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Abstract
As continuation of the study of Fourier spectrum characterization of higher-
dimensional Hardy spaces H p(T�) on tubes for 1 ≤ p ≤ ∞, this paper aims to obtain
analogous Fourier spectrum characterizations and integral representation formulas of
higher-dimensional Hardy spaces H p(T�) on tubes for the index range 0 < p < 1.
For 1 ≤ p ≤ ∞, the H p(T�) are well understood via the Poisson and conjugate
Poisson integrals. However, for 0 < p < 1, those integrals are no longer defined that
requires more delicate analysis.
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1 Introduction

The Fourier spectrum properties of the functions as non-tangential boundary limits
of those in the classical complex Hardy spaces H p(C+), 1 ≤ p ≤ ∞, are com-
pletely characterized (see, for instance, [10,11]). The characterization is in terms of
the location of the supports of the classical or distributional Fourier transforms of
these boundary limit functions. It is shown that, for f ∈ L p(R), 1 ≤ p ≤ ∞, f is
the non-tangential boundary limit of a function in a H p(C+) if and only if supp f̂ , for
1 ≤ p ≤ 2; or, the distributional supp f̂ , if 2 < p ≤ ∞, is contained in [0,∞). For
p = 2 this property of H p is known as one of the Paley–Wiener Theorems. We now
recall the formulation in the 1-D case.

Theorem A (Paley–Wiener) [6] The function F ∈ H2(C+) if and only if there exists
a function f ∈ L2(0,∞), such that the integral representation holds

F(z) =
∫ ∞

0
f (t)e2π i t zdt

for z ∈ C
+, and, furthermore, ‖ f ‖L2 = ‖F‖H2 .

Generalizations to higher dimensions of the above famous Paley–Wiener theorem
are obtained in [10,11] and [13]. There holds the following related result.

Theorem B [10] If f ∈ H p(C+), 1 ≤ p ≤ ∞, then, as a tempered distribution, f̂
is supported in [0,∞). That means that ( f̂ , ϕ) = 0 for all ϕ ∈ S(R) with supp ϕ̂ ⊂
(−∞, 0]. Moreover, in the range 1 ≤ p ≤ 2 there holds f̂ (x) = 0 for almost all
x ∈ (−∞, 0].

The converse result of Theorem B holds as follows.

Theorem C [11] If f ∈ L p(R), 1 ≤ p ≤ ∞, and d-supp f̂ ⊂ [0,∞), then f is the
boundary limit of a function in H p(C+).

To the authors’ knowledge, very little literature has addressed the Fourier spectrum
aspect for higher-dimensional Hardy spaces H p(T�) on tubes T� , except in [1,13]
where it is shown that such characterization result holds for p = 2. They show in [13]
that a L p(Rn) function is the non-tangential boundary limit of a function in H2(T�)

if and only if its Fourier transform vanishes outside the dual cone of �.
We next recall some basic results in higher dimensions, for any open and connected

subset B ofRn, Stein and Weiss [13]obtained the following fundamental representation
theorem restricted to only H2(TB).

Theorem D [13] F(z) is a function of higher-dimensional Hardy spaces H2(TB),
where TB is a tube on B which is an open connected subset of Rn, if and only if it has
the integral representation

F(z) =
∫
Rn

e2π i z·t f (t)dt
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for z ∈ T�, where f is a function satisfying

sup
y∈B

∫
Rn

e−2π y·t | f (t)|2dt ≤ A2 < ∞.

Stein and Weiss [13] commented that the theory of H2(TB) becomes richer if the
bases B are with more restrictions. When the base B is restricted to be an open cone
�, one obtains the following sharper representation theorem for H2(T�) functions.
We note that, the following Theorem E is about the regular open cones. The result also
gives rise to the Fourier spectrum characterization of the Hardy H2-functions.

Theorem E [13] F(z) is a function of H2(T�), where � is a regular open cone in R
n,

if and only if it has the integral representation

F(z) =
∫

�∗
e2π i z·t f (t)dt, z ∈ T�,

where �∗ is the dual cone of � and f (t) is a measurable function on R
n satisfying

∫
�∗

| f (t)|2dt < ∞.

Moreover, ‖F‖H2 = ‖F‖2 = (∫
�∗ | f (t)|2dt

)1/2
.

Open cones are those satisfying the following two conditions:

(1) 0 does not belong to �;
(2) For any x, y ∈ �, and any α, β > 0, there holds αx + β y ∈ �.

We note that a cone � is a convex set. The dual cone of �, denoted by �∗, is defined
as

�∗ = {y ∈ R
n : y · x ≥ 0, for any x ∈ �}.

A cone � is said to be regular if the interior of its dual cone �∗ is nonempty.
For instance, when n = 1, there are only two open cones, the open half-lines

{x ∈ R : x > 0} and {x ∈ R : x < 0}. Their dual cones are the closed half-lines
{x ∈ R : x ≥ 0} and {x ∈ R : x ≥ 0}, both having non-empty interiors.

When n = 2, the open cones are the angular regions between two rays meeting at
the origin. Such a cone is regular if and only if the corresponding angle is strictly less
than π .

When n ≥ 2, the first octant of Rn is a particular open convex regular cone whose
dual cone is the closure of itself.

We will be using the following technical results.

Theorem F [13] Suppose that F ∈ H p(T�), where � is a regular open cone in R
n,

then the following properties hold for 1 ≤ p ≤ ∞.
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(a) If � is a cone whose closure is contained in � ∪ {0}, then

lim
y∈�, y→0

F(x + iy) = F(x)

for x ∈ R
n;

(b)

lim
y∈�, y→0

‖F(x + iy) − F(x)‖p = 0;

(c)

F(z) =
∫
Rn

P(x − t, y)F(t)dt,

where F(x) is called the restricted (non-tangential) boundary limit of F(z).

We note that the Fourier spectrum characterization result (Theorem E) obtained by
Stein and Weiss is restricted to p = 2. It is natural to ask in what extent they can be
generalized to all the cases 0 < p ≤ ∞. Our recent work [8] proved that the Fourier
spectrum characterization is also valid for the cases 1 ≤ p ≤ ∞. That is

Theorem G [8] Let F(x) be a function of L p(Rn), 1 ≤ p ≤ ∞. F(x) is the restricted
boundary limit function of some function F(x + iy) in H p(T�) if and only if d-
supp F̂ ⊂ �∗, where T� is a tube on a regular open cone � and �∗ is the dual cone
of �. Moreover,

(1) For 1 ≤ p ≤ 2, F̂ is locally integrable, and

F(z) =
∫
Rn

X�∗(t)e2π i z·t F̂(t) dt =
∫
Rn

F(t)K (z − t)dt,

where K (z) is the Cauchy kernels associated with the tube T�.

(2) For 1 ≤ p ≤ ∞,

F(z) =
∫
Rn

P(x − t, y)F(t)dt .

where P(x, y) is the Poisson kernels associated with the tube T�.

In case � is a polygonal cone, there holds
(3) For 2 < p < ∞,

F(z) =
∫
Rn

F(t)K (z − t)dt .

All the above mentioned results for higher dimensions are for the index range
1 ≤ p ≤ ∞. One would concern what happen for the index range 0 < p < 1?
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This paper is devoted to answer this question. The obstacle for the cases 0 < p < 1
is that there is noFourier transformof such L p functions, and theHardy space functions
cannot be defined via Poisson and conjugate Poisson integral when 0 < p < 1. Deng
and Qian [3] have obtained certain Fourier spectrum characterization and integral
representation results about the classical one dimensional Hardy spaces H p(C+) for
index range 0 < p < 1 as follows.

Theorem H [3] If F ∈ H p(C+), 0 < p < 1, then there exist a positive constant Ap,
depending only on p, and a slowly increasing continuous function f whose support
is contained in [0,∞), satisfying

( f , ϕ) = lim
y>0,y→0

∫
R

F(x + iy)ϕ̂(x)dx

for ϕ in the Schwarz class S, and

| f (t)| � Ap‖F‖H p |t | 1p −1
, t ∈ R, (1)

F(z) = 1√
2π

∫ ∞

0
f (t)eitzdt, z ∈ C

+. (2)

With detailed analysis it turns out that the analogous characterization and integral
representation results hold for higher dimensional Hardy spaces H p(T�) on tubes for
0 < p < 1. The purpose of this paper is to achieve two generalizations in respectively
two directions: one is to generalize Theorem G to the index range 0 < p < 1, and
the other is to generalize Theorem H to multi-dimensions. We note that both the
generalizations are nontrivial, for there are technical difficulties to overcome for each
of them.

For the first generalization, the methods in proving the analogous Fourier spectrum
characterization of H p(TB) for the cases of 0 < p < 1 is more difficult than the cases
of 1 ≤ p < ∞. For 1 ≤ p ≤ ∞, the spaces H p(T�) are well understood via the
Poisson and conjugate Poisson integrals. However, for 0 < p < 1, those integrals are
no longer defined that makes the discussion more complicated.

For the second, the subject of several complex variables in our treatment is not
merely an iterative one-complex variable theory. In fact, some basic, or natural, or clas-
sical results of one-complex variable, are not easy to be obtained in higher dimensional
cases. For example, Lemma 4.4 in Sect. 4 is a well known result for one dimension. In
our paper the higher dimensional counterpart is proved by using the pseudoconvexity
and plurisubharmonicity of several complex variables [7].

The writing plan of this paper is arrange as follows: In Sect. 2, some basic notation
and terminology are recalled. In Sect. 3, the main results are stated. In Sect. 4, we
prove some useful lemmas. The last Sect. 5 is devoted to proving the main theorems.
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2 Preliminary Knowledge

We begin with some basic definitions and well-known results from the theory of
classical one dimensional Hardy spaces of upper-half or lower-half complex plane
(see [4,6]).

For 0 < p < +∞, let H p(C±) denote the space of the functions f analytic on the
upper-half or lower-half complex plane C± := {z = x + iy : ±y > 0} for which the
quantity

‖ f ‖H p
± := sup

±y>0

(∫ ∞

−∞
| f (x + iy)|pdx

) 1
p

is finite.
The tube TB with base B, where B is an open subset of Rn , is the set

TB = {z = x + iy ∈ C
n : x ∈ R

n, y ∈ B}.

For example, when n = 1, the classical upper-half complex plane C+ and lower-half
complex plane C− are the tubes in C with the base B+ = {y ∈ R : y > 0} and the
base B− = {y ∈ R : y < 0}, respectively. That is, C+ = TB+ = {z = x + iy ∈ C :
x ∈ R, y ∈ B+} and C

− = TB− = {z = x + iy ∈ C : x ∈ R, y ∈ B−}. Obviously,
the tube TB are generalizations of C+ and C

−.
It is known that n-dimensional real Euclidean space Rn has 2n octants. To denote

the octants, we adopt the following notations.
First, we define and fix σ1( j) = 1 for all j = 1, 2, . . . , n and denote by �σ1 as the

first octant of Rn . That is

�σ1 = {y = (y1, y2, . . . , yn) ∈ R
n : y j > 0, j = 1, 2, . . . , n}.

for all k = 1, 2, . . . , 2n .
Similarly, we define σk( j) = +1 or − 1 for all j = 1, 2, . . . , n, and k =

1, 2, . . . , 2n , and let σk = (σk(1), σk(2), . . . , σk(n)). The 2n octants ofRn are denoted
by �σk are defined as

�σk = {y = (y1, y2, . . . , yn) ∈ R
n : σk( j)y j > 0, j = 1, 2, . . . , n},

for all k = 1, 2, . . . , 2n .
Correspondingly, C

n is decomposed into 2n tubes, denoted by T�σk
, k =

1, 2, . . . , 2n . That is

T�σk
= {z = x + iy ∈ C

n : x ∈ R
n, y ∈ �σk }.
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A holomorphic function F(z) is said to belong to the higher dimensional Hardy
spaces H p(TB), 0 < p < ∞, if it satisfies

‖F‖H p = sup

{(∫
Rn

|F(x + iy)|pdx

) 1
p : y ∈ B

}
< ∞.

That is

H p(TB) = {F : F holomorphic on TB and ‖F‖H p < ∞}.

The spaces H p(T�σk
) are defined through replacing B by�σk , k = 1, . . . , 2n .Let� be

oneof the�σ j , a function, f , defined in tube T� , is said to have non-tangential boundary
limit (NTBL) l in each component of the variable at x0 ∈ R

n if f (z) = f (x + iy) =
f (x1+ iy1, . . . , xn + iyn) tends to l as the point z = (x1, y1; x2, y2; . . . ; xn, yn) tends
to x0 = (x (1)

0 , 0; x (2)
0 , 0; . . . ; x (n)

0 , 0) within the Cartesian product

γα(x0) = �α1(x (1)
0 ) × �α2(x (2)

0 ) × · · · × �αn (x (n)
0 ) ⊂ T�,

for all n-tuples α = (α1, α2, . . . , αn) of positive real numbers, where

�α j (x ( j)
0 ) =

{
(x j , y j ) ∈ C

+ : |x j − x ( j)
0 | < α j y j

}
, j = 1, 2, . . . , n.

As an important property of the Hardy spaces, it is shown that if f is a function in a
Hardy space H p, 0 < p < ∞, then for almost all x0, f has NTBL [13]

Since the mapping that maps the functions in the Hardy spaces to their NTBLs is
an isometric isomorphism, we denote by H p

σk (R
n) for 0 < p < 1 the NTBLs of the

functions in H p(T�σk
), that is

H p
σk

(Rn) =
{

f : f is the NTBL of a function in H p(T�σk
)
}

for all k = 1, 2, . . . , 2n . The non-tangential boundary limit of F(z) ∈ H p(T�σk
) as

y → 0 in the tube are denoted by

Fσk (x) = lim
y∈�σk ,y→0

F(x + iy) = lim
σk (1)y1→0+,...,σk (n)yn→0+ F(x1+ iy1, . . . , xn + iyn).

(3)
The Schwarz class S(Rn) is the space consisting of all those C∞ function ϕ on Rn

(i.e., all the partial derivatives of ϕ exist and are continuous) such that

sup
x∈Rn

|xα(Dβϕ(x))| < ∞
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for all n-tuples α = (α1, α2, . . . , αn) and β = (β1, β2, . . . , βn) of nonnegative inte-
gers, where

xα = xα1
1 xα2

2 · · · xαn
n ; Dβ = ∂ |β|

∂xβ1
1 ∂xβ2

2 · · · ∂xβn
n

, |β| = β1 + β2 + · · · + βn .

A measurable function f such that

f (x)

(1 + |x |2)k
∈ L p(Rn)

for some positive integer k, where 1 < p ≤ ∞, is called a tempered L p function
(when p = ∞ such a function is often also called a slowly increasing function).

For function f in L p(Rn), 1 ≤ p ≤ ∞, a tempered distribution T f , can be defined
through the relation

T f (ϕ) = (T f , ϕ) =
∫
Rn

f (t)ϕ(t) dt

for ϕ in the Schwarz class S(Rn). It is clear that T f is a continuous linear functional
on Schwarz class S(Rn)(see, [13]).

Let F ∈ (S(Rn))′. If there exists a holomorphic function f (x + iy) in TB such that
for any ϕ in the Schwarz class S(Rn), there holds

F f (ϕ) = (F, ϕ) = lim
y>0, y→0

∫
Rn

f (x + iy)ϕ(x) dx

then we say that F is a holomorphic distribution and f (x + iy) is an holomorphic
representation of F .

The Fourier transform f̂ of a function f ∈ L1(Rn) is defined by

f̂ (x) =
∫
Rn

f (t)e−2π i x ·t dt,

where x = (x1, x2, . . . , xn), t = (t1, t2, . . . , tn) are elements ofRn . The inner product

of x, t ∈ R
n is the number x · t =

n∑
j=1

x j t j , and |x | = √
x · x .

The Fourier transform of a function f ∈ L2(Rn) is defined as the L2 limit of the
sequence ĝk, where gk is any sequence in L1 ∩ L2 converging to f in the L2 norm.
The definition of the Fourier transform can be extended to functions in L p(Rn) for
1 < p < 2 by decomposing such functions into a fat tail part in L2 plus a fat body part
in L1 on (Rn). Since the function class L1(Rn) + L2(Rn) is easily seen to contain all
the spaces L p(Rn), 1 ≤ p ≤ 2, the Fourier transform f̂ is defined for all f ∈ L p(Rn)

[13].
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TheFourier transformation T̂ of tempereddistributionT is defined as the continuous
linear functional through the relation

(T̂ , ϕ) = (T , ϕ̂)

for ϕ in the Schwarz class S(Rn). We observe that if f ∈ L p(Rn), 1 ≤ p ≤ 2, the
Fourier transform of f as a distribution coincides with the function f̂ defined as the
above. However, for any p > 2, there exists a function f ∈ L p(Rn), whose Fourier
transform, as a tempered distribution, is not a function.

3 Main Results

First, we obtain the following integral representation results about any n dimensions
for index range 0 < p < 1.

Theorem 3.1 If f ∈ H p(T�σ1
), 0 < p ≤ 1, where �σ1 is the first octant of Rn,

then there exist a constant C p which is independent of f , and a slowly increasing
continuous function F whose support is contained in �σ1 , such that

(F, ϕ) = lim
y>0, y→0

∫
Rn

f (x + iy)ϕ̂(x)dx (4)

for ϕ in the Schwarz class S(Rn), and t

f (z) =
∫

�σ1

F(t)e2π i t ·zdt (5)

for z ∈ T�1 . Moreover, for x = (x1, x2, . . . , xn) ∈ R
n, there holds

|F(x)| ≤ C penBp B
−nBp
p

n∏
k=1

x
Bp
k ‖ f ‖H p , (6)

where C p = (π
2 )

n
p , Bp = 1

p − 1 ≥ 0.

It is similarly to prove the following corollary.

Corollary 3.1 If f ∈ H p(T�σ j
), 0 < p ≤ 1, for any j = 2, 3, . . . , 2n, where T�σ j

is
any other octant of Rn except the first octant, then there also exist a constant C p which
is independent of f , and a slowly increasing continuous function F whose support is
contained in �σ1 , such that

(F, ϕ) = lim
σ j y>0, σ j y→0

∫
Rn

f (x + iy)ϕ̂(x) dx (7)
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for ϕ in the Schwarz class S(Rn), and

f (z) =
∫

�σ j

F(t)e2π i t ·zdt (8)

for z ∈ T� j . Moreover, for x = (x1, x2, . . . , xn) ∈ R
n, there holds

|F(x)| ≤ C penBp B
−nBp
p

n∏
k=1

x
Bp
k ‖ f ‖H p (9)

where C p = (π
2 )

n
p , Bp = 1

p − 1 ≥ 0.

In order to obtain the analogous Fourier spectrum characterization result of
H p, 0 < p < 1, we need to consider an interest and important property of Hardy
spaces. It is well known that, for any 0 < p < q < ∞, the relation Hq ⊂ H p holds.
However, when the indexs p and q satisfy that 0 < p, q < ∞, how about the relation
of Hq and H p? For this question, our recently research work [8] has answered some
part such as 1 ≤ p, q < ∞ in the following Theorem I.

Theorem I [8] Suppose that F(z) ∈ H p(T�), 1 ≤ p ≤ ∞, where � is a regular open
cone in R

n, and F(x) is the boundary limit function of F(z). If F(x) ∈ Lq(Rn), 1 ≤
q ≤ ∞, then F(z) ∈ Hq(T�).

With different method from Theorem I, we obtain the following Theorem 3.2 for
more general index range 0 < p, q ≤ ∞.

Theorem 3.2 Let T�σ1
be the first octant of Cn. Suppose that F(z) ∈ H p(T�σ1

), 0 <

p ≤ ∞, and F(x) is the boundary limit function of F(z). If F(x) ∈ Lq(Rn), 0 <

q ≤ ∞, then F(z) ∈ Hq(T�σ1
).

As an analogous Fourier spectrum characterization result of Hardy spaces H p, 0 <

p < 1, Theorem 3.3 is obtained as follows, which is also an application of Theo-
rems 3.1 and 3.2

Theorem 3.3 Let 0 < p < 1, f ∈ L p(Rn). Then f ∈ H p
σ1(R

n) if and only if there
exist a sequence of functions { fn} satisfying fn ∈ L2(Rn)

⋂
L p(Rn), supp f̂n ⊂ �σ1 ,

and
lim

n→∞ || f − fn||L p = 0 (10)

where H p
σ1(R

n) is the set of the boundary limits of the functions in H p(T�σ1).

4 Some Useful Lemmas

We need the following important Lemmas.
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Lemma 4.1 [13] Let B be an open cone in R
n. Suppose F ∈ H p(TB), p > 0, and

B0 ⊂ B satisfies d(B0, Bc) = inf{|y1 − y2|; y1 ∈ B0, y2 ∈ Bc} ≥ ε > 0, then there
exists a constant C p(ε), depending on ε and p but not on F, such that

sup
z∈TB0

|F(z)| ≤ C p(ε)‖F‖H p .

Given below offers a more precise estimation than that obtained in the above lemma.

Lemma 4.2 Suppose that f ∈ H p(T�), p > 0, where � is the first octant of Rn. If
let fδ(z) = f (z + iδ), for any z = x + iy ∈ T� and δ = (δ1, δ2, . . . , δn) ∈ �, then
there holds

sup
z∈T�

| fδ(z)| ≤ C p(δ1 · δ2 · · · · · δn)
− 1

p ‖ f ‖H p ,

where C p = ( 2
π
)

n
p .

Proof Let z0 = x0 + iy0 = (z01, z02, . . . , z0n) ∈ T� and

D
n ={(z1, zn, . . . , zn) ∈ C

n : |z1−z01|< y01, |z2−z02|< y02, . . . , |zn −z0n| < y0n}

be open polydisc. Since f ∈ H p(T�),we know that | f |p is subharmonic as a function
of 2n variables. Hence,

| f (z0)|p ≤ 1

πn y201y202 · · · y20n

∫
|z1−z01|<y01

· · ·
∫

|zn−z0n |<y0n

| f (z1, . . . , zn)|pdz1 · · · dzn

≤ 1

πn y201y202 · · · y20n

∫ 2y01

0
· · ·

∫ 2y0n

0

∫
Rn

| f (x + iy)|pd y1 · · · d yndx

≤ 2n

πn y01y02 · · · y0n
sup
y∈�

∫
Rn

| f (x + iy)|pdx

≤ 2n

πn y01y02 · · · y0n
‖ f ‖p

H p .

Therefore, for any δ = (δ1, δ2, . . . , δn) ∈ � , we obtain that

| fδ(x + iy)| ≤ C p(δ1 · δ2 · · · · · δn)
− 1

p ‖ f ‖H p ,

where C p = ( 2
π
)

n
p . ��

The following Theorem J is needed by the proof of Theorem 2.2.

Theorem J [6] If F(z) ∈ H p(C+), 0 < p ≤ ∞, and F(z0) �= 0, then

log |F(z0)| ≤
∫ ∞

−∞
log |F(t)|Pz0(t)dt,
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where Pz0(t) is the Poisson kernel associated with the upper-half plane C
+.

As generalization of a result in [13], we have.

Lemma 4.3 If F(z) ∈ H p(T�), where � is the first octant of Rn. Then, for any
j = 1, 2, . . . , n and fixed (z1, . . . , z j−1, z j+1, . . . , zn) ∈ T n−1

� , where T n−1
� denotes

the tube with its base as the first octant of Rn−1, we can prove that the function
F(z1, . . . , zn) as a function of one complex variable z j = x j + iy j ∈ C

+, belongs to
H p(C+), that is

F(z1, . . . , z j , . . . , zn) ∈ H p(C+).

Proof Fixing (z1, . . . , z j−1, z j+1, . . . , zn) ∈ T n−1
� , we consider the function f of one

complex variable defined by letting

f (ζ j ) = F(z1, . . . , z j−1, ζ j , z j+1, . . . , zn),

whenever ζ j = ξ j + iη j ∈ C
+.

Since F(z1, . . . , z j−1, ζ j , z j+1, . . . , zn)∈ H p(T�), |F(z1, . . . , z j−1, ζ j , z j+1, . . . ,
zn)|p is subharmonic as a function of z1 = x1 + iy1 ∈ C

+. Then we have, by writing
w1 = u1 + iv1,

|F(z1, . . . , z j−1, ζ j , z j+1, . . . , zn)|p

≤ 1

π y21

∫
|w1−z1|<y1

|F(w1, z2 . . . , z j−1, ζ j , z j+1, . . . , zn)|pdu1dv1

≤ 1

π y21

∫ 2y1

0

∫ ∞

−∞
|F(w1, z2 . . . , z j−1, ζ j , z j+1, . . . , zn)|pdu1dv1.

Repeating this argument for z2, . . . , z j−1, z j+1, . . . , zn , we can obtain

|F(z1, . . . , z j−1, ζ j , z j+1, . . . , zn)|p

≤
⎛
⎝πn−1

n∏
l=1,l �= j

y2l

⎞
⎠

−1 ∫ 2y1

0
· · ·

∫ 2y j−1

0

∫ 2y j+1

0
· · ·

∫ 2yn

0

∫
Rn−1

|F(w1, . . . , w j−1, ζ j , w j+1, . . . , wn)|p du1 · · · du j−1du j+1 · · · dundv1 · · · dv j−1dv j+1 · · · dvn .

Now integrating both sides of the last inequality with respect to ξ j , we have

∫
R

| f (ξ j + iη j )|pdξ j

=
∫
R

|F(z1, . . . , z j−1, ξ j + iη j , z j+1, . . . , zn)|pdξ j

≤
∫
R

⎛
⎝πn−1

n∏
l=1,l �= j

y2l

⎞
⎠

−1 ∫ 2y1

0
· · ·

∫ 2y j−1

0

∫ 2y j+1

0
· · ·

∫ 2yn

0

∫
Rn−1
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|F(w1, . . . , w j−1, ζ j , w j+1, . . . , wn)|p du1 · · · du j−1du j+1 · · · dundv1

· · · dv j−1dv j+1 · · · dvndξ j

≤
⎛
⎝πn−1

n∏
l=1,l �= j

y2l

⎞
⎠

−1 ∫ 2y1

0
· · ·

∫ 2y j−1

0

∫ 2y j+1

0
· · ·

∫ 2yn

0

∫
Rn

|F(u + iv)|pdudv1 · · · dv j−1dv j+1 · · · dvn

≤ 1

πn−1
n∏

l=1,l �= j
y2l

n∏
l=1,l �= j

2yl sup
v∈T�

∫
Rn

|F(u + iv)|pdu

≤ 2n−1π1−n
n∏

l=1,l �= j

y−1
l ‖F‖H p = C < ∞,

where u + iv = (u1 + v1, . . . , u j−1 + iv j−1, ξ j + iη, u j+1 + iv j+1, . . . , un + ivn).

This shows that f (ζ j ) ∈ H p(C+), for any j = 1, 2, . . . , n, which implies that the
proof of this Lemma is complete. ��

In order to prove Theorem 3.3, we need the following key Lemma.

Lemma 4.4 If f (z) ∈ H p(T�σ j
), 0 < p < ∞, j = 1, 2, . . . , 2n, where σ j is the

octants of Rn, and f (x) is the boundary limit of f (z). Then ϕ(y) is continuous convex
and bounded in �σ j , where ϕ(y) = ∫

Rn | f (x + iy)|pdx, y ∈ �σ j , moreover,

‖ f ‖p
H p

σ j
= sup

y∈�σ j

ϕ(y) = ϕ(0, . . . , 0) = ‖ f ‖p
L p

.

Proof Let

ϕ̃(z) =
∫
Rn

| f (t + z)|pdt, z ∈ T�σ j
,

then

ϕ̃(z) = ϕ(y), z = x + iy ∈ T�σ j
.

Similarly to the proof (see [13]) of Part (b) in Theorem F above, we can obtain that

lim
z→z0

∫
Rn

| f (t + z) − f (t + z0)|pdt = 0

for any z0 ∈ T�σ j
. Thus,

|ϕ̃(z) − ϕ̃(z0)| ≤
∫
Rn

| f (t + z) − f (t + z0)|pdt → 0, z → z0,

which implies that ϕ(y) is continuous in �σ j .
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For any a ∈ T�σ j
, w ∈ C

n, λ ∈ C, let

ua,w(λ) = ϕ̃(a + λw).

f (z) ∈ H p(T�σ j
) implies that | f (z)|p is plurisubharmonic. For λ0 ∈ C, there exists

δ > 0 such that {a + λw : |λ − λ0| < δ} ∈ T�σ j
. Hence, for 0 < r < δ,

ϕ̃(a + λ0w) =
∫
Rn

| f (t + a + λ0w)|pdt

≤
∫
Rn

(
1

2π

∫ 2π

0
| f (t + a + (λ0 + reiθ )w)|p dθ

)
dt

= 1

2π

∫ 2π

0

(∫
Rn

| f (t + a + (λ0 + reiθ )w)|p dt

)
dθ

= 1

2π

∫ 2π

0
ϕ̃(a + (λ0 + reiθ )w)dθ. (11)

Therefore, function ua,w(λ) = ϕ̃(a + λw) is subharmonic in D(λ, δ) = {λ :
|λ − λ0| < δ}. By the definition of plurisubharmonic function [7], ϕ̃(z) is a plurisub-
harmonic function in T�σ j

.

Next, we are to show that ϕ(y) = ϕ̃(z) is convex in �σ j .
For any a, b ∈ �σ j , {ia + λi(b − a) : λ = ζ + iη ∈ C, 0 ≤ ζ ≤ 1} ⊂ �σ j ,

ua,b(λ) = ϕ̃(ia + λi(b − a)) = ϕ̃(−η(b − a) + i(a + ζ(b − a))

= ϕ(a + ζ(b − a)) = ϕ̃(ia + iζ(b − a)) = ua,b(ζ ).
(12)

Since ua,b(λ) is subharmonic and continuous in �, where

� = {λ = ζ + iη ∈ C : ia + λi(b − a) ∈ T�σ j
} ⊃ {λ = ζ + iη ∈ C : 1 ≥ ζ ≥ 0}.

Therefore, there exists a function α(t) ∈ C∞
c (R) satisfying suppα ⊂ [0, 1] and

1

2π

∫ 1

0
tα(t2)dt = 1

for 0 < δ < 1/2, such that the function

ũδ(λ) =
∫ ∞

−∞
ua,b(ξ)αδ(λ − ξ)dm(ξ) (13)

is subharmonic and infinitely differentiable in �δ , and ũδ(λ) is monotone decreasing
to ua,b(λ) as δ is monotone decreasing to 0, where
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�δ = {λ ∈ C : d(λ,�c) > δ > 0} ⊃ {λ = ζ + iη ∈ C : 1 − δ > ζ > δ},

and αδ(λ) = 1
δ2

α(
|λ|2
δ2

), dm(ξ) is the Lebesgue measure.
The subharmonicity of ũδ(λ) implies that ,

�ũδ = d2

dζ 2 ũδ + d2

dη2
ũδ ≥ 0.

(12) implies that, for 1 − δ > ζ > δ,

�ũδ = d2

dζ 2 ũδ(ζ ) ≥ 0.

Therefore, ũδ(ζ ) is convex in (δ, 1−δ).Then ua,b(ζ ) is convex in (0, 1). Since ua,b(ζ )

is continuous in [0, 1], ua,b(ζ ) is convex in [0, 1]. Thus, for 0 ≤ ζ ≤ 1,

ua,b(ζ ) ≤ (1 − ζ )ua,b(0) + ζua,b(1).

From the last formula and (12), we obtain

ϕ(a + ζ(b − a)) = ϕ((1 − ζ )a + ζb) ≤ (1 − ζ )ϕ(a) + ζϕ(b).

This shows that ϕ(y) is convex in �σ j . Together with that ϕ(y) is continuous in �σ j ,
we know that ϕ(y) is convex in �σ j . Then ϕ(y) is a convex bounded function about
y ∈ �σ j . Therefore, ϕ(y) can attain the maximum value at the origin point (0,0,…,0),
that is

max
y∈�σ j

ϕ(y) = ϕ(0, . . . , 0) =
∫
Rn

| f (x)|p dx = ‖ f ‖p
L p

.

Thus, ‖ f ‖p
H p = sup

y∈�σ j

ϕ(y) = ‖ f ‖p
L p
. So the proof of Lemma is complete. ��

5 Proofs of Main Theorems

Proof of Theorem 3.1 Let 0 < p ≤ 1, f ∈ H p(T�σ1
), where �σ1 is the first octant

of Rn . For y0 ∈ �σ1 , let fy0(z) = f (z + iy0), �0 = {y + y0 : y ∈ �σ1} ⊂ �σ1 . It
is clearly that fy0(z) ∈ H p(T�σ1

), and there exists 0 < ε ≤ min{y01, . . . , y0n}, such
that

d(�0, �
c
σ1

) = inf{|y1 − y2|; y1 ∈ �0, y2 ∈ �c
σ1

} ≥ ε > 0.

By Lemma 4.1, there exists a positive constant C p(ε), such that

sup
z∈T�σ1

| fy0(z)| ≤ C p(ε)‖ f ‖H p := M .



G. Deng et al.

From the last inequality, we have

∫
Rn

| fy0(x + iy)|2dx =
∫
Rn

| fy0(x + iy)|p| fy0(x + iy)|2−pdx

≤
∫
Rn

| fy0(x + iy)|p(C p(ε)‖ f ‖H p )2−pdx ≤ M2−p‖ fy0‖p
H p < ∞.

Therefore,

fy0(z) ∈ H2(T�σ1
).

By higher-dimensional Paley–Wiener Theorem, we obtain

supp f̂ y0 ⊂ �σ1 . (14)

Moreover, By Lemma 4.2, there exists a constant C p such that

∫
Rn

| fy0(x + iy)|dx =
∫
Rn

| fy0(x + iy)|p| fy0(x + iy)|1−pdx

≤
∫
Rn

| fy0(x + iy)|p(C p‖ f ‖H p (y01 · · · y0n)
− 1

p )1−pdx

≤ C1−p
p ‖ f ‖H p (y01 · · · y0n)

(1− 1
p )

.

(15)

where C p = ( 2
π
)

n
p .

Since that f̂ y0(t) is continuous in R
n , as obtained from (15), and

fy0(z) =
∫

�σ1

e2π i z·t f̂ y0(t)dt =
∫
Rn

e2π i x ·t (e−2π y·tX�σ1
(t) f̂ y0(t))dt .

We have

f̂ y0+y(t) = e−2π y·tX�σ1
(t) f̂ y0(t) = e2π y0·tX�σ1

(t) f̂ y0(t)e
−2π(y0+y)·t .

Hence,

f̂ y0+y(t)e
2π(y0+y)·t = f̂ y0(t)e

2π y0·t , a.e. t ∈ �σ1 , y, y0 ∈ �σ1 .

This implies that f̂ ye2π y·t is independent of y.
Moreover, for y0 ∈ �σ1 , if let

F(t) = f̂ y0(t)e
2π y0·t , t ∈ �σ1 ,
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then

F(t) = f̂ y(t)e
2π y·t , t ∈ �σ1 ,

for any y ∈ �σ1

So that
f̂ y(t) = X�σ1

(t)F(t)e−2π y·t → F(t), (16)

as y → 0, and

fy0(z) =
∫

�σ1

e2π i z·t f̂ y0(t)dt

=
∫
Rn

X�σ1
(t)F(t)e−2π y0·t e2π i z·t dt

=
∫
Rn

X�σ1
(t)F(t)e2π i(z+iy0)·t dt .

Replace (z + iy0) by z in the last formula, we can obtain

f (z) =
∫

�σ1

e2π i z·t F(t)dt, z ∈ T�σ1
,

which shows that the (5) holds. Moreover, together with (14) and (16), there is

suppF ⊂ �σ1 . (17)

From (15), for any x = (x1, . . . , xn) ∈ �σ1 , we obtain

|F(x)| = | f̂ y0(x)e2π y0·x | ≤ ‖ fy0‖1e2π y0·x

≤ C p‖ f ‖H p

(
n∏

k=1

y0k

)−Bp

e
2π

n∑
k=1

y0k xk

≤ C p‖ f ‖H p e
2π

n∑
k=1

y0k xk−Bp log
n∏

k=1
y0k

≤ C p‖ f ‖H p e

n∑
k=1

(2π y0k xk−Bp log y0k )

(18)

where Bp = 1
p − 1 ≥ 0. Since F(x) is independent of y0 and

inf{2π y0k xk − Bp log y0k)} = Bp − Bp(log Bp − log 2πxk),
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for each k = 1, 2, . . . , n. Together with (18), we obtain

|F(x)| ≤ inf

⎧⎨
⎩C p‖ f ‖H p e

n∑
k=1

(2π y0k xk−Bp log y0k) : y0 ∈ �σ1

⎫⎬
⎭

= C p‖ f ‖H p e

n∑
k=1

(Bp−Bp(log Bp−log 2πxk))

= C p‖ f ‖H p enBp B
−nBp
p

n∏
k=1

x
Bp
k

(19)

for xk ≥ 0, k = 1, 2, . . . , n.

From (17) and (19), we know that F is a slowly increasing continuous function
whose support suppF is contained in�σ1 . F can be regarded as a tempered distribution,
which satisfies

(F, ϕ) =
∫
Rn

F(x)ϕ(x)dx

for ϕ in the Schwarz class S(Rn).
By Lebesgue Dominated Convergence Theorem, we obtain

lim
y0>0, y0→0

∫
Rn

fy0(x)ϕ̂(x)dx = lim
y0→0

∫
Rn

f̂ y0(x)ϕ(x)dx

= lim
y0→0

∫
�σ1

e−2π y0·x F(x)ϕ(x)dx

=
∫

Rn

F(x)ϕ(x)dx

= (F, ϕ).

Thus, the proof of Theorem 3.1 is complete. ��

Proof of Theorem 3.2 Let us fix (z2, . . . , zn) ∈ T�n−1 , where �n−1 denotes the first
octant of Rn−1, and consider the function G of one complex variable defined by
letting

G(z1) = F(z1, z2, . . . , zn)

whenever z1 belongs to the upper-half plane C+.
The fact F(z) ∈ H p(T�σ1

), 0 < p ≤ ∞, and Lemma 4.3 together show that
G(z1) ∈ H p(C+), 0 < p ≤ ∞. Then, by Theorem J,
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log |F(z)| = log |G(z1)| ≤
∫ ∞

−∞
log |G(t1)|Pz1(t1)dt1

= 1

π

∫ ∞

−∞
log |F(t1, z2, . . . , zn)| y1

(x1 − t1)2 + y21
dt1.

(20)

Similarly, let

G(z2) = F(t1, z2, . . . , zn)

whenever z2 belongs to the upper-half plane C+.
By Lemma 4.3 again, F(z) ∈ H p(T�σ1

), 0 < p ≤ ∞, shows that G(z2) ∈
H p(C+), 0 < p ≤ ∞. Then, by Theorem J again,

log |F(t1, z2, . . . , zn)| = log |G(z2)| ≤
∫ ∞

−∞
log |G(t2)|Pz2(t2)dt2

= 1

π

∫ ∞

−∞
log |F(t1, t2, z3, . . . , zn)| y2

(x2 − t2)2 + y22
dt2.

(21)
Together with (20) and (21), we obtain

log |F(z)| ≤ 1

π2

∫ ∞

−∞

(∫ ∞

−∞
log |F(t1, t2, z3, . . . , zn)| y2

(x2 − t2)2 + y22
dt2

)

y1
(x1 − t1)2 + y21

dt1

= 1

π2

∫ ∞

−∞

∫ ∞

−∞
log |F(t1, t2, z3, . . . , zn)| y2

(x2 − t2)2 + y22
y1

(x1 − t1)2 + y21
dt2dt1.

Repeating this argument for z3, . . . , zn , we obtain

log |F(z)| ≤ 1

πn

∫ ∞

−∞
· · ·

∫ ∞

−∞
log |F(t1, t2, . . . , tn)|

n∏
j=1

y j

(x j − t j )2 + y2j
dtn · · · dt1

≤
∫
Rn

log |F(t)|P(x − t, y)dt .

(22)
Applying Jensen’s inequality, with the convex increasing function f (x) = eqx , 0 <

q ≤ ∞, and the probability measure P(x − t, y)dt , to (22) of above, we obtain
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|F(z)|q = elog |F(z)|q = eq log |F(z)| = f (log |F(z)|)
≤ f

(∫
Rn

log |F(t)|P(x − t, y)dt

)

≤
∫
Rn

f (log |F(t)|)P(x − t, y)dt

≤
∫
Rn

|F(t)|q P(x − t, y)dt .

So that,

∫
Rn

|F(x + iy)|q dt ≤ ‖ f ‖q‖Py‖1 = ‖ f ‖q < ∞.

Therefore,

sup
y∈�σ1

∫
Rn

|F(x + iy)|q dt ≤ ‖ f ‖q < ∞.

This, together with F(z) ∈ H p(T�σ1
), imply F(z) ∈ Hq(T�σ1

). Thus, the proof of
Theorem 3.2 is complete. ��
Proof of Theorem 3.3 “Only if” part: If 0 < p < 1, f ∈ L p(Rn) and f ∈ H p

σ1(R
n) ,

then there exists f (z) ∈ H p(T�σ1
) such that f (x) is the non-tangential boundary limit

of function f (z). By Lemma 4.1, there exists a constant C(ε) which is independent
on f , such that

| f (x + iy)| ≤ C(ε)‖ f ‖H p , z = x + iy ∈ T�σ1
.

Let fn(z) = f (z + zn), zn = ( i
n , . . . , i

n ), then fn ∈ H p(T�σ1
) ∩ H2(T�σ1

). So,

by Theorem 3.1, we obtain that fn(x) ∈ L2(Rn) ∩ L p(Rn), and supp f̂n ⊂ �σ1 . By
Lemma 4.4, there holds

lim
n→∞ || f − fn||L p = lim

n→∞ || f − fn||H p = 0.

The necessity of Theorem 3.3 is proved.
“If” part: If there exists a sequence of functions { fn} satisfying fn ∈ L2(Rn) ∩

L p(Rn), and supp f̂n ⊂ �σ1 . Then by Paley–Wiener Theorem, we have

fn(z) =
∫

�σ1

f̂n(t)e2π i t ·zdt (z ∈ T�σ1
),

and fn(z) ∈ H2(T�σ1
). So, by Theorem 3.2, we get that fn(z) ∈ H p(T�σ1

). Moreover,
by Lemma 4.4, || fm − fn||L p = || fm − fn||H p . Thus, there exists a f (z) ∈ H p(T�σ1

)

such that
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lim
n→∞ || f − fn||L p = lim

n→∞ || f − fn||H p = 0.

This implies that f (x) ∈ H p
σ1(T�σ1

). Thus, the proof of Theorem 3.3 is complete. ��
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