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1 Introduction

In rational approximation of one complex variable, one cannot avoid the so-called rational orthogonal

systems, or alternatively, Takenaka-Malmquist (TM) systems [20]. In the context of the unit disc, a TM

system is an infinite sequence of parameterized rational functions

Ea⃗n
(z) =

√
1− |an|2
1− anz

n−1∏
k=0

z − ak
1− akz

, z ∈ D, n = 0, 1, . . . , (1.1)

where ak are any complex number in D and a⃗n = (a0, . . . , an−1, an)
T. The multiple product part of

each Ea⃗n
is a Blaschke product with n zeros, being the product of the explicitly given nMöbius transforms,

while the remainder is an L2-normalized Szegö kernel. Different choices for the zeros result in different

model structures. When all the ak’s are identical to a fixed real number a ∈ (−1, 1), we get the Laguerre

systems [10, 11, 21, 22]; and when all ak’s are equal to a complex number a ∈ D, it corresponds to the

Kautz systems [21,22]:

En(z) =

√
1− |a|2
1− āz

(
z − a

1− āz

)n

, z ∈ D, n = 0, 1, . . . (1.2)
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More specifically, when all ak’s are zero the system reduces to the classical finite impulse response (FIR)

models, a half of the Fourier system [5], namely, {zk}∞k=0, a basis of the Hardy spaces Hp(D), 1 < p < ∞.

For general parameters ak is a system {Ea⃗n
}∞n=0 which is the basis of a Hardy Hp space for p ∈ (1,∞)

only if the hyperbolic non-separability condition is satisfied. For p = 2, a TM system is always an

orthonormal system of H2(D), regardless of whether it is a basis, i.e., regardless of whether the hyperbolic

non-separability condition is met.

Such systems have been well studied in pure mathematics and applied science [2,3,6,8,16,19,20,23,24].

In recent decades, engineers have paid a significant amount of attention to rational orthogonal systems

in the unit disc case [1, 12–14, 18]. For system identification of stable linear time-invariant systems, it

is crucial, in practice, to form dynamical models from measured data. Rational model structures, such

as the ARX (autoregressive with exogenous terms) and ARMAX (autoregressive moving-average with

exogenous terms) models are natural choices, because almost all systems can be described by rational

transfer functions (Hardy space functions) [9, 10]. Recently, researchers in time-frequency analysis have

shown an increasing interest in rational orthogonal systems to investigate analytic signals from a nonlinear

phase in L2(∂D) or H2
±(∂D) with a positive instantaneous frequency. Here, H2

+(∂D) and H2
−(∂D) consist

of the non-tangential boundary limits of the complex Hardy H2 functions inside and outside the unit

disc, respectively. Due to Ea⃗n
∈ H2(D) and taking the non-tangential boundary limits of Ea⃗n

, we get

the boundary TM systems {ea⃗n
}∞n=0 ⊂ H2

+(∂D) defined by

ea⃗n
(t) := lim

r→1−
Ea⃗n

(reit), t ∈ T = [−π, π] (1.3)

for some vector a⃗n = (a0, . . . , an−1, an)
T ∈ Dn+1, and in particular, the Laguerre and the Kautz systems

en(t) := lim
r→1−

En(re
it), t ∈ T. (1.4)

The system {ea⃗n
}∞n=0 consisting of basic functions of nonlinear phases is an orthonormal basis of H2

+(∂D)
if the hyperbolic non-separability condition is met. Here, a nonlinear phase is such that each ea⃗n

has the

polarized factorization ea⃗n
(t) = ρn(t)e

iθn(t) with the nonlinear phase function θn. Since the space L
2(∂D)

can be expressed as the direct sum of the two relevant boundary Hardy spaces, namely, L2(∂D) =

H2
+(∂D)⊕H2

−(∂D), the system {ea⃗n
}∞n=0∪{ea⃗n

}∞n=1 is an orthonormal basis of L2(∂D) if the two systems

are bases in their respective spaces.

The fundamentality of the Fourier system demonstrated by its explicit representations, generality, and

effectiveness depends, to a large extent on the general entries of the system. Research results on TM

systems and their general terms, namely, nonlinear Fourier atoms can be regarded as advances of Fourier

theory. They include a Bedrosian identity, nonlinear phase basis, adaptive algorithm (see [4, 15,17,18]).

Notice that the operator d2

dt2 : C2[−π, π] → C[−π, π] has a discrete spectrum, a discrete set of the

eigenfunctions ein·, that is the Fourier system. (Notice that if the domain is changed to R, the spectrum

will be continuous and eix· will be the generalized eigenvectors.) It is natural to ask whether any general

rational system would have a spectral operator L. This note gives a part of the answer to this question.

We will use the Weyl correspondence theory to investigate the spectral operators of the Laguerre systems

and the Kautz systems {en}∞n=0. Concretely, we will look for F ∈ S ′(R2) to generate a differential

operator L through the Weyl transform (2.2) such that en is the eigenvector of L. We also generalize the

results to the cases of multiple parameters with a complex variable in both the unit disc and the upper

half-plane contexts.

We found that the spectral operators of the Laguerre systems and the Kautz systems are closely related

to the general Sturm-Liouville operators. We will deal with the general Sturm-Liouville operators under

the framework of Heisenberg group and Weyl correspondence.

Section 2 reviews the Heisenberg group and Weyl correspondence, and then discusses how to generate

the Sturm-Liouville operators. Section 3 focuses on the spectral operator of the Laguerre systems and

the Kautz systems. Section 4 generalizes the results of Section 3 to the multiple-parameter cases through

the one complex variable setting. Section 5 considers the upper half-plane. Section 6 discusses the Cayley

transformation method that converts the results of the upper half-plane to the unit disc and vice versa.
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2 Weyl correspondence and Sturm-Liouville operators

The group representation of Heisenberg group suggests an exponential type operator e2πi(pD+qX )

(see (2.1)) and then leads to the Weyl correspondence theory to generate pseudo-differential operators.

The full Heisenberg group is the set (Rn)2 × R with the multiplication

(p, q, d)(p̃, q̃, d̃) =

(
p+ p̃, q + q̃, d+ d̃+

1

2
[(p, q), (p̃, q̃)]

)
,

where the symplectic product on the phase space (Rn)2 is defined by [(p, q), (p̃, q̃)] = pq̃ − qp̃. For p, q ∈
Rn, d ∈ R, denoted by Rd, Mq and Tp, the usual rotation, modulation, and translation operators are

defined, respectively, by

Rdf(x) = eπidf(x), Mqf(x) = e2πiqxf(x), Tpf(x) = f(x− p), x ∈ Rn.

The Schrödinger representation of the full Heisenberg group is the unitary operator RdM q
2
T−pM q

2
. Up

to the rotation factor Rd, the symmetric form M q
2
T−pM q

2
is crucial in harmonic analysis in the phase

space. We adopt Folland’s notation [7]:

ρ(p, q) = e2πi(pD+qX ) = M q
2
T−pM q

2
. (2.1)

Essentially, e2πi(pD+qX ) is the operator mapping f(·) to eπipqe2πiq(·)f(·+p). Here, D = 1
2πi (

∂
∂x1

, . . . , ∂
∂xn

)T

and Xf = (x1f, . . . , xnf)
T.

Another symmetric form M p
2
TqM p

2
gives rise to the operator

ρ̃(p, q) = e2πi(pX−qD) = M p
2
TqM p

2
,

which maps f(·) to e−πipqe2πip(·)f(· − q). The identity M p
2
TqM p

2
= FM q

2
T−pM q

2
F−1 implies the

relationship between e2πi(pD+qX ) and e2πi(pX−qD),

ρ̃(p, q) = e2πi(pX−qD) = Fe2πi(pD+qX )F−1 = Fρ(p, q)F−1.

The Fourier transform on Rn is defined by F(ξ) =
∫
Rn f(x)e−2πixξdx, ξ ∈ Rn. The Weyl transform

ρ(F ) =

∫
Rn

∫
Rn

F (p, q)ρ(p, q)dpdq =

∫
Rn

∫
Rn

F (p, q)e2πi(pD+qX )dpdq (2.2)

with F ∈ L1(R2n), can be used to obtain pseudo-differential operators for function spaces defined on Rn.

Here, the integral is an ordinary Bochner integral if F ∈ L1(R2n).

The explicit formula for the operator ρ(F ) is

ρ(F )f(x) =

∫
Rn

∫
Rn

F (p, q)eπipq+2πiqxf(x+ p)dpdq

=

∫
Rn

∫
Rn

F (y − x, q)eπiq(x+y)f(y)dydq.

Naturally, ρ(F ) can be regarded as an integral operator with the kernel

KF (x, y) =

∫
Rn

F (y − x, q)eπiq(x+y)dq = (F−1
2 F )

(
y − x,

y + x

2

)
, (2.3)

where Fj denotes the partial Fourier transform for the j-th variable.

Proposition 2.1. The map ρ from L1(R2n) to the space of bounded operators on L2(Rn), defined

by (2.2), extends uniquely to a bijection from S ′(R2n) to the spaces of continuous linear maps from S(Rn)

to S ′(Rn). Moreover, ρ maps L2(R2n) unitarily onto the space of Hilbert-Schmidt operators on L2(Rn),

and ρ(F ) is a compact operator on L2(Rn) for all F ∈ L1(R2n).
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Weyl’s prescription for assigning an operator σ(D,X ) to a function σ(ξ, x) amounts to postulating

that the exponential function e2πi(pξ+qx) should correspond to the operator ρ(p, q) = e2πi(pD+qX ) defined

in (2.1). Once this is granted, one can expand an arbitrary σ(ξ, x) in terms of an exponential via the

inverse Fourier transform σ(ξ, x) =
∫
Rn

∫
Rn σ̂(p, q)e2πi(pξ+qx)dpdq to create a new operator

σ(D,X ) =

∫
Rn

∫
Rn

σ̂(p, q)e2πi(pD+qX )dpdq = ρ(σ̂). (2.4)

This integral is a Bochner integral if σ̂ ∈ L1(R2n). Proposition 2.1 indicates that the notation σ(D,X )

= ρ(σ̂) makes sense as an operator from S(Rn) to S ′(Rn) whenever σ̂ and σ are both tempered

distributions.

From (2.3), σ(D,X ) = ρ(σ̂) is an integral operator whose distribution kernel is

Kσ(x, y) = (F−1
2 σ̂)

(
y − x,

y + x

2

)
= (F1σ)

(
y − x,

y + x

2

)
=

∫
Rn

σ

(
ξ,

x+ y

2

)
e2πi(x−y)ξdξ.

As a consequence, the operator σ(D,X ) = ρ(σ̂) is given by

σ(D,X )f(t) =

∫
Rn

∫
Rn

σ

(
ξ,

t+ y

2

)
e2πi(t−y)ξf(y)dydξ. (2.5)

In the rest of this section, we investigate differential operators of order 2 generated by (2.5), which

maps S(R) to S ′(R).
Theorem 2.2. Suppose that σ(ξ, t) =

∑m
k=0 rk(t)ξ

k. Then the operator σ(D,X ) is given by

σ(D,X ) =
m∑

k=0

(
1

2πi

)k k∑
j=0

(
k

j

)(
1

2

)k−j
dk−j

dtk−j
rk(t)

dj

dtj
. (2.6)

Proof. We write σ(D,X )f(t) as

σ(D,X )f(t) =

∫
R

∫
R
σ

(
ξ,

t+ y

2

)
e2πi(t−y)ξf(y)dydξ

=
m∑

k=0

∫
R

∫
R
rk

(
t+ y

2

)
ξke2πi(t−y)ξf(y)dydξ

=
m∑

k=0

∫
R
ξk
[ ∫

R
f(y)rk

(
t+ y

2

)
e−2πiyξdy

]
e2πitξdξ

=

m∑
k=0

∫
R
ξkF

[
f(·)rk

(
t+ ·
2

)]
(ξ)e2πitξdξ

=
m∑

k=0

F−1

{
ξkF

[
f(·)rk

(
t+ ·
2

)]
(ξ)

}
(t).

By using the relation F−1(·kFf(·))(x) = ( 1
2πi )

k dk

dxk f(x), it follows that

σ(D,X )f(t) =

m∑
k=0

(
1

2πi

)k
dk

dxk

[
f(x)rk

(
t+ x

2

)]
x=t

=
m∑

k=0

(
1

2πi

)k k∑
j=0

(
k

j

)(
1

2

)k−j
dk−j

dtk−j
rk(t)

dj

dtj
f(t).

This completes the proof.
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In particular, when m = 2, we have

σ(D,X )f(t)

=

2∑
k=0

(
1

2πi

)k k∑
j=0

(
k

j

)(
1

2

)k−j
dk−j

dtk−j
rk(t)

dj

dtj
f(t)

= r0(t)f(t) +
1

2πi

(
1

2
r′1(t)f(t) + r1(t)f

′(t)

)
− 1

4π2

(
1

4
r′′2 (t)f(t) + r′2(t)f

′(t) + r2(t)f
′′(t)

)
=

(
r0(t) +

1

4πi
r′1(t)−

1

16π2
r′′2 (t)

)
f(t) +

(
1

2πi
r1(t)−

1

4π2
r′2(t)

)
f ′(t)− 1

4π2
r2(t)f

′′(t).

Therefore, we obtain the following corollary.

Corollary 2.3. Set σ(ξ, t) = r0(t) + r1(t)ξ + r2(t)ξ
2. The operator σ(D,X ) defined in (2.5) is

σ(D,X ) = −r2(t)

4π2

d2

dt2
+

(
1

2πi
r1(t)−

1

4π2
r′2(t)

)
d

dt
+

(
r0(t) +

1

4πi
r′1(t)−

1

16π2
r′′2 (t)

)
I. (2.7)

Theorem 2.4. Suppose that σ(D,X ) is defined by (2.5). Then σ(D,X ) = a(t) d2

dt2 + b(t) d
dt + c(t)I

only if

σ(ξ, t) =

(
c(t)− 1

2
b′(t) +

1

4
a′′(t)

)
+ 2πi(b(t)− a′(t))ξ − 4π2a(t)ξ2. (2.8)

Proof. Set σ(ξ, t) = r0(t)+ r1(t)ξ+ r2(t)ξ
2. Equation (2.7) leads to a relationship between (a, b, c) and

(r0, r1, r2) as follows:

a(t) = − 1

4π2
r2(t),

b(t) =
1

2πi
r1(t)−

1

4π2
r′2(t),

c(t) = r0(t) +
1

4πi
r′1(t)−

1

16π2
r′′2 (t).

Solving these equations, we obtain that r2(t) = −4π2a(t), r1(t) = 2πi[b(t) + 1
4π2 r

′
2(t)] = 2πi[b(t)− a′(t)],

and

r0(t) = c(t)− 1

4πi
r′1(t) +

1

16π2
r′′2 (t)

= c(t)− 1

4πi
2πi[b(t)− a′(t)]′ +

1

16π2
[−4π2a(t)]′′

= c(t)− 1

2
b′(t) +

1

4
a′′(t).

This completes the proof of this theorem.

We now turn to the Sturm-Liouville operator. A general Sturm-Liouville operator Lu,v has the form

Lu,v = u(t) d
dtv(t)

d
dt , where u and v are defined on an interval I = (a, b), (a,+∞), or R.

Theorem 2.5. The Sturm-Liouville operator Lu,v can be generated through (2.5) with the kernel

σ(ξ, t) =
1

4
[u′′(t)v(t)− u(t)v′′(t)]− 2πiu′(t)v(t)ξ − 4π2u(t)v(t)ξ2. (2.9)

Proof. The identity (2.9) is a direct consequence of (2.8) for a(t) = u(t)v(t), b(t) = u(t)v′(t) and

c(t) = 0.

Corollary 2.6. The kernel function σ(ξ, t) = −2πiu(t)u′(t)ξ − 4π2u2(t)ξ2 determines the operator

Lu = u(t)
d

dt
u(t)

d

dt
= u2(t)

d2

dt2
+ u(t)u′(t)

d

dt
. (2.10)
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Throughout the paper, we will investigate the generalized Sturm-Liouville operators

L = Lu + ℘α,β (2.11)

with ℘α,β = α(t) d
dt + β(t)I for some differential functions u, α and β. For the kernel of the operator L,

we have the following theorem.

Theorem 2.7. The kernel function

σ(ξ, t) =

(
β(t)− 1

2
α′(t)

)
+ (2πiα(t)− 2πiu(t)u′(t))ξ − 4π2u2(t)ξ2

determines the operator L defined in (2.11).

Proof. By Theorem 2.4, we know that σ(D,X ) = α(t) d
dt + β(t)I if and only if σ(ξ, t) = (β(t)− 1

2α
′(t))

+ 2πiα(t)ξ. Combining this with Corollary 2.6 and (2.11), the proof is completed.

3 Spectral operators of the Laguerre systems and the Kautz systems

For any parameter a in the unit disc, D := {z = x+ iy : |z| < 1}. Denote the Poisson kernel for the unit

disc by

pa(t) =
1− |a|2

|1− āeit|2
, t ∈ T. (3.1)

Define the real-valued function θa : T = (−π, π) → R by eiθa(t) = z−a
1−āz |z=eit , t ∈ T with the exten-

sion principle θa(t + 2π) = 2π + θa(t). We note that the density function of the harmonic measure is

θ′a(t) = pa(t).

Suppose that Lu is defined in (2.10) with u = 1
pa(·) . Define the differential operator L by

L = Lu + ℘u (3.2)

with ℘u = ℘α,β and α(t) = 2i
(1−ae−it)p2

a(t)
and β(t) = i

(1−ae−it)p2
a(t)

(i− p′
a(t)

pa(t)
).

The main result of this section is the following.

Theorem 3.1. Suppose that L is defined in (3.2). Then

L(en(t)) = −(n+ 1)2en(t). (3.3)

Proof. To proceed with the proof, we need two identities. The first is

d

dt
en(t) = i

(
(n+ 1)pa(t)−

1

1− ae−it

)
en(t), t ∈ T.

The second is

d2

dt2
en(t) = i(n+ 1)p′a(t)en(t)−

ae−it

(1− ae−it)2
en(t)− (n+ 1)2p2a(t)en(t)

− 1

(1− ae−it)2
en(t) +

2(n+ 1)pa(t)

1− ae−it
en(t).

Using the representations of d
dten(t) and

d2

dt2 en(t), we have

e′′n(t)

p2a(t)
= i(n+ 1)

p′a(t)

p2a(t)
en(t)−

ae−it

(1− ae−it)2p2a(t)
en(t)− (n+ 1)2en(t)

− 1

(1− ae−it)2p2a(t)
en(t) +

2(n+ 1)

(1− ae−it)pa(t)
en(t)
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and

−p′a(t)

p3a(t)
e′n(t) = −i

p′a(t)

p3a(t)

(
(n+ 1)pa(t)−

1

1− ae−it

)
en(t)

= −i
p′a(t)

p2a(t)
(n+ 1)en(t) + i

p′a(t)

p3a(t)

1

1− ae−it
en(t).

On one hand, this gives

Lu(en(t)) = u2(t)
d2

dt2
en(t) + u(t)u′(t)

d

dt
en(t)

= i(n+ 1)
p′a(t)

p2a(t)
en(t)−

ae−it

(1− ae−it)2p2a(t)
en(t)− (n+ 1)2en(t)

− 1

(1− ae−it)2p2a(t)
en(t) +

2(n+ 1)

(1− ae−it)pa(t)
en(t)

− i
p′a(t)

p2a(t)
(n+ 1)en(t) + i

p′a(t)

p3a(t)

1

1− ae−it
en(t)

= − ae−it

(1− ae−it)2p2a(t)
en(t)− (n+ 1)2en(t)

− 1

(1− ae−it)2p2a(t)
en(t) +

2(n+ 1)

(1− ae−it)pa(t)
en(t) + i

p′a(t)

p3a(t)

1

1− ae−it
en(t)

= −(n+ 1)2en(t) +
2(n+ 1)

(1− ae−it)pa(t)
en(t)−

1 + ae−it

(1− ae−it)2p2a(t)
en(t)

+ i
p′a(t)

p3a(t)

1

1− ae−it
en(t).

Conversely, we have

2i

(1− ae−it)p2a(t)

d

dt
en(t) =

2i

(1− ae−it)p2a(t)
i

(
(n+ 1)pa(t)−

1

1− ae−it

)
en(t)

= − 2(n+ 1)

(1− ae−it)pa(t)
en(t) +

2

(1− ae−it)2p2a(t)
en(t).

Adding Lu(en(t)) and
2i

(1−ae−it)p2
a(t)

d
dten(t), we have

Lu(en(t)) +
2i

(1− ae−it)p2a(t)

d

dt
en(t)

= −(n+ 1)2en(t) +
1

(1− ae−it)p2a(t)
en(t) + i

p′a(t)

p3a(t)

1

1− ae−it
en(t).

Hence,

Lu(en(t)) +
2i

(1− ae−it)p2a(t)

d

dt
en(t)−

1

(1− ae−it)p2a(t)
en(t)− i

p′a(t)

p3a(t)

1

1− ae−it
en(t)

= −(n+ 1)2en(t),

which is identical to

Lu(en(t)) +
2i

(1− ae−it)p2a(t)

(
d

dt
+

i

2
− 1

2

p′a(t)

pa(t)

)
en(t) = −(n+ 1)2en(t).

Therefore, Lu(en(t)) + ℘u(en(t)) = −(n+ 1)2en(t). This completes the proof.

4 Multiple parameters

This section deals with three aspects. First, we establish a more general theorem as Theorem 3.1. Second,

we offer a complex variable treatment. Third, we build a bridge between a boundary TM system and a

TM system.
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4.1 Boundary TM systems

Set

pa⃗n
(t) =

n∑
j=0

paj (t), t ∈ T, (4.1)

where pa is defined in (3.1).

Now recall the Sturm-Liouville operator Lu in (2.10). For the sequence {a⃗n : n = 0, 1, . . .} of parameter

vectors in the TM system, define the operator sequence Lun,T by

Lun,T = un(t)
d

dt
un(t)

d

dt
= u2

n(t)
d2

dt2
+ un(t)u

′
n(t)

d

dt
(4.2)

with un = 1
pa⃗n

. Essentially,

Lun,T =
1

(pa⃗n
(t))2

d2

dt2
−

p′a⃗n
(t)

(pa⃗n
(t))3

d

dt
.

Define the sequence {℘un : n = 0, 1, . . .} of differential operators by

℘un,T =
2i

(1− ane−it)p2a⃗n
(t)

(
d

dt
+

i

2
− 1

2

p′a⃗n
(t)

pa⃗n
(t)

)
. (4.3)

Define

Ln,T = Lun,T + ℘un,T. (4.4)

Theorem 4.1. Suppose that the operator Ln,T is defined in (4.4). Then

Ln,T(ea⃗n
) = −ea⃗n

. (4.5)

Proof. The proof is like that of Theorem 3.1. The following two identities are crucial:

d

dt
ea⃗n

(t) = i

(
pa⃗n

(t)− 1

1− ane−it

)
ea⃗n

(t), t ∈ T

and

d2

dt2
ea⃗n

(t) = ip′a⃗n
(t)ea⃗n

(t)− ane
−it

(1− ane−it)2
ea⃗n

(t)− p2a⃗n
(t)ea⃗n

(t)

− 1

(1− ane−it)2
ea⃗n

(t) +
2pa⃗n

(t)

1− ane−it
ea⃗n

(t).

On one hand, by using the representations of d
dtea⃗n

(t) and d2

dt2 ea⃗n
(t), we get

e′′a⃗n
(t)

p2a⃗n
(t)

= i
p′a⃗n

(t)

p2a⃗n
(t)

ea⃗n
(t)− ane

−it

(1− ane−it)2p2a⃗n
(t)

ea⃗n
(t)− ea⃗n

(t)

− 1

(1− ane−it)2p2a⃗n
(t)

ea⃗n
(t) +

2

(1− ane−it)pa⃗n
(t)

ea⃗n
(t)

and

−
p′a⃗n

(t)

p3a⃗n
(t)

e′a⃗n
(t) = −i

p′a⃗n
(t)

p3a⃗n
(t)

[
pa⃗n

(t)− 1

1− ane−it

]
ea⃗n

(t)

= −i
p′a⃗n

(t)

p2a⃗n
(t)

ea⃗n
(t) + i

p′a⃗n
(t)

p3a⃗n
(t)

1

1− ane−it
ea⃗n

(t).

Therefore,

Lun,T(ea⃗n
(t)) =

e′′a⃗n
(t)

p2a⃗n
(t)

−
p′a⃗n

(t)

p3a⃗n
(t)

e′a⃗n
(t)
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= i
p′a⃗n

(t)

p2a⃗n
(t)

ea⃗n
(t)− ane

−it

(1− ane−it)2p2a⃗n
(t)

ea⃗n
(t)− ea⃗n

(t)

− 1

(1− ane−it)2p2a⃗n
(t)

ea⃗n
(t) +

2

(1− ane−it)pa⃗n
(t)

ea⃗n
(t)

− i
p′a⃗n

(t)

p2a⃗n
(t)

ea⃗n
(t) + i

p′a⃗n
(t)

p3a⃗n
(t)

1

1− ane−it
ea⃗n

(t)

= − ane
−it

(1− ane−it)2p2a⃗n
(t)

ea⃗n
(t)− ea⃗n

(t)− 1

(1− ane−it)2p2a⃗n
(t)

ea⃗n
(t)

+
2

(1− ane−it)pa⃗n
(t)

ea⃗n
(t) + i

p′a⃗n
(t)

p3a⃗n
(t)

1

1− ane−it
ea⃗n

(t)

= −ea⃗n
(t) +

2

(1− ane−it)pa⃗n
(t)

ea⃗n
(t)− 1 + ane

−it

(1− ane−it)2p2a⃗n
(t)

ea⃗n
(t)

+ i
p′a⃗n

(t)

p3a⃗n
(t)

1

1− ane−it
ea⃗n

(t).

Conversely, we have

2i

(1− ane−it)p2a⃗n
(t)

d

dt
ea⃗n

(t) =
2i

(1− ane−it)p2a⃗n
(t)

i

(
pa⃗n

(t)− 1

1− ane−it

)
ea⃗n

(t)

= − 2

(1− ane−it)pa⃗n
(t)

ea⃗n
(t) +

2

(1− ane−it)2p2a⃗n
(t)

ea⃗n
(t).

The summation of Lun,T(ea⃗n
(t)) and 2i

(1−ane−it)p2
a⃗n

(t)
d
dtea⃗n

(t) is

Lun,T(ea⃗n
(t)) +

2i

(1− ane−it)p2a⃗n
(t)

d

dt
ea⃗n

(t)

= −ea⃗n
(t) +

2

(1− ane−it)pa⃗n
(t)

ea⃗n
(t)− 1 + ane

−it

(1− ane−it)2p2a⃗n
(t)

ea⃗n
(t)

+ i
p′a⃗n

(t)

p3a⃗n
(t)

1

1− ane−it
ea⃗n

(t)− 2

(1− ane−it)pa⃗n
(t)

ea⃗n
(t) +

2

(1− ane−it)2p2a⃗n
(t)

ea⃗n
(t)

= −ea⃗n
(t) +

1

(1− ane−it)p2a⃗n
(t)

ea⃗n
(t) + i

p′a⃗n
(t)

p3a⃗n
(t)

1

1− ane−it
ea⃗n

(t).

Hence,

Lun,T(ea⃗n
(t)) +

2i

(1− ane−it)p2a⃗n
(t)

d

dt
ea⃗n

(t)− 1

(1− ane−it)p2a⃗n
(t)

ea⃗n
(t)

− i
p′a⃗n

(t)

p3a⃗n
(t)

1

1− ane−it
ea⃗n

(t) = −ea⃗n
(t),

from which, we obtain

Lun,T(ea⃗n
(t)) +

2i

(1− ane−it)p2a⃗n
(t)

(
d

dt
+

i

2
− 1

2

p′a⃗n
(t)

pa⃗n
(t)

)
ea⃗n

= −ea⃗n
.

By noting the definition of ℘un,T in (4.3), we see that the above equation is equivalent to

Lun,T(ea⃗n
(t)) + ℘un,T(ea⃗n

(t)) = −ea⃗n
(t).

This confirms (4.5) and finishes the proof of the theorem.

Remark 4.2. Equation (4.5) does not reduce to (3.3) when all the parameters aj ’s are identical. In

fact, when all aj ’s are equal to a, the operators Lun,T and ℘un,T, respectively, reduce to Lu and ℘ up to

the factor 1
n2 , i.e., Lun,T = 1

n2Lu and ℘un,T = 1
n2℘u. It is clear that (4.5) gives rise to (3.3).
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4.2 Complex variable setting

For a ∈ D, denoted by Pa(z) the Poisson kernel for the unit disc can be written as follows:

Pa(z) =
1− |a|2

(z − a)(1− āz)
, z ∈ D. (4.6)

Set

Pa⃗n
(z) =

n∑
j=0

Paj (z), z ∈ D (4.7)

for vector a⃗n = (a0, . . . , an−1, an)
T ∈ Dn+1. Define Lun,D by

Lun,D = un(z)
d

dz
un(z)

d

dz
=

1

P 2
a⃗n
(z)

d2

dz2
−

P ′
a⃗n
(z)

P 3
a⃗n
(z)

d

dz
(4.8)

with un = 1
Pa⃗n

. Let

℘un,D =
2

(z − an)P 2
a⃗n
(z)

(
d

dz
− 1

2

P ′
a⃗n
(z)

Pa⃗n
(z)

)
(4.9)

and

Ln,D = Lun,D + ℘un,D. (4.10)

Theorem 4.3. Suppose that the operator Ln,D and the system {Ea⃗n
} are defined in (4.10) and (1.1),

respectively. Then

Ln,D(Ea⃗n
(z)) = Ea⃗n

(z), z ∈ D. (4.11)

Proof. With disintegrated computation, the proof is like that of Theorem 4.1 by invoking the identity

d

dz
Ea⃗n

(z) =

(
Pa⃗n−1

(z) +
ān

1− ānz

)
Ea⃗n

(z) =

(
Pa⃗n

(z)− 1

z − an

)
Ea⃗n

(z), z ∈ D.

This completes the proof.

4.3 From the complex TM system to the boundary TM system

This section addresses the relationship between Ln,D and Ln,T. We will prove that by setting z = eit

in (4.11) so that we obtain (4.5). In fact, by setting

R(t) =
1

P 2
a⃗n
(eit)

E′′
a⃗n
(eit)−

P ′
a⃗n
(eit)

P 3
a⃗n
(eit)

E′
a⃗n
(eit)

+
2

(eit − an)P 2
a⃗n
(eit)

[
E′

a⃗n
(eit)− 1

2

P ′
a⃗n
(eit)

Pa⃗n
(eit)

Ea⃗n
(eit)

]
,

and L(t) = Ea⃗n
(eit) = ea⃗n

(t), t ∈ T, and by setting z = eit in (4.11), the relation can be written as

R(t) = L(t).

The following theorem indicates that R(t) = −Ln,T(ea⃗n
(t)), from which we conclude that (4.11) with

z = eit leads to (4.5).

Theorem 4.4. Suppose that Ln,T is the operator defined in (4.4) and R(t) is the right-hand side

of (4.11) with z = eit. Then R(t) = −Ln,T(ea⃗n
(t)).

Proof. Using the relations between Ea⃗n
and ea⃗n

,

E′
a⃗n
(eit) = −ie−ite′a⃗n

(t), t ∈ T,
E′′

a⃗n
(eit) = ie−2it(e′a⃗n

(t) + ie′′a⃗n
(t)), t ∈ T,

and similar relations for Pa⃗n
and pa⃗n

,

Pa⃗n
(eit) = e−itpa⃗n

(t), t ∈ T,
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P ′
a⃗n
(eit) = −e−2it(pa⃗n

(t) + ip′a⃗n
(t)), t ∈ T,

we have

R(t) =
1

e−2itp2a⃗n
(t)

ie−2it(e′a⃗n
(t) + ie′′a⃗n

(t))−
−e−2it(pa⃗n

(t) + ip′a⃗n
(t))

e−3itp3a⃗n
(t)

(−i)e−ite′a⃗n
(t)

+
2

(eit − an)e−2itp2a⃗n
(t)

[
− ie−ite′a⃗n

(t)− 1

2

−e−2it(pa⃗n
(t) + ip′a⃗n

(t))

e−itpa⃗n
(t)

ea⃗n
(t)

]
=

1

p2a⃗n
(t)

(ie′a⃗n
(t)− e′′a⃗n

(t))−
i(pa⃗n

(t) + ip′a⃗n
(t))

p3a⃗n
(t)

e′a⃗n
(t)

+
2

(eit − an)e−itp2a⃗n
(t)

[
− ie′a⃗n

(t) +
1

2

(pa⃗n
(t) + ip′a⃗n

(t))

pa⃗n
(t)

ea⃗n
(t)

]
= −

e′′a⃗n
(t)

p2a⃗n
(t)

+
p′a⃗n

(t)

p3a⃗n
(t)

e′a⃗n
(t)

+
2

(1− ane−it)p2a⃗n
(t)

[
− ie′a⃗n

(t) +
1

2
ea⃗n

(t) +
i

2

p′a⃗n
(t)

pa⃗n
(t)

ea⃗n
(t)

]
= −

e′′a⃗n
(t)

p2a⃗n
(t)

+
p′a⃗n

(t)

p3a⃗n
(t)

e′a⃗n
(t)

+
2i

(1− ane−it)p2a⃗n
(t)

[
− e′a⃗n

(t)− i

2
ea⃗n

(t) +
1

2

p′a⃗n
(t)

pa⃗n
(t)

ea⃗n
(t)

]
= −Lun,T(ea⃗n

(t))− ℘un,T(ea⃗n
(t)) = −Ln,T(ea⃗n

(t)).

This completes the proof of the theorem.

5 Upper half-plane

There is a parallel theory for TM systems on the upper half-plane. In the upper half-plane context, we

say f ∈ Hp(C+), 0 < p < ∞, if f is analytic on C+ and supy>0

∫∞
−∞ |f(x + iy)|pdx = ∥f∥pHp(C+) < ∞.

When p = ∞, we write f ∈ H∞(C+) for the totality of all the bounded analytic functions on C+, and

we give H∞(C+) the norm ∥f∥H∞(C+) = supw∈C+ |f(w)|. The relation between f ∈ Hp(C+) and their

non-tangential boundary limits on R is the same as for the unit disc. H2(C+) has inner product

⟨f, g⟩C+ =

∫ ∞

−∞
f(t)g(t)dt, f, g ∈ H2(C+).

For a given parameter sequence {λn}∞n=0 ⊂ C+, the corresponding TM system {βλ⃗n
}∞n=0 on the upper

half-plane C+ is

βλ⃗n
(z) =

√
1
π Im{λn}

z − λn

n−1∏
j=0

z − λj

z − λj

, z ∈ C+, n ∈ Z+, (5.1)

with vector λ⃗n = (λ0, . . . , λn−1, λn)
T ∈ (C+)n+1. Under the condition

∑∞
k=0

√
Im(λk)

1+|λk|2 = ∞, {βλ⃗n
} is an

orthonormal basis of the Hardy space Hp(C+), 1 < p < ∞.

The corresponding boundary TM system {βλ⃗n
}∞n=0 on the upper-half plane case is

βλ⃗n
(t) := lim

Im(z)→0+
βλ⃗n

(z) =

√
1
π Im{λn}

t− λn

n−1∏
j=0

t− λj

t− λj

, t ∈ R, n = 0, 1, . . . (5.2)
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5.1 For a boundary TM system on the upper half-plane

For λ ∈ C+, the Poisson kernel qλ on the real line is defined by

qλ(t) =
2Im{λ}
|t− λ|2

, t ∈ R. (5.3)

Generally, for vector λ⃗n = (λ0, . . . , λn−1, λn)
T, set

qλ⃗n
(t) =

n∑
j=0

qλj (t), t ∈ R. (5.4)

For a sequence {λ⃗n : n = 0, 1, . . .} of parameter vectors on the upper half-plane, define the operator

sequence Lun by

Lun,R = un(t)
d

dt
un(t)

d

dt
= u2

n(t)
d2

dt2
+ un(t)u

′
n(t)

d

dt
(5.5)

with un = 1
q
λ⃗n

. Essentially,

Lun,R =
1

q2
λ⃗n

(t)

d2

dt2
−

q′
λ⃗n

(t)

q3
λ⃗n

(t)

d

dt
.

Set

℘un,R =
2

(t− λn)q2
λ⃗n

(t)

(
d

dt
− 1

2

q′
λ⃗n

(t)

qλ⃗n
(t)

)
(5.6)

and

Ln,R = Lun,R + ℘un,R. (5.7)

Theorem 5.1. Suppose that the operator Ln,R and the system {βλ⃗n
} are defined in (5.7) and (5.2),

respectively. Then

Ln,R(βλ⃗n
(t)) = −βλ⃗n

(t), t ∈ R. (5.8)

Proof. The identity

(t− λn)βλ⃗n
(t) =

√
1

π
Im(λn)

n∏
j=0

t− λj

t− λj

implies that

β′
λ⃗n

(t) =

(
iqλ⃗n

(t)− 1

t− λn

)
βλ⃗n

(t).

Furthermore, we have

β′′
λ⃗n

(t) =

[
iq′

λ⃗n
(t) +

2

(t− λn)2
− q2

λ⃗n
(t)− 2i

t− λn
qλ⃗n

(t)

]
βλ⃗n

(t).

Then

Lun,R(βλ⃗n
(t)) =

1

q2
λ⃗n

(t)
β′′
λ⃗n

(t)−
q′
λ⃗n

(t)

q3
λ⃗n

(t)
β′
λ⃗n

(t)

=
1

q2
λ⃗n

(t)

(
iq′

λ⃗n
(t) +

2

(t− λn)2
− q2

λ⃗n
(t)− 2i

t− λn
qλ⃗n

(t)

)
βλ⃗n

(t)

−
q′
λ⃗n

(t)

q3
λ⃗n

(t)

(
iqλ⃗n

(t)− 1

t− λn

)
βλ⃗n

(t)

=

(
2

(t− λn)2q2
λ⃗n

(t)
− 1− 2i

(t− λn)qλ⃗n
(t)

+
q′
λ⃗n

(t)

(t− λn)q3
λ⃗n

(t)

)
βλ⃗n

(t)
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and

℘un,R(βλ⃗n
(t)) =

2

(t− λn)q2
λ⃗n

(t)

(
β′
λ⃗n

(t)− 1

2

q′
λ⃗n

(t)

qλ⃗n
(t)

βλ⃗n
(t)

)

=
2

(t− λn)q2
λ⃗n

(t)

((
iqλ⃗n

(t)− 1

t− λn

)
βλ⃗n

(t)− 1

2

q′
λ⃗n

(t)

qλ⃗n
(t)

βλ⃗n
(t)

)

=

(
2i

(t− λn)qλ⃗n
(t)

− 2

(t− λn)2q2
λ⃗n

(t)
−

q′
λ⃗n

(t)

(t− λn)q3
λ⃗n

(t)

)
βλ⃗n

(t).

Therefore, Lun,R(βλ⃗n
(t)) + ℘un,R(βλ⃗n

(t)) = −βλ⃗n
(t). This completes the proof of this theorem.

5.2 For TM systems on the upper half-plane

For λ ∈ C+, we extend the Poisson kernel qλ to the complex plane

Qλ(z) =
2Im{λ}

(z − λ)(z − λ̄)
, z ∈ C (5.9)

and

Qλ⃗n
(z) =

n∑
j=0

Qλj (z), z ∈ C (5.10)

for vector λ⃗n = (λ0, . . . , λn−1, λn)
T ∈ (C+)n+1.

For the sequence {λ⃗n : n = 0, 1, . . .} of parameter vectors, define the operator sequence Lun,C+ by

Lun,C+ = un(z)
d

dz
un(z)

d

dz
=

1

Q2
λ⃗n

(z)

d2

dz2
−

Q′
λ⃗n

(z)

Q3
λ⃗n

(z)

d

dz
(5.11)

with un = 1
Q

λ⃗n

. Set

℘un,C+ =
2

(z − λn)Q2
λ⃗n

(z)

(
d

dz
− 1

2

Q′
λ⃗n

(z)

Qλ⃗n
(z)

)
(5.12)

and

Ln,C+ = Lun,C+ + ℘un,C+ . (5.13)

Using the identity

d

dz
βλ⃗n

(z) =

(
iQλ⃗n−1

(z)− 1

z − λ̄n

)
βλ⃗n

(z) =

(
iQλ⃗n

(z)− 1

z − λn

)
βλ⃗n

(z), z ∈ C,

and applying a similar discussion to that in the proof of Theorem 5.1, we obtain the following theorem.

Theorem 5.2. For the operator Ln,C+ and the system {βn} as defined in (5.13) and (5.1), respectively,

it holds that

Ln,C+(βλ⃗n
(z)) = −βλ⃗n

(z), z ∈ C+. (5.14)

Notice that the operators Ln,R and Ln,C+ , defined respectively in (5.7) and (5.13) are almost the same

because they are connected by the natural mapping z → Re(z). Essentially, this is due to the analyticity

of βλn(z), z ∈ C+ and the real analyticity of βλn(t), t ∈ R.
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6 From the upper half-plane to the unit disc

This section will establish a relationship between the operators Ln,C+ and Ln,D. To build a bridge between

Ln,C+ and Ln,D, we use the Caley transform κ : D → C+:

κ(z) = i
1− z

1 + z
, z ∈ D,

which is a bijection between D and C+ with inverse κ−1 : C+ → D,

κ−1(z) =
i− z

i + z
, z ∈ C+.

The following identity is crucial. It establishes a relationship between βλ⃗n
and Ea⃗n

through the compo-

sition of κ:

βλ⃗n
(κ(z)) = C1(1 + z)Ea⃗n

(z), z ∈ D,

where (λj , aj) ∈ C+ × D is the κ-pair ruled by λj = κ(aj) = i
1−aj

1+aj
or aj = κ−1(λj) =

i−λj

i+λj
for

j ∈ {0, 1, . . . , n}, C1 = 1
2
√
π
eiα, and

eiα = (−1)n+1i
1 + ān
|1 + an|

n−1∏
j=0

1 + āj
1 + aj

.

Replacing z ∈ C+ by κ(z) ∈ C+, z ∈ D, in (5.14), we get R(z) = L(z), z ∈ D, with

R(z) =
1

Q2
λ⃗n

(κ(z))
β′′
λ⃗n

(κ(z))−
Q′

λ⃗n
(κ(z))

Q3
λ⃗n

(κ(z))
β′
λ⃗n

(κ(z))

+
2

(κ(z)− λn)Q2
λ⃗n

(κ(z))

[
β′
λ⃗n

(κ(z))− 1

2

Q′
λ⃗n

(κ(z))

Qλ⃗n
(κ(z))

βλ⃗n
(κ(z))

]
and

L(z) = −βλ⃗n
(κ(z)) = −C1(1 + z)Ea⃗n

(z), z ∈ D.

The following theorem shows that R(z) = −C1(1+ z)Ln,D(Ea⃗n
(z)) so that (5.14) reduces to (4.11) when

we replace z ∈ C+ by κ(z) for z ∈ D in (5.14).

Theorem 6.1. Suppose that Ln,D is the operator defined in (4.10) and R(z) is the right-hand side

of (5.14) when we replace z ∈ C+ by κ(z), z ∈ D. Then R(z) = −C1(1 + z)Ln,D(Ea⃗n
(z)), z ∈ D.

Proof. We first prove two identities associated with the derivatives of βλ⃗n
:

β′
λ⃗n

(κ(z)) =
i

2
C1(1 + z)2[Ea⃗n

(z) + (1 + z)E′
a⃗n
(z)], z ∈ D

and

β′′
λ⃗n

(κ(z)) = −C1

[
1

4
(1 + z)5E′′

a⃗n
(z) + (1 + z)4E′

a⃗n
(z) +

1

2
(1 + z)3Ea⃗n

(z)

]
, z ∈ D.

Similarly, by noting that 2Im(λ)
|1−iλ|2 = 1

2 (1− |a|2) for κ-pair (λ, a), Qλ⃗n
satisfies both

Qλ⃗n
(κ(z)) =

1

2
(1 + z)2Pa⃗n

(z), z ∈ D,

and

Q′
λ⃗n

(κ(z)) =
i

2
(1 + z)3Pa⃗n

(z) +
i

4
(1 + z)4P ′

a⃗n
(z), z ∈ D.
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By substituting the expressions of Qλ⃗n
(κ(z)), Q′

λ⃗n
(κ(z)) and β

(j)

λ⃗n
(κ(z)), j = 0, 1, 2, into the above

equation, it follows that

R(z) = 4(1 + z)−4 1

P 2
a⃗n
(z)

(−C1)

[
1

4
(1 + z)5E′′

a⃗n
(z) + (1 + z)4E′

a⃗n
(z) +

1

2
(1 + z)3Ea⃗n

(z)

]
−

i
2 (1 + z)3Pa⃗n

(z) + i
4 (1 + z)4P ′

a⃗n
(z)

1
8 (1 + z)6P 3

a⃗n
(z)

i

2
C1(1 + z)2[Ea⃗n

(z) + (1 + z)E′
a⃗n
(z)]

+
2

(κ(z)− λn)
1
4 (1 + z)4P 2

a⃗n
(z)

{
i

2
C1(1 + z)2[Ea⃗n

(z) + (1 + z)E′
a⃗n
(z)]

− 1

2

i
2 (1 + z)3Pa⃗n

(z) + i
4 (1 + z)4P ′

a⃗n
(z)

1
2 (1 + z)2Pa⃗n

(z)
C1(1 + z)Ea⃗n

(z)

}
.

After some calculations, we get

− 1

C1(1 + z)
R(z) =

1

P 2
a⃗n
(z)

[E′′
a⃗n
(z) + 4(1 + z)−1E′

a⃗n
(z) + 2(1 + z)−2Ea⃗n

(z)]

− 2(1 + z)−2Ea⃗n
(z)

P 2
a⃗n
(z)

− (1 + z)−1
P ′
a⃗n
(z)

P 3
a⃗n
(z)

Ea⃗n
(z)− 2(1 + z)−1

E′
a⃗n
(z)

P 2
a⃗n
(z)

−
P ′
a⃗n
(z)

P 3
a⃗n
(z)

E′
a⃗n
(z)

− 2

(κ(z)− λn)
1
4 (1 + z)2P 2

a⃗n
(z)

[
i

2
E′

a⃗n
(z)− i

4

P ′
a⃗n
(z)

Pa⃗n
(z)

Ea⃗n
(z)

]
=

1

P 2
a⃗n
(z)

[E′′
a⃗n
(z) + 2(1 + z)−1E′

a⃗n
(z)]− (1 + z)−1

P ′
a⃗n
(z)

P 3
a⃗n
(z)

Ea⃗n
(z)−

P ′
a⃗n
(z)

P 3
a⃗n
(z)

E′
a⃗n
(z)

− 2

(κ(z)− λn)
1
4 (1 + z)2P 2

a⃗n
(z)

[
i

2
E′

a⃗n
(z)− i

4

P ′
a⃗n
(z)

Pa⃗n
(z)

Ea⃗n
(z)

]
= Ea⃗n

(z).

Recalling the operator Lun,D with un = Pa⃗n
(z), noting that κ(z) − λn = − 2i

1+an

z−an

1+z for the κ-pair

(λn, an) and

− 2

(κ(z)− λn)
1
4 (1 + z)2P 2

a⃗n
(z)

[
i

2
E′

a⃗n
(z)− i

4

P ′
a⃗n
(z)

Pa⃗n
(z)

Ea⃗n
(z)

]
=

2(1 + an)

(z − an)P 2
a⃗n
(z)

(1 + z)−1

[
E′

a⃗n
(z)− 1

2

P ′
a⃗n
(z)

Pa⃗n
(z)

Ea⃗n
(z)

]
=

2

(z − an)P 2
a⃗n
(z)

(1 + an)

(
1− z

1 + z

)[
E′

a⃗n
(z)− 1

2

P ′
a⃗n
(z)

Pa⃗n
(z)

Ea⃗n
(z)

]
=

2

(z − an)P 2
a⃗n
(z)

(
1− z − an

1 + z

)[
E′

a⃗n
(z)− 1

2

P ′
a⃗n
(z)

Pa⃗n
(z)

Ea⃗n
(z)

]
= ℘un,D(Ea⃗n

(z))− 2

(1 + z)P 2
a⃗n
(z)

[
E′

a⃗n
(z)− 1

2

P ′
a⃗n
(z)

Pa⃗n
(z)

Ea⃗n
(z)

]
,

we obtain

− 1

C1(1 + z)
R(z) = Lun,D(Ea⃗n

(z)) + 2(1 + z)−1
E′

a⃗n
(z)

P 2
a⃗n
(z)

− (1 + z)−1
P ′
a⃗n
(z)

P 3
a⃗n
(z)

Ea⃗n
(z)

+ ℘un,D(Ea⃗n
(z))− 2

(1 + z)P 2
a⃗n
(z)

[
E′

a⃗n
(z)− 1

2

P ′
a⃗n
(z)

Pa⃗n
(z)

Ea⃗n
(z)

]
= Ln,D(Ea⃗n

(z)) + ℘un,D(Ea⃗n
(z))

= Ln,D(Ea⃗n
(z)).

This completes the proof of the theorem.
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