € CT.
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In order to introduce the following results, we recall the definition of the Fourier transform. Assume that
f € LY(R™). The Fourier transform of f, denoted by f, is defined as f(z) = F = Jrn f(t)e™ 2™ dt for all
x e R™

In a previous study [9], Theorem A was generalized to a one-dimensional distribution case for 1 < p < oc.
In the distributional case, the support of function f is denoted by d-suppf.

Theorem B. f € HP(C™T), where 1 < p < oo. Then, as a tempered distribution, f is supported in [0, 00).
In another research [10], Qian et al. proved the converse of the above theorem.

Theorem C. For 1 <p < oo, f € LP(R) and d-suppf C [0,00). Then, f is the boundary limit of a function
in HP(C™).

Higher-dimensional cases can be naturally considered. We first introduce some definitions in the
n-dimensional complex Euclidean space C™.

We denote the elements of C™ by z = (z1, 22, ..., 2,). The product of z,w € C™ is z - w = zywy + zowa +
...+ zpwy,. The Buclidean norm of z € C" is |z| = V2 - Z, where z = (1, %2, ..., Z).

A nonempty subset I' C R™ is called an open cone, if it satisfies (i) 0 ¢ I', and (ii) whenever z,y € I" and
a, > 0, the expression ax + By € I holds.

The dual cone of T is expressed as I'* = {y € R" : y-a > 0, for any = € T'}, which is clearly a closed
convex cone with vertex at 0. Next, (I'*)* = chl, where chl is the convex hull of I'. We say that the cone
I is regular if the interior of its dual cone I'* is non-empty.

The tube TT with base T is the set of all points z = (21, 22, ..., 2n) = (T1+ Y1, oy Tp +iyn) = c+iy € C"
with y € T".

A function F belongs to a Hardy space HP(1T), if it is holomorphic in 71, and satisfies

1P| v = sup { </ |F(z + z'y)|pd:c> Tiye F} < 0.

Rn

In Ref. [12], Stein and Weiss obtained a representation theorem that claims the above characterization
for an n-dimensional case. Note that the set suppf is the support of a measurable function f on R"™, which
is the closure of the set {z : f(z) # 0}.

Theorem D. Suppose I is an open cone. Then F € H*(Tr) if and only if F(z) = fr* e?™=t f(t)dt, where f

1

2
is a measurable function on R™ satisfying suppf C I'* and ||F||g2 = || f|l2r+) = (fp* |f(t)|2dt) .

Related generalizations of this result were obtained. Especially, Li et al. got some characterization con-
clusions in Ref. [7] for H?(TT) with the index range 1 < p < 2.

Theorem E. Assume that T is a reqular open cone in R™ and F(z) € LP(R™), where 1 < p < 2. Then, F is
the boundary limit function of F(x + iy) € H?(Tt) if and only if d-suppF C T*.

All the results mentioned herein are for one or higher dimensional Hardy spaces HP, where 1 < p < co.
Since some formulas and methods are not available when 0 < p < 1, by using some other techniques, Deng
and Qian proved an analogous one-dimensional result for the case when 0 < p < 1 in Ref. [2]. Recall that
a measurable function f on R" is called a slowly increasing function, if there exists a positive constant a
such that f(x)(1+ |z|)~* € LYR").
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Theorem F. If 0 < p < 1, F € HP(C™), then there exists a positive constant A, depending only on p, and
a slowly increasing continuous function f, which is supported in [0,00), such that, for ¢ in the Schwartz
class S,

(f.g)= lim / F(z + iy)p(z)dr,

y>0,y—0
R

and | f(t)| < Ap|\F||Hi|t\%_1 holds for t € R, and F(z) = [;° f(t)e*™"#dt for z € CT.

It is also natural to generalize this result to the higher dimensional case. Restricting the cone to be the
first octant I'y, = {y = (y1,...,yn) : y; > O0foralli = 1,... n}, Li proved the following representation
result.

Theorem G. (/6]). If0 <p <1, F'€ HP(Tr,, ), then there exists a constant Cy,, which is independent of F,
and a slowly increasing continuous function f, whose support is in T, such that, for ¢ in the Schwartz
class S,

(Fo) =, tm [ Pt

Y€l ,y—o0
R~

and |f(1)| S Cle ||H:D6n pon pH’,Zfl |.’17k| P, and I (Z) = ff f(t)ezﬂ—it-zdt, where Cp = (—g)z, 13p =
o1
—11) —1>0.

Some weighted versions of the Paley—Wiener theorem were considered previously, including one by
Genchev in Ref. [5]. Suppose that D = {z € C",Im z; < 0,1 < j < n} is the last octant in C" and
o = (01,...,0n) € R™ is a vector with non-negative components. Let E,(D) be the set of holomorphic

n
functions on D that satisfy |F(z)| < Acexp { 3 (0, +¢€)|z;|} for € > 0 and z € D. Integral representations
=1

of functions in E,(D) with boundary values F(z) € LP(R") are studied in [5], being separated into two
cases, namely, p > 2 and 1 < p < 2, corresponding to the Theorems H and I given in the sequel.

Theorem H. (/5]). Let F(z) € E,(D) have boundary values F(x) and suppose that the condition

/ (1 + [2"0=2)|F(z) Pdi < oo (1)

Rn
n
holds, where p > 2 and |z|?> = z? Then F' has the form
j=1
Fe) = [ et )

—-G(0)

where G(o) = {t € R",2nt; > —0;,1 < j < n} and f is a measurable function satisfying suppf C —G(o)
and f € LP(—G(0)).

When 1 < p < 2, the following theorem was established.
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Theorem 1. (/5]). Suppose that F(z) € E,(D) have boundary values F(x) € LP(R™), where 1 < p < 2.
Then (2) is again satisfied, with f continuous if p =1 and with f measurable and satisfying the conditions
|t|"(1_%)f(t) € LP(R™) and f(t) € LY(R™), where % + % =1,ifp>1.

These two theorems were generalized to a larger class of convex domains in C™. In Ref. [8], a(z) is denoted
as a non-negative convex function continuous in 7 and homogeneous of degree 1. Let P,(1T) be the class
of functions that are holomorphic in Tt and satisfy |F(2)| < c.e®®)*el%l for ¢ > 0, ¢. > 0 and z € Tr. Musin
obtained two results in [8] for functions in P,(7r) with boundary values F'(z) € LP(R™). When p > 2,
a representation result was stated as follows.

Theorem J. ([8]). Suppose that F € P,(Tr) have boundary values F(x) which satisfy \x|”(17%)F(x) €
LP(R™) for p > 2. Then there exists f € LP(R") such that F(2) = [, e?™=t f(t)dt holds for z € Tr,
where U(a,T) = {¢ € R™: —27¢ -y < a(y) for ally € T} and a(y) = a(iy) fory € T.

Musin established the following result for 1 < p < 2.

Theorem K. (/8]). Suppose that F € P,(Ir) have boundary values F(x) € LP(R™) for 1 < p < 2. Then
F(z) = fU(& ) e2m=t f(t)dt holds for z € Tr. For p = 1 we have f € C(R™), while for p > 1 we have

suppf C U(a,T), f € LYR™) and [t|"~3) f(t) € LP(R").
1.2. Statement of main results

Herein, we consider Paley—Wiener-type theorems for functions in the weighted class defined as follows.
For the first time, we consider the following type of generalization. Let ¥ be a measurable function in
R™. A function F(z) holomorphic in tube Tt is said to belong to space HP(I', ) if

1

IF || 1151, = sup 4 >0 (‘R/IF(Hiy)Ipdx ryelp <o
for 0 < p < oo and
[ F'l| o (r,) = Sup {6_2”w(y)|F(x +iy):z eR™y € F} < o0

for p = oo.
In the main results, we assume that 1 € C(T') and satisfies

= yelléﬂﬁoo W < 00, (3)
and let
U, I)={{eR™: Erli_m (P(y) — & y) > —oo}. (4)

Then we establish the following representation theorems.

Theorem 1. Assume that 1 < p < 2, % + % =1, T is a regular open cone in R™. If F(z) € HP(T',4), then
there exists f(t) € LY(R™) with suppf C —U(3),T) such that
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/ )19t < [l gy (5)

and

z):/f(t)e%”'zdt (6)
R~

hold for z € Tr.

Theorem 2. Assume that p > 2, T' is a regular open cone in R™. If F(z) € HP(I',¢) satisfies

lim [ |[F(z+iy)Plz[""Pde < oo, (7)
yel",y—)ORn

then there exists f(t) € LP(R™) with suppf C —U(¢,I') such that (6) holds for z € Tr.

Theorem 3. Assume that F(z) € HP(T',¢), where 0 < p < 1 and T is a regular open cone in R™. Then,

there exists a real constant Ry, defined as (3) and a slowly increasing continuous function f(t) with suppf C
('™ + D(0, Ry)) such that (6) holds for z € Tr.

In the above theorems, take ¥(y) = %, where a(z) is defined as in Theorem J and Theorem K, and
a(iky) = ka(iy) for y € T and k& > 0. By applying Theorem 1 and Theorem 2, we can obtain the same
results as those derived from Theorem K and Theorem J. And in the case, suppf C —U (%71") = {t:
=27t -y — a(iy) < 0}.

By restricting I' to be the last octant D, we can define ¢(y) = —%¥ as in Theorem H and Theorem I
for y € D and o € R™. Theorem 1 and Theorem 2 imply the same conclusions as those by Theorem I and
Theorem H. In the case, suppf C —U(—%Z,T") = {-27t; +0; > 0,1 < j < n}.

In addition, for any ¢ (y) defined in the form of c|y| + ¢(y) satisfying (3), where ¢ > 0 and ¢(y) = o(|y|)
when |y| — oo, analogous integral representations hold.

On the other hand, suppose that F € P,(Tr) with boundary value F(z) € LP(R™) when 1 < p < 2.
For any ¢ > 0 and 2z € T j0y, let w be a non—negative C"X’(R”) function supported in the unit ball with
wll ey = 1 and we(t) = e "w(e't), and set F.(2) = [g, F we(u)du. Then F.(z) € HP(T, a(zi:))’
where 1 < p < 2. According to Theorem 1, there ex1st fo f € Lq(R”) such that f. weakly* converges to
f along with ¢ — 0 and (6) holds for F. with suppf. C U(a(’y) I'). Sending ¢ — 0, (6) holds for F

and suppf C —U (agf),F). Theorem J can also be obtained by applying Theorem 2 when p > 2. For the

same reason, when F(z) € FE,(D) with boundary value F(x) satisfying certain conditions, Theorem H and
Theorem I can be concluded as corollaries of Theorem 1 and Theorem 2. Therefore, by applying Theorem 1
and 2, Theorem H, I, J and K can be generalized to cases in which F(z) satisfies |F(z)| < C.e?*)+el2l with
boundary value F(z) € LP(R™) for 1 < p < 2 and |x\”(1_%)F(:ﬁ) € LP(R™) for p > 2.

If we set (y) = 0, then suppf C I'*. When 1 < p < 2, Theorem 1 implies Theorem B and E in
the one and higher dimensional cases respectively. In the particular case p = 2, it reduces to the classical
Paley—Wiener Theorems, which are Theorem A and D herein. When 0 < p < 1, Theorem F and G are
special cases of Theorem 3.

2. Lemmas

In order to prove Paley—Wiener-type results for holomorphic functions in tubular domains, we need the
following lemmas.
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Lemma 1 ([1]). Assume that a is a real number and u is subharmonic in the upper half-plane C*, which
satisfies o = mzecﬂzhm |z| 7 u(z) and lim,—, 1iyec+ ysou(z) < a, then u(z + iy) < a + oy for all
z=x+iyec CT.

Proof. The proof of Lemma 1 refers to [1]. O

Lemma 2. Assume that T is a regular open convex cone of R™. Let ¢ € C(T') satisfy (3). By defining U(¢),T)

as in (4), we have U(¢,T') C (=I'* 4+ D(0, Ry)).

Proof. Assume that { € U(y,T). If £ € —T', it is clear that £ € —I'* + D(0, Ry). Otherwise, for £ ¢ —I'*,
there exists & € —I'* such that

|§ — &l =inf{[§ — 2| : 2 € O(-I")}
and & - (£ — &) = 0. Then, for any § € —I'*,

§1—¢§
1SS

-8 ( ) > 16 =€l

It follows that ¢ - (£ — &) > 0, which implies & — ¢ € (—=I'*)* = —T. Thus, £ — &, € T'. For any ¢ > 0, based
on (3), there exists 7. > 0 such that ¥(y) < (Ry + €)|y| holds for y € T with |y| > r.. Since £ € U(y,T),
according to (4), there exists A¢ and 7o > . such that ¢(y) — &y > A¢ holds for any y € T, where |y| > 7.

Letting eq = %7 then € -eg = (£ — &1) - é:gl = |¢€ — &1]. Set y = pey with p > 1o, then y € T'. We can

observe that

(Ry +¢e)p > ¥(peo) > Ag + p€ - eg = Ag + pl§ — &1l

which implies that |{ — &1| < Ry + € for considerably small € > 0. It follows that { — & € D(0, Ry). Thus,

E=E—& +& € D(0,Ry) —I'*. Then we obtain U(¢,I') C (=I'* + D(0, Ry)). O

Lemma 3 (/3]). Let K C int T'* be a compact set. Then there exists a positive constant dx such that, for all
yeTl andallue K, y-u > dklyl.

Lemma 4. Assume that F(z) € HP(I',%), 0 < p < o0, I is a regular open cone in R™, and ¢ € C(I'(J{0})
satisfies (3). Then,

. 2pm Ry+(0
[ 1@+ igpde < it pp, Q
R~

Moreover, when 1 < p < oo, there exist Fy(z) € LP(R™) and a sequence {yx} in T tending to zero as k — oo,
such that

khj& F(z + iyg)h(z)dx = /Fo(x)h(x)dx 9)
R~ R~

holds for any h € L1(R™).
Proof. Assume that 1 < p < oo, the unit ball of LP(R™) is weakly compact, which implies that, for

F € HP(Tr), there exists Fy(x) € LP(R™) and a sequence {y;} in I tending to zero as y; — 0 such that (9)
holds for any h € L4(R™).
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Next, we prove (8). Given an integer N > 0 and yo € T, let E(N) = [-N,N] x -+ x [-N, N] be a cube
in R” and y € T, {e1,ea,...,e,} be the standard basis vectors in the Euclidean space R™. The function
gjn(w) (7 =1,2,...) defined by

J
Z Z Z ‘F(%(lﬁel +k262+---+knen)+wy+iyo))

J J
ki=—j ko=—j kn=—j

G

is continuous in C+ and converges uniformly for w in every compact subset of C* to the function

B (w) = / |Fyw + £ + iyo)[Pdt,
B(N)

where C* is the closure of C*. For k € N, 49,y € T, F(%k + wy + z'yo) is a holomorphic function of
w € CT for fixed y,yo € I'. Thus, the function

N pPN™
log (’F(k + wy + iy())‘ >
J "

is subharmonic in C*, which indicates that log g; n (w) is subharmonic in C*. Then, the function log |hy (w)]
is subharmonic in C*. For fixed y € T, where |y| > Ro, the set {vy +yo : 0 < v < |y|"Y(Ro + |yo])} is
compact in I'. By the continuity of ¢ in I', we have

" {1/;(vy +Y0)

(0 <o < |yl (Ro + |yo|)} < oo.
lvy + yol | lvol)}

Therefore,

m—  loglhn(w)|

<2 R
weCH,|w| =00 |wl < 2mplyl Ry

and

oy ()] < / F(a + iyo)Pde.
]Rn

Applying Lemma 1 to the subharmonic function log |hy (w)| in C*, it follows that
[ ot ilras < it [P i)
E(N) R»

For y € T, letting w = 4 and N — oo, we observe that

/ F(z + iy + iyo) Pdz < e2mIvIT / |F (o + iyo)Pde
R R~

< e2mPlylRy o2pm(yo) HF“HP(FW)'

Thus, by sending yo — 0 and based on (3), Fatou’s lemma and the continuity of i at 0, we obtain the
desired estimate
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. 2p7(|y| Ry +(0)) P
/|F(a:+zy)|”dz < ePmi 1 e -
Rn

Consequently, (8) holds for any y € I and the proof is complete. O
3. Proof of the theorems
3.1. Proof of Theorem 1

Proof. We divide the proof of Theorem 1 into the following steps.

Step 1. Let w be a non-negative C°°(R™) function with compact support in the unit ball and ||w]| ;1 (®n)
= 1. Let w.(t) = e "w(e~'t). Since T is regular, we choose ug € I'* and g9 > 0 such that the ball
D(ug,2e0) C I'*. Furthermore, let ©(u) = we,(u — ug), then the function Q(2) = [p, e*™*“@(u)du is an
entire function. For any y € I',x € R™, we have |Q(z +14y)| < 1. Notice that the Hausdorff-Young inequality
implies

Q=

/ |Q(ex + iey) — Qex)|9dx

B =

IA

IA

(exp2lyl=(fuol + 1)} = D+ | [ (@(-w)? du

for y € I.
For Q(ez) = fR e?me2 v (u)du, integrating by parts and taking the derivative with respect to z under
the integral, the following formula holds,

(—2mei) 2 DB (Q(e2)) = / (2mein)Pe2™i= DO (5(u)) du,
Rn

wherein o = (ay,...,a0), 8= (B1,...,Bn), DS = D31 --- D%, D8 = Dfr... Dfn and 2 = 20" - 20n,
This implies that, for all € > 0, «, and 3, there exists a constant M, g . > 0 such that

|zO‘DZ’3(Q(Ez))\ < egﬂ(y)Ma’g,E < 00

for z = x + 4y € C™, where v(y) = max{—y - u : |u — ug| < g0}. Let K = D(ug,2¢). Then by Lemma 3,
there exists a positive constant dx such that v(y) < —dx|y| for y that satisfies % € K. Therefore, for each
N > |a|/2, there exists a constant My g.. > 0 such that

My 5 56—27766;(\31\
(1 + [z)N

|DZ(Qe2))] < (10)

Step 2. Let F.(z) = [g. F(z + u)we(u)du for z € Tr and let F.(z) = [, Fo(z 4+ u)w.(u)du, where
Fy(z) is defined as in Lemma 4. It is clear that F.(z) is holomorphlc in Tr. Since |F.(z) — F(2)| <
max{|F(z +et) — F(z)| : |t| <1}, we have

lim F.(z) = F(2) (11)

e—0
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uniformly on any compact subset of 7. Holder’s inequality and (8) imply that
|F2(2)] < NI Fll o (e, €™ O g | La. (12)

Based on the Minkowski inequality,

(R/ (R |F(z+ u+iy)we(u)|du | dx

P

|F(z+u+iy)we(u)Pdz | du < ™Y F|l gy, (13)

which implies that F.(z) € HP(T, ). Then based on (8),

Tl=

1
? p
([R/ |Fo(x +ay)Pdz | < (m/ (R/ |F(z + u+iy)we(u)|du | dx
< I F || o 1 gy €27 el (0)) (14)
Since w. € LI(R™), it follows from (9) that
klim F.(z+iyg) = /Fo(x + w)we (u)du = Fe(x). (15)
—00
R”
Step 3. Let
9et(y) = ge(t.y) = /Ge(u +iy)et Ty, (16)
R~

where y € T'J{0}, t € R, G.(z) = F.(2)Q(ez). Clearly, (10) and (12) indicate that g.(¢,y) is a continuous
function of t € R”. We now prove that g. ;(y) is a constant in T'. Let H.(u + iy) = Ge(u + iy)e?mutw)t,
According to the Cauchy integral formula, (10) and (12), for all y € D(y,dp) C I and = € R™, there exists
a constant My, 5.+ > 0 such that ‘ H.(z )‘ < My, 50,t.(1 + |2])~ 1. The Cauchy-Riemann equations
imply that mHe(U +iy) = Z%Hg(u +iy) for z = u+ dy. Thus, taking the derivative with respect to y
under the integral, for k = 1,2, ..

'7n7

8 —ge(t /3 (u+idy du—/ Dur H.(u+ iy)du = 0. (17)

Therefore, g. ¢(y) is a constant in T'.
Step 4. Holder’s inequality and (13) imply that

//|F(u+:l:+iy)w5(u)Q(s(z+iy))|dud:E

R» R~
1
q

< F o 0y @) / Qe(e + iy))|4dz
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Using Fubini’s theorem, for y € I', we obtain

Gea(y) = / Fu(a +ig)Qe( + iy)) @m0 gy
R"L

= / (R/ F(u+ s+ iy)we(s)ds | Qe(u+ iy))e%rz’(u-ﬂ'y).tdu
Rn n

— [ P+ iphep i,
Rn

where
e t) = [ wele e+ i)
Rn

is a continuous function of x,y,t € R™. Since
he(z,y,t)

_ /wg(l‘—u) /6277i(6u+i5y)'5&(3)d$ e27ri(u+iy)-tdu
R~ n
:627ri(w+iy)~t/ s—nd}(__u)/e—27riv‘te27ri(v—iy)-uw€(,U)dv 6—27riu~mdu7

3
R~ R~

the function h.(z,y,t)e”2™@+ W)t of 2 € R™ is the Fourier transform of the function

e U
heyt(u) = "w(—

. )627ry~u/627riv~(u—t)w6(v)dv

Rn

and the function h.(x,0,t)e~2™t of x € R™ is the Fourier transform of the function

—n~ U miv-(u—
heot(u) =€ w(?)/e2 =y (v)dv.
R~

The Hausdorff-Young inequality implies that

a

/ e (2, )| 762700

=

p

(R/ 62“9'“57"@(%“)/62”“'(“7t)w5(v)dv du

R

IN

1
P

/ |e_2my'“(b(u)’pdu RIC D)

IN
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and

1
q

/ Ihe (2,9, )™ — (2,0, ) de

P
(R/ (e*mv 1)5‘"@(%”)/e%i”'(“_t)wg(v)dv du

Rn

IN

(R/ |(em2mevy — 1)&)(u)|p du| "D, (19)

On the other hand, letting G (u) = Fo(u)Q(eu) and g(t) = [z, Fr(u)Q(cu)e*™ ™ du, we have

IN

|92.6(y) — ge(1)] = /(F(variy)he(x,y,t) — Fo(z)he(z,0,t))dz

n

IN

‘Il(gatvy” + ‘IQ(E,t,yﬂ + |I3(€at7y)|7

where y € T,

Lety) = / F(a+ ig)he (2,9, 1)(1 — ™ )da,
Rn

e t,y) = / F(a+ iy) (he(,y, )™ — he(x,0,1))dz,
Rn

(e t,y) = / Fla + iy)he(z, 0, t)dz — / Fo(2)he (z, 0, t)dz.
R~ R”

Based on (9) and (18), we have I3(e,t,yr) — 0 as k — oo. Holder’s inequality, (18) and (19) imply that
[Ii(e, t,y)| + |T2(e, t,y)| = 0 as y — 0, where y € I'. We deduce from (17) that for y € ', there holds:

9ea() = 9:6) = [ Glu+ ig) 2T+ 1, (20)
R~

As a result, for all t € R™, the following estimate holds:

Q=

9= ()] < | F | 1o,y @) v ) / Q(e(x +iy))|%dz | (21)

Notice that

1 1
q P

/ Qe(a +iy)|tde | < / e 2 Pdu | < [l o
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for y € T'. Next, we show that g.(t) = 0 for ¢ ¢ U(¢,T"). To this end, assume that to ¢ (U(T,)). Then,
based on (4), there is a sequence {y;} in I tending to zero as k — oo, such that ¥ (yx) — to - yp — —o0. It
follows from (21) that g.(to) = 0 for ¢ty ¢ U(T, ).

Step 5. The Hausdorff-Young inequality implies that

3 1
| taetwreemriar | < { [P w9t i)
UTse) "

for e > 0, y € I'. Based on (10), (14), (16), Fatou’s lemma and the fact that |Q(e(u + iy))| < 1, for £ > 0,
yel,

lgllzoqmny = Jim 1€ e gy < €™ PN Nipor,u)- (22)
Y Y

Therefore, there exists g(t) € LY(R™) and a sequence {ej} such that

lim [ g, (t)h(t)dt = / g(t)h(t)dt (23)

k—o0
R~ Rn

holds for any h € LP(R™) as e — 0 along with k& — co. We rewrite (20) as
ga(t)@27ry<t = /Fa(u + Zy)Q(g(u + Z'y))e%riz&udu.
R~

Then for y € T, g +(y)e*™ is the inverse Fourier transform of G.(u + iy) considered as a function of w.
Recall that g.(t) = 0for ¢t ¢ U(y,I"). For fixed yo € T, there exists a d; > 0 such that D(yo,d1) C I'. Thus,

do=inf{z-y:z el |z =1y —yo| <1} > 0.

Consequently, by Lemma 2, U(¢,I') C —I'* 4+ D(0, Ry). For t € U(¢,T'), there exist t; € —I'*, and ¢, € R"
satisfying |ta| < Ry such that ¢ = ¢ + ta. Therefore, for y € D(yo, 1),

ty=t-y+ta-y < —[t1|d2 + [t2|]y
< ([t = [ta])d2 + Ry ly| < —[t|d2 + Ry(d2 + |yo| + 61)-
As a result,

|ge (t)€2ﬂy‘t| < |ge(t) |62”(_|t\52+3¢(62+\yo|+51)) )

Combining with (22), this implies that g.(t)e?>™¥* € L*(R") for y € T'. Note that F.(u + iy)Q(e(u + iy)) €
LY(R™) for y € T', we then have the following inverse Fourier transform:

F(z +iy)Qe(z + iy)) = / ge(t)e et gy, (24)
Rn

which is holomorphic in Tt since g. (t)e?™¥* € L*(R™). Let x(t) be the characteristic function of set U (1, T).
Then, the function y(t)e=27=+%)* helongs to LP(R™). According to (23),
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lim F., (2)Qerz) = leH;O/gEk (t)x(t)e 2 = dt = /g(t)x(t)ef%it'zdt. (25)
Rn

k—o0
Rn

Sending ¢ to zero, we have Q(ez) — 1 for z € Tr. Consequently, based on (11) and (25),
Fz) = / ()X (D)e2m =g, (26)
R‘n,

We see that (6) holds by letting f(¢t) = g(—t) and suppf € —U(%,T). The proof of Theorem 1 is com-
plete. O

3.2. Proof of Theorem 2

Proof. Following the proof of Theorem 1, we have
9(t) = / Ge(u + iy)e”™ )y (27)
Rn
foryeT, t € R™ And g.(t) =0 for t ¢ U(¢,T).
The Hardy-Littlewood inequality ([13]), (7), and (27) indicate that there exists a constant ¢, such that

2™ty (x)|Pdx < ¢ Ge(x + iy Plz["P=2) g,
P

where G.(z) = F.(z)Q2(ex). Based on Holder’s inequality,

el ( / 'F(“gtﬂy)pdt)( / |w(t)lth>§

D(0,1) D(0,1)

It follows from Fatou’s lemma and (10) that

[la-@pda

Rn

< um el [ ([ 1Pt il 0 +in) Pl

yel',y—0
R™  D(0,1)

= Cp||w||Lp(Rn)Mo 0, lm |F'(z + iy)|? < / |z — €t|"(p2)dt) dx
r,
ye y—)OR Dio.1)

<C lim [ (14 [2*P72)|F(z + iy)[Pde < oo,
yGF,yHORn

where C = cp||w|\gp(Rn)MO,0752"(p_2)_an with 0 < € < 1, and V,, is the volume of an n-dimensional ball in
' C R™. Therefore, there exists g(t) € LP(R™) and a sequence of {g;} such that

lim [ g., (O)h(t)de = / (Oh()da (28)

k—o0
Rn R~
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holds for any h € L9(R™) as e, — 0 along with k¥ — co. We rewrite (27) as
g (t)e? ™t = / Fo(u+iy)Qe(u + iy)) > du.
Rn
Note that g.(t)e* ¥t € L'(R") for y € ', which can be certified by the same way as that of Theorem 1.
The inverse Fourier transform formula is given as
F.(x +1iy)Qex + iey) = /gg(t)e_gmt'(x“y)dt.
R~
Then, for a sequence of {e;} tending to zero as k — oo,

k—o0 k—o0
R~ R~

lim F., (2)Q(ez) = lim [ g., (t)x(t)e ?™"*dt = /g(t)x(t)672ﬂ—it.zdt7

where x(t) is the characteristic function of set U(w,T'). As a result, F(z fU sy 9(te —2mitzdt, We can
see that (6) holds by letting f(t) = g(—t), and suppf C —U([,¢). O

3.8. Proof of Theorem 3

Proof. For momentarily fixed yo € T', let Fy (2) = F(z + iyo). Then F,, is holomorphic in Tt. Let r =
d(yo,0T') = inf{|yo —y| : yo € ',y € OT'} and § = d,, = r/2. It follows from the subharmonic property of
function |F,(z)|P and Lemma 4 that

R | (( / F(T+i(y+yo+n))|pd7);)pdn

[n|<é Rn

1

p
o 2pTpy,
< W / <e 1/’(2/+y0+77)|F||HP(F7,¢,)> dn < Cn,p,ée P 0(y)7

[n|<s

where ¥y, (y) = sup{e(y +yo + 1) : [n| <6}, Crps = 92 i ||FHHp(r ) and Qp, is the volume of the unit
ball in R™. Therefore,

/‘ (z + iy | dx<C = 2(2 p)wwyo(y)/|F (z + iy)|Pdx

R~
= C p6|| yoHHp w)e‘l’”l’yo(y)7
which implies that F,, € H*(T',1,,). Similarly, we have
/ |Fyo (z + iy)|dz < C,, 7 5|| woll%ro Qm/;yo(y)- o)

Thus, F,, € HY(T,¢y,) N H*(T, %y, ). Let g,(t) be the inverse Fourier transform of F,(z). Applying Theo-
rem 1 to Fy,(z), we obtain

Gyo (t)eihyoht = Gy+yo (t)eih(?ﬁy())'t
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for y,yo € I', which shows that g, (t)e 2™ is independent of y. We denote it by g(¢). Then

g(t) = gy(t)e ™" (30)

is continuous on R™. It follows that F(z) = [, g(t)e *™*#!d¢t for z € Tp. Combining with (29), we obtain

19(t)] = |gyo+y (e 2@ < O, L exp{J (yo, 1)},

~ 1-p
where Cpp = (2) 5" || Fyyllzzr(r,p) and

1
J(yo,y,t) = —n(l—) —1)logdy, — 2m(yo +y) - t + 2wy, (y)

for z € Tr. We can now prove suppg(t) C U(¢y,,I"). To this end, we show that g(t) = 0 for ¢ ¢ U(¢y,,I).
In fact, when t ¢ U(1)y,,I'), based on (4), there is a sequence {y;} in I' tending to zero as k — oo, such
that ¢(yx) —t - y» — —oo. Then g(t) = 0 for t ¢ U(ty,, ). Letting f(t) = g(—t), the representation

FG) = [ s (31)

Rn
holds and suppf C —U(3y,,I'). According to Lemma 2, —U(¢,,,I') C (I'" + D(0, Ry, )). Since Ry, = Ry
for any fixed yo € T', we see that —U(¢,,,I") is also a subset of I'* + D(0, Ry,). Hence, suppf C (I'* +

D(0, Ry)).
Next, we prove that f(t) is a slowly increasing function on I'* 4+ D(0, Ry). Let

J(t) = lnf{‘](y()ayat) ‘Yo € Fay € f}a
then |f(t)] = [g(—1t)| < én_,p exp{J(—t)}. The fact that 1> € C(T) and (3) indicate that there exists a positive

d
constant A > Ry, which is independent of o, y, such that 1, (y) < A(1+|yo|+|y|) for any yo,y € I'. Taking

Yo = pv with p > 0 and a fixed v € I with |v| = 1, we have d,, = d(pv,0I')/2 = pe, where ¢ = d(v,dI'") /2.

Thus,

J(—t) = g%{—n(% — 1)log (sp) + 27plt] + 27 AL + p)}.

The above infimum can be attained when p = n(; —1)(2n([t| + A))~". Then

J(—t) <2mA+ n(% -1) (loge — log (n(% —1))+1+log (2w (A + |t))> .

Hence, for ¢t € IT* 4+ D(0, Ry), there exists a positive A, , , such that
O] < Cope” 0 < A (L 1) 7Y,

which shows that f is a slowly increasing function. Thus, the proof is complete. O
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4. Application

Let K be a compact subset of R™, we denote the support function of K by @k (y), which is defined
as pr(y) = sup{z -y : ¢ € K}. It is convex and continuous on R™ and satisfies condition (3). For any
s> 0,y € R™, vi(sy) = spr(y). We define the polar set of K as K* = {y € R" : px(y) < 1}.

If K is convex, closed and 0 € K, then K** = (K*)* = K ([12], Chapter 3, Lemma 4.7). Moreover,
¢r-(z) =sup{z -y :y € K} and pr-(2) = ok (2).

For all z € C™, define ¢k (z) = sup{|z-t| : t € K}. An entire function F on C" is of exponential type K*,
where K is compact, if for each € > 0 there exists a constant A. such that

|[F(2)] < Ace®m(398x ) (32)

for all z € C™.
If K is convex, compact and symmetric (that is, z € K implies —x € K), and it has a non-empty interior,
it is called a symmetric body. The class of entire functions satisfying (32) is denoted by &(K*) ([12]).

Theorem L (Paley—Wiener in C™). ([12], Chapter 3, Theorem 4.9). Suppose K is a symmetric body and
F € L2(R™). Then F is the Fourier transform of a function, f € L*(K), vanishing outside K if and only
if F is the restriction to R™ of a function in &(K*).

We will generalize the Paley—Wiener theorem for band-limited functions defined in C” to the case when
0 < p < 2. We first introduce the following lemmas.

Lemma 5. Assume that 0 < p < oo, K is compact and symmetric, I is a regular open cone in R™, F(z) is
holomorphic in the tube Tt and continuous in the closed tube Tr. For each € > 0, if there exists a constant
Ac such that (32) holds for all z € Tr and F € LP(R™), then

/ |F(z + iy)|Pde < e2™Pex®) / |F(z)Pdx (33)
Rn R~

forally eT.

Proof. The proof is similar to that of Lemma 4. Given an integer N > 0, let E(N) = [-N,N]x---x[—N, N]
be a cube in R™ and b € T'. Then, function g; v (w)(j =1,2,---) defined by

J J J
N PrN\™
oy oy ’F(—,(klel FEoen + ..+ Enen) + wb)‘ (—)
M=—jki=—i  ka=—j 7 J
is continuous in C+ and converges uniformly for w in every compact subset of C* to the function
o (1) = / |F(bw + )[Pdt.
E(N)

For fixed N > 1,57 > 1,b € I', and ki, ks, ..., k, € N, the function
n

N PN
IOg (’F(7(k161 + koeg + -+ - + knen) +a+ Wb) j_)

is subharmonic in C*, which implies that log g; v (w) is subharmonic in C*. Hence function log |hy(w)] is
subharmonic in C* and satisfies
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fim log |hn (w)]

<27 b
weCT,|w|—o0 |’U}| pSOK( )

and

\hN<u>|<(/Wf«x>de.
RTL

Applying Lemma 1 to the subharmonic function log |hy (w)| in C*, there holds

/ \F(bw + 2)|Pdz < e2TPex O / |F(2)|Pdz.
BE(N) R

Since pk is homogeneous of degree one, letting w = vi, y = vb € I', and sending N — oo, we obtain the
desired estimate (33) for y € T and the proof is complete. O

The following lemma shows that inequality (33) holds for any y € R™.

Lemma 6. Assume that 0 < p < oo, K is compact and symmetric, F' is an entire function in C™ such that
F e LP(R™). If F € &(K*), then (33) holds for any y € R™.

Proof. Note that R™ can be decomposed into a finite union of non-overlapping convex regular cones,
k
I'1,To,..., Tk, with vertexes at the origin 0. Based on Lemma 5, (33) holds for any y € R* = (J Tj.
j=1
Then the desired formula can be proved. O

We can now state an n-dimensional version of the Paley—Wiener theorem for 0 < p < 2:

Theorem 4. Assume that 0 < p < 2, K is a symmetric body, F' € LP(R™). Then F is the Fourier transform
of a function f € L*(R™) when 0 < p < 2 and f € L*(R™) when p = 2, vanishing outside K if and only if
F is the restriction to R™ of a function in &(K*).

Proof. If F is the Fourier transform of function f € L!'(R"™) vanishing outside K, then it is easy to check
that

F) = [t e = [ et

R™ K

extends F' to a function in &(K™).

The converse can be deduced from Lemma 6 and Theorem 1. Assume that F is the restriction to R™ of
a function in &(K™*). For simplicity, we also denote the latter by F. Based on Lemma 6, (33) holds for all
y € R™. The subharmonic property of function |F'(z)|? and Lemma 6 imply that

1
FeP<g- [ [ Fetrsmpanay
2n

|T+in|<1

1
gﬁ‘/’w/wgw+mwws%ﬂmw/mea
n D,(0,1) Rn» R»

where ,, is the volume of the unit ball D,,(0,1) in R™, Qs,, is the volume of the unit ball Dy, (0,1) in C™,
Ry = max{px(y) : [yl = 1} and C2 = Q,,e?"F1Q, 1. Therefore,
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[1FG s iPis = [ 1P+ igprds
R~ R~

< eQ(Q_p)”leCfL_p</|F(33)de> ! /|F(:v+iy)\pdx
R~ R~

< e4“lec§p(/|F(x)|pdx)p.
Rn

By Lemma 6, we then have F' € H?(Tg) for all bounded bases B. Thus, there exists g such that

F(z) = /eZTriz-tg(t)dt, /'F(x+iy)|2d$:/‘g(t)|26_4ﬂy'tdt
R~ Rn

R~

for all z = x + 4y € Tp ([12], Chapter 3, Theorem 2.3). We can assume 0 € B, then Plancherel’s theorem
asserts that g € L*(R™) and ||g|3 = [, |F(2)[>dz. Thus, we see that F(z) = f(t) is the Fourier transform
of f(t) = g(—t). Based on Lemma 6,

/|f(t)|264“y'tdt < etmer() / |F(2)|*dx. (34)
R™ R»

By using the same method as in the end of the proof of Theorem 4.9 of Chapter 3 in [12], we can prove
that the inequality (34) holds only when f vanishes almost everywhere outside K. Then Theorem 4 can be
stated. O

The following three theorems are versions of the edge-of-the-wedge theorem (see in [14-16]). First, we
introduce some definitions:
Let T" be a regular open cone in R™. We denote by 24(I") the space of functions ¢ € C(I"), which satisfy

lim ¢(y) <oco and R(¢,T)= lim 0 < 0.

yeD 30 Vel Jyl=oe [y

Theorem 5. Assume that T is a reqular open cone in R™, ¢y € A(T'), and o € A(=T"). If F; € HP (T, 41)
and Fy € HP2(—T,45) (1 < p1,p2 < 2) satisfy

lim [ |Fi(z+iy) — Fa(x —iy)[*de = 0, (35)

yel',y—0
Rn
then Fy and Fy can be analytically extended to each other and further form an entire function

F € &(K*). Furthermore, there evists a measurable function f(t) € L?*(R™) with suppf C K =
(=U (1, 1) (=U (%2, -T)), such that

F(z) = [ f(t)e*™*=at
/

holds for z € C".

Proof. Theorem 1 implies that there exists a measurable function f; € L% (R™) (j = 1,2) with suppf; C
—U (¢4, (—1)’7'T") such that
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Fj (Z) = /f] (t)eQTrit.zdt
Rn
holds for z € T(_1y;-1p. Plancherel’s theorem and (35) imply that

/ FL(E)e2™Y — fo(£)e= 27V |2t — / \Fy (2 + iy) — Fa(z — iy)|2da.
R~ R»

The finiteness of the right hand side can be deduced from (26). Fatou’s lemma implies that || f1 — f2 | 2rn) =
0, and hence f1(t) = f2(t) almost everywhere on R™. If we let f(¢) = f1(t) = f2(t), then suppf C K. Let
R = max{R(¢1,T), R(¢2, —T")}. Then, Lemma 2 implies that

K C (I'* + D(0,R)) N (-I'* + D(0, R)).

Thus, set K is a bounded convex set. Consequently,

F(z)= /e%iz'tf(t)dt

K

is an entire function, where F'(z) = Fy(z) for z € Tt and F(z) = Fy(z) for z € T_r. Moreover,
|F(2)] < Coexp{2mpx(Imz)} < C’Oez”Rolyl, zeCn,

where ¢k (y) is the support function of the convex set K and

or (D)
d

Co = / F(Oldt, Ro = sup( b e R™, b0},
K

The proof is complete. O

Applying the same method as for cases p > 2 and 0 < p < 1, we can obtain the following two theorems.
Therefore. The proofs are omitted.

Theorem 6. Assume that T' is a reqular open cone in R™, p1,pa > 2, ¢y € A(T), and 1o € A(-T). If
Fy € HPY(D,41) and Fy € HP2(—I',49) satisfy the conditions of Theorem 2 and (35) holds on R™, then
Fy and Fy can be analytically extended to each other and further form an entire function F € &(K*).
Furthermore, there exists a measurable function f(t) € L?(R™), which is the Fourier transform of F(z) with

suppf C K = (=U(¥1,1)) N(=U (32, -T")), such that the representation
F(z) = [ f(t)e*™=at
/

holds for z € C™.

Theorem 7. Assume that T is a regular open cone in R™, 0 < p1,pa < 1, ¥ € A(T), and o € A(-T). If
Fy, € H(T',41) and Fy € HP2(=T',42) satisfy conditions of Theorem 3 and (35) holds almost everywhere
on R", then Fy and Fy can be analytically extended to each other and further form an entire function
F € &(K*). Moreover, there exists a slowly increasing continuous function f(t) € L?*(R™), which is the

Fourier transform of F(z) with suppf C K = (I + D(0, R)) ((=T*+ D(0, R)), such that the representation
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F(z) = /f(t)ezmt'zdt
K

holds for z € C™.
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