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Abstract. A linear operator in a Hilbert space defined through inner product against
a kernel function naturally introduces a reproducing kernel Hilbert space structure over
the range space. Such formulation, called H-HK formulation in this paper, possesses a
built-in mechanism to solve some basic type problems in the formulation by using the
basis method, that include identification of the range space, the inversion problem, and
the Moore-Penrose pseudo- (generalized) inversion problem. After a quick survey of the
existing theory, the aim of the article is to establish connection between this formula-
tion with sparse series representation, and in particular with one called pre-orthogonal
adaptive Fourier decomposition (POAFD), the latter being one, most recent and well
developed, with great efficiency and wide and deep connections with traditional analy-
sis. Within the matching pursuit methodology the optimality of POAFD is theoretically
guaranteed. In practice POAFD offers fast converging numerical solutions.
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1. Introduction to the H-HK formulation, the Basic Problems, and Basis
solutions

In a Hilbert space if the point-evaluation functional of any point is given by the inner
product of the function with a function parameterized by the point, then we say that
the Hilbert space is a reproducing kernel Hilbert space (RKHS), and the parameterized
function is the (unique) reproducing kernel of the RKHS. We will start with a formulation
of a linear operator in a general Hilbert space, and lead to a RKHS structure in the range
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space of the operator. This formulation may be found in a number of sources, and for
instance, in [21]. The general Hilbert space is denoted H with inner product ⟨·, ·⟩H,
and the linear operator is formulated with the inner product in the form of the Riesz
representation Theorem, as follows. Let E be an abstract set, usually with a topology. In
our context E is usually an open set of an Euclidean space, or an open set of a domain
of one or several complex variables, where the elements of E are treated as parameters.
Associated with each p ∈ E there is an element hp ∈ H. A linear operator L : H → CE

is defined as

Lf(p) , ⟨f, hp⟩H.(1.1)

where CE denotes the set of all functions from E to the complex number field C. Denote
F (p) = Lf(p). Let N(L) be the null space of the operator L :

N(L) = {f ∈ H | L(f) = 0}.

N(L) is a closed set in H. In fact, if fn, f ∈ H, fn → f and L(fn) = 0, then we have

|Lf(p)| = |⟨f − fn, hp⟩H| ≤ ∥f − fn∥H∥hp∥H → 0.

Thus Lf = 0 and f ∈ N(L). As a consequence we have an orthogonal decomposition for
the domain space

H = N(L)⊕N(L)⊥.

Accordingly, each f ∈ H can be uniquely written as

f = f− + f+,

where f− ∈ N(L), f+ ∈ N(L)⊥. We also use the orthogonal projection notations and
denote PN(L)⊥f = f+ and PN(L)f = f−, where PN(L)⊥ and PN(L) denotes, respectively,

the projections to the closed subspaces N(L)⊥ and N(L). Whenever F = Lf, we have
Lf = Lf+, and ∥f+∥ ≤ ∥f∥. Any solution g for Lg = F has the form g = f+ + h, where
h ∈ N(L), and hence ∥f+∥ ≤ ∥g∥. Let R(L) denote the range of the operator L, that is

R(L) = {F | ∃f ∈ H such that F = Lf}.

The above particulars in relation to the orthogonal decomposition of the domain space
show that for F ∈ R(L) the solution f for the equation Lf = F is unique under the
minimum norm requirement, and the solution is identical with PN(L)⊥f = f+.
We show that R(L) may be equipped with an inner product under which it becomes a
RKHS, denoted HK , where K stands for the reproducing kernel. To do this the induced
norm of F = L(f) ∈ R(L) in the range space is defined

∥F∥HK
, ∥PN(L)⊥f∥H.

The polarization of the norm gives rise to an inner product in R(L) denoted ⟨·, ·⟩HK
. The

function set R(L) equipped with the inner product ⟨·, ·⟩HK
is named as space HK , called

the canonical range space in relation to H and {hp}p∈E. In such way the new Hilbert space
HK is isometric with N(L)⊥ through the mapping L. Now we show that K(q, p), being
being defined as

K(q, p) = ⟨hq, hp⟩H,
is the reproducing kernel of HK . Alternatively we denote K(q, p) = Kq(p). We first show
that hp ∈ N(L)⊥ and thus hp = PN(L)⊥(hp). For any fixed p in E the relation hp ∈ N(L)⊥
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is evidenced by the fact that for all f− ∈ N(L) the relation

0 = L(f−)(p) = ⟨f−, hp⟩H
holds. Now for F ∈ HK , PN(L)⊥f = f+, Lf+ = F, q ∈ E, with the relation Kq(p) =
⟨hq, hp⟩H = L(hq)(p), we have

⟨F,Kq⟩HK
= ⟨Lf, L(hq)⟩HK

= ⟨PN(L)⊥f, PN(L)⊥hq⟩H
= ⟨f+, hq⟩H
= L(f+)(q)

= F (q),

reproducing the value of the function F at q ∈ E. In the sequel we will call the above
formulation as H-HK formulation, and HK the canonical range space.
This formulation is as if customized especially for the the complex Hardy spaces: a space
having very fundamental impact to harmonic analysis, complex analysis, as well as to
signal analysis. But it is not: the formulation is a very general and suitable for all integral,
ordinary and partial differential operators defined in their respective Hilbert spaces (see
[21]) in the form of the Riesz representation Theorem. Below we explain how the complex
Hardy space of the unit disc is precisely an example for the H-HK formulation. In the
case H = L2(∂D), where D denotes the complex unit disc and ∂D means the boundary
of D, i.e., the unit circle. L2(∂D) is facilitated with the inner product

⟨f, g⟩L2(∂D) =
1

2π

∫ 2π

0

f(eit)g(eit)dt

under which L2(∂D) is a Hilbert space but itself is not a RKHS. In the case E = D. For
p ∈ D,

hp(e
it) =

1

1− peit
∈ L2(∂D).

The function hp is the Szegö kernel of the context being the Cauchy kernel in the circle arc
length measure. Naturally, for f ∈ L2(∂D), F (p) = ⟨f, hp⟩L2(∂D) is the Cauchy integral
of the boundary data f over the unit circle. The range space HK is identical with the
complex Hardy space H2(D) :

H2(D) = {F : D → C | F is holomorphic and ∥F∥2H2(D) = sup
0<r<1

∫ 2π

0

|F (reit)|2 < 0}.

A functions F (z) being in this space is equivalent with the condition that F (z) has the
Taylor series expansion F (z) =

∑∞
k=0 ckz

k with
∑∞

k=0 |ck|2 < ∞. In both the set theoretic
and the Hilbert space inner product and norm sense H2(D) = HK , where functions F in
HK is equipped with the norm

∑∞
k=0 |ck|2. We note that the reproducing kernel of H2(D)

is, according to the Cauchy formula,

K(q, p) = Kq(p) = ⟨hq, hp⟩H =
1

1− qp
.

The reproducing function of Kq for F ∈ HK may be verified through

⟨F,Kq⟩HK
= ⟨f+, hq⟩H = ⟨f, hq⟩H = F (q).



4 T. QIAN

Denote by H the circular Hilbert transform on the circle. The L2 data f on ∂D has
the decomposition f = f+ + f−, where f+(eit) = (1/2)(f + iHf) =

∑∞
k=0 cke

ikt and

f−(eit) = (1/2)(f−iHf) =
∑−∞

k=−1 cke
ikt. f± are also called the analytic signals associated

with f, from the inside and the outside of the disc, respectively. There in particular holds
F (p) = Lf(p) = Lf+(p) = ⟨f+, hp⟩L2(∂D). The operator L is an isometry mapping between
f+ and F. And, all f−, non-trivially, constitute the null space N(L). As a consequence of
the Plemelj Theorem the non-tangential boundary limit of F is identical with f+. We note
that the inner product of H2(D) is computed through the inner product of the isometric
subspace N(L)⊥ represented by an integral over the boundary. This is consistent with the
H-HK formulation. We on the other hand also note that in this Hardy space case there
exists an integral with respect to a certain measure over the whole disc region that gives
rise to the norm as well. It is referred to as the Littlewood-Paley Identity: for F ∈ H2(D),

∥F∥2H2(D) = |F (0)|2 + 2

∫
D

|F ′(z)|2 log 1

|z|
dA(z),(1.2)

where dA(z) is the normalized area measure of the disc. The polarization of (1.2) gives rise
to the integral inner product formula of HK in D corresponding to the Littlewood-Paley
formula:

⟨F,G⟩HK
= F (0)G(0) + 2

∫
D

f ′(z)g′(z) log
1

|z|
dA(z).

The H-HK formulation is general enough to include a wide class of linear operators
including integral, ordinary and partial differential operators. While the integral operators
are obviously included, we take the differential operators case as an illustrative example.
In the case the underlying space H itself is usually a RKHS. Let f be defined in a RKHS
H̃ = H̃K̃ with the reproducing kernel K̃. Then

f(x) = ⟨f, K̃x⟩H̃K̃
.

Let P be a multi-variable-polynomial. Then with ∂ = (∂1, · · · , ∂n) we have

P (∂)f(x) = ⟨f, P (∂)Kx⟩HK
,

turning the differential operator to an integral operators in a suitable space. In the
differential operator cases the underlying spacesH are often Sobolev spaces, being RKHSs,
or their subspaces. In the H-HK formulation there are three types of questions naturally
arising, namely,

(i) How to explicitly represent and numerically compute the image function F (p) =
⟨f, hp⟩H?

(ii) Given a function F ∈ R(L), how to represent and numerically approximate the
inverse image function f that satisfies F = Lf and ∥f∥ = min{∥g∥ | Lg = F}?

(iii) Solve the Moore-Penrose psuedo-inverse (generalized inverse) problem: Assume that
the L-image space HK be contained in a Hilbert space H̃ as a closed subspace. The
question is that for any given function F ∈ H̃, find f ∈ H such that f is of the
smallest norm in H and ∥Lf − F∥H̃ is minimized.

There have been studies in relation to these questions (see [21] and its enormous ref-
erences). There have been ample literature on reproducing kernel methods in solving
various problems of the type of linear operators in Hilbert spaces. Below we summarize
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what we call as basis method. The basis method as a methodology has existed in the
literature. We include here a unified and concise formulation.
In the H-HK formulation HK is a RKHS, while the span of the kernel functions Kq, q ∈ E,
is a dense subset of HK . The last assertion follows from the reproducing property of the
kernels. If the parameter set E is an open set, and the mapping from E to the set
{Kq | q ∈ E} is continuous in the topology of H, then some countable subset {Kqn | qn ∈
E, n = 1, 2, · · · }, can constitute a complete system of HK . As a consequence, HK contains
an orthonormal basis B1, B2, · · · , that is the Gram-Schmidt (G-S) orthonormalization of
the collection {Kqn | qn ∈ E, n = 1, 2, · · · }, where

Bn =
Eqn −

∑n−1
l=1 ⟨Eqn , Bl⟩Bl√

1−
∑n−1

l=1 |⟨Eqn , Bl⟩|2
,

where Eq = Kq

∥Kq∥HK

denotes the normalization of Kq, q ∈ E. We note that in the basis

formulation the parameters qn, n = 1, · · · , n, · · · , are all distinguished to each other.
Accordingly, we have

AnBn = Kn, and thus Bn = A−1
n Kn,(1.3)

where for each n the matrix An is of rank n and order n×n with entries ⟨Kqi , Bj⟩HK
, 1 ≤

i, j ≤ n, and the n-basis matrices Bn and Kn both are of order n×1 (i.e., column matrices)
with entries, respectively, Bl and Kql , l = 1, · · · , n. Due to the triangle matrix property
⟨Kqi , Bj⟩HK

= 0 for all cases i < j, the relations in (1.3) then be formally extended to the
corresponding infinite matrices as

AB = E and B = A−1K,(1.4)

with suitable interpretations of the notations.
To solve the problem (i) one just expands the given F ∈ HK into the basis {Bl}∞l=1, and
has

F = FBB = A−1K,(1.5)

where FB is the infinite row matrix consisting of ⟨F,Bl⟩HK
, and B is the infinite column

matrix consisting of Bl. Next we solve the inversion problem (ii). We note that, since L
is an isometry from N(L)⊥ to HK , the inverse operator L−1 exists from HK to N(L)⊥,
being also an isometry. We have

L−1F = FBL
−1B = FBA−1L−1E ,(1.6)

where L−1E is the infinite column matrix consisting of the terms L−1Eqn , n = 1, 2, · · ·
The validity of the first equal relation of (1.6) is justified by the orthonormality of L−1B
through a Cauchy sequence argument (also see the proof of Theorem 3.1 below). One can
explicitly work out, for any q ∈ E,

L−1Eq =
L−1Kq

∥Kq∥HK

=
hq

∥hq∥H
.

Denote T = L−1E , consisting of the infinite column matrix with the entries hqn/∥hq∥H, n =
1, · · · , we have

L−1F = FBA−1T .(1.7)
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This result shows that since we know L−1Kq = hq, with the transfer matrix A we can
get L−1Bk computed.
Next, we solve the Moore-Penrose pseudo-inverse problem (iii). The basic assumption is
that the space HK is contained in a Hilbert space H̃ as a closed subspace. Let F be the
given function in H̃. The strategy is to expand the projection G = PHK

(F ) in HK , and
then expand G into a B-series. Noticing that F −G is perpendicular with Kq, we have

⟨F,Kq⟩H̃ = ⟨G,Kq⟩H̃ = ⟨G,Kq⟩HK
= G(q).

Then with

G =
∞∑
l=1

⟨G,Bl⟩HK
Bl,

we have

L−1G =
∞∑
k=1

⟨⟨F,K{·}⟩H̃, Bl⟩HK
L−1Bl.(1.8)

In the matrix notation the above is

L−1G = {⟨F,K{·}⟩H̃}BA
−1L−1E = {⟨F,K{·}⟩H̃}BA

−1T ,

where {⟨F,K{·}⟩H̃}B is the row matrix consisting of ⟨⟨F,K{·}⟩H̃, Bl⟩HK
, l = 1, 2, ... By

using the notations S1, S2 and S3 for the solutions of the problems (i), (ii) and (iii), from
(1.5), (1.7) and (1.8), we have

Theorem 1.1. The solutions to the Problems (i),(ii) and (iii) are respectively given by

S1 = FBB,(1.9)

S2 = FBA−1T ,(1.10)

and

S3 = {⟨F,K{·}⟩H̃}BA
−1T .(1.11)

Remark 1.2. The above Problem (iii) is under the assumption that HK is a subspace
of H̃ that, as a matter of fact, makes a solution straightforward. The example for this
is the imbedding of the L2-Bergman space in a complex region into the L2-space in
the same region. The more general cases, that is not discussed in the resent paper,
include HK being a set-theoretic subset of H̃ with a non-isometric imbedding operator
I : ∥I(f)∥H̃ ≤ ∥f∥HK

. Such case is, in fact, equivalent in our setting with L̃ : HK → H̃,

where L̃ is, in general, a bounded linear operator. Examples for this general cases include,
for instance, the imbedding of a Sobolev space into another Sobolev space.

We note that the obtained solution formulas are dependent of the basis systems E , B,
the transfer matrix A. They involve complicated computations. The POAFD algorithm
proposed in §2 is more efficient in computation involving only a limited number of matrices
of finite orders for accepted errors.
The rest of the paper introduces a non-basis method, called pre-orthogonal adaptive
Fourier decomposition (POAFD). The POAFD method, having been used in signal and
image analysis, and in system identification, would be, according to the author’s knowl-
edge, for the first time introduced to numerical solutions of ODEs, PDEs and integral
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equations. §2 is devoted to the POAFD theory itself. In §3 we solve the three types prob-
lems by POAFD. The most recent studies show that concrete examples to get numerical
solutions using POAFD are all very interesting and significant. As a unified method it is
useful whenever the canonical range space HK is well characterized, or a general kernel Kq

is identified. On the other hand, the method itself is helpful to characterize the canonical
range space. In the present study we only present the principle of the proposed methods.

2. POAFD: A Non-Basis Method for Sparse Representation

Let HK be the RKHS with kernel function K(p, q) = Kq(p) = ⟨hq, hp⟩H as in the H-HK

formulation. The normalized kernels Eq = Kq/∥Kq∥HK
, q ∈ E, constitute a dictionary.

Below we will describe the pre-orthogonal adaptive Fourier decomposition (POAFD) algo-
rithm that is available in all Hilbert spaces with a dictionary. Methodology-wise, POAFD
belongs to the matching pursuit (or greedy algorithm) type of sparse representations
([13, 12]). It, however, did not belong to any existing matching pursuit method until
it was proposed in [16]. It adopts the idea of Adaptive Fourier Decomposition (AFD)
implemented to signals in the classical Hardy spaces. The predecessor AFD was initial-
ized for positive frequency representations of analytic signals, whose algorithm involve
the generalized backward shift operator and knowledge of classical Takenaka-Malmquist
(TM) system generalizing the Fourier system. It well fits into the frame work of the
Beurling-Lax Theorem ([18]) and, owing to which, has delicate and deep connections
with complex analysis theory, and especially Möbius transform and Blaschke products.
POAFD may be said to be AFD in Hilbert spaces, enhancing delicate analysis due to the
fact that it reduces to AFD when underlying Hilbert spaces are replaced by the classical
Hardy spaces of one and multiple variables. The AFD algorithm automatically involves
multiple parameters (multiple zeros of Blaschke products). Which, in POAFD, corre-
sponds to repeating selections of multiple kernels labelled by the same parameters in the
Gram-Schmidt orthogonalization process, when necessary for the optimization principle.
In theoretical development, like in AFD in term of the TM system involving Blaschke
products, repeating selections of parameters corresponding to multiple kernels of different
levels cannot be avoided. The POAFD maximal selection principle evidences that it is
indeed the most effective matching pursuit process. Below we introduce POAFD. To sim-
plify the notation we in the present section borrow the notation {Kq}q∈E as a collection
of functions whose span is dense in the underlying Hilbert space, and use HK for such
a Hilbert space. We will not invoke the reproducing kernel property in this section. To
be able to deal with multiple kernels we assume that each Kq, q ∈ E, have all orders of
derivatives with respect to q.
For the simplicity, let E be an open set in the complex plane. Let {q1, · · · , qn, · · · , } be
an infinite sequence of parameters in E. Denote

K̃n =

[(
∂

∂q

)(l(n)−1)

Kq

]
(qn),

where l(n) is the number of repeating of the parameter qn in the n-tuple {q1, · · · , qn}.
With a little abuse of the notation, we will also denote the just defined kernel function K̃n

as K̃qn , n = 1, 2, · · · , named the multiple kernels associated with the parameter sequence
in use. The concept multiple kernel is a necessity of the pre-orthogonal maximal selection
principle: Suppose we already have an (n−1)-tuple {q1, · · · , q(n−1)}, with repetition or not,
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corresponding to the (n−1)-tuple {K̃q1 , · · · , K̃qn−1}. By doing the G-S orthonormalization
process consecutively we obtain an equivalent (n− 1)-orthonormal basis {B1, · · · , Bn−1}.
We wish to find a qn that gives rise to a value being equal

sup{|⟨Gn, B
q
n⟩| : q ∈ E, q ̸= q1, · · · , qn−1}

where Gn is the standard remainder

Gn = F −
n−1∑
k=1

⟨F,Bk⟩Bk,

and the finiteness of the supreme is guaranteed by the Cauchy-Schwartz inequality, and Bq
n

be such that {B1, · · · , Bn−1, B
q
n} is the G-S orthonormalization of {K̃q1 , · · · , K̃qn−1 , Kq},

given by

Bq
n =

Kq −
∑n−1

k=1⟨Kq, Bk⟩HK
Bk√

∥Kq∥2 −
∑n−1

k=1 |⟨Kq, Bk⟩HK
|2
.(2.12)

In many cases, however, it happens that the space satisfies the so called Boundary-
Vanishing Condition (BVC ): For any but fixed F ∈ HK , if pn ∈ E and pn → ∂E,
then

lim
n→∞

|⟨F,Epn⟩| = 0.

If BVC holds, a compact argument leads that there exists a point qn ∈ E and q(l), l =
1, 2, · · · , such that

lim
l→∞

|⟨Gn, B
q(l)

n ⟩| = sup{|⟨Gn, B
q
n⟩| : q ∈ E, q ̸= q1, · · · , qn−1}.(2.13)

When this is the case, the delicate thing is that the limiting point qn may coincide with one
or several preceding qk, k < n. In such case it is the multiple kernel K̃qn , but not Kqn , that
has to be used in (2.12) in doing the G-S process with the preceding B1, · · · , Bn−1 ([16,
17, 5]). In each concrete context the theory involving repeating selections of parameters
is non-trivial: In various Hardy spaces one enjoys the beauty of the explicit construction
combining the Szegö kernel and the Blaschke products [18, 1, 2]. See [9, 10, 11, 14, 15]
for concrete examples.
We note that repeating selection of parameter can be avoided in practice but cannot
when doing the theoretical formulation. or very close to the following supreme value in
the weak-POAFD case: By definition of supreme, for any ρ ∈ (0, 1), a parameter qn ∈ E
is ready to be found, different from any other previous qk, k = 1, · · · , n− 1, to have

|⟨Gn, B
qn
n ⟩| ≥ ρ sup{⟨Gn, B

q
n⟩ : q ∈ E,q ̸= q1, · · · ,qn−1}.(2.14)

The corresponding algorithm for consecutively finding such a sequence {qn}∞n=1 is called
Weak-Pre-orthogonal Adaptive Fourier Decomposition (WPOAFD). With the WPOAFD
algorithm one may choose all q1, · · · , qn being distinguished.
Merely based on the maximal selection principles (2.14) or (2.13) one can show

F =
∞∑
k=1

⟨F,Bk⟩HK
Bk

([16, 17, 5]).



9

An order O(
√
n) convergence rate can be proved in a commonly used subspace ([16]).

Precisely, for functions F in the class

MM = {F ∈ HK | ∃{cn} and {Eqn} such that F =
∞∑
n=1

cnEqn and
∞∑
n=1

|cn| ≤ M},

the POAFD partial sums satisfy

∥F −
n∑

k=1

⟨F,Bk⟩HK
Bk∥HK

≤ M√
n
.

We note that POAFD has the same convergence rate as the Shannon expansion of ban-
dlimited entire functions into the sinc functions. In the POAFD case the orthonormal
system {B1, · · · , Bn, · · · } is not necessarily a basis but a system adaptive to the given
function F. For the Hardy space case, POAFD being reduced to AFD, verifies the Beurl-
ing decomposition of the Hardy space into direct sum of the forward and the backward
invariant subspaces. It is just this non-basis violation that gives the capacity of optimal
approximation. The algorithm code of POAFD, and some related ones as well, are avail-
able at request within the web-page http://www.fst.umac.mo/en/staff/fsttq.html.

AFD and POAFD have been seen to have two directions of development. One is n-best
kernel expansion. That is to determine n-parameters at one time, being obviously of better
optimality in sparse kernel approximation model. n-best approximation is motivated by
the traditional, yet still open in its ultimate global algorithm: the problem is called
the best approximation to Hardy space functions by rational functions of degree not
exceeding n ([3, 4, 19]). The gradient descending method for cyclic AFD ([19]) may be
adopted to give practical (not mathematical) n-best algorithms in RKHSs. The second
direction of development of POAFD is related to the Blaschke-product-like functions,
and interpolation type problems in general Hilbert spaces. For existing work along this
direction see [1, 2]. Effective applications of adaptive Fourier decomposition methods have
been found in image processing and system identification [7, 8, 6, 6, 23].

3. POAFD Type Sparse Solutions for Problems (i), (ii) and (iii)

POAFD gives the solution for Problem (i) in a fast converging pace. It further makes
itself to be fundamental building block of the solutions for Problem (ii) and (iii). In this
section we come back to the H-HK formulation.

3.1. POAFD Expansion for F ∈ HK : the Solution of Problem (i). Subsequent to
what has been studied in the last section we have

S1 =
∞∑
k=1

⟨F,Bk⟩HK
Bk = FBB = FBA−1K,(3.15)

where FB is the infinite row matrix consisting of ⟨F,Bl⟩HK
, and B is the infinite column

matrix consisting of Bl, l = 1, 2, · · · , being section by section G-S orthonormalizations of
K, the latter being the infinite column matrix consisting of the POAFD-selected entries
K̃qn , and A is the transfer matrix of order ∞ × ∞ with entries ⟨K̃qi , Bj⟩HK

with the

property ⟨K̃qi , Bj⟩HK
= 0 for i < j.
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3.2. The inversion Problem (ii). The H-HK formulation ensures that L is an isometry
between N(L)⊥ and HK . Hence there exists the inverse operator L

−1 that maps F ∈ HK

to the corresponding f+ ∈ N(L)⊥ ie., L−1F = f+, and, in particular, L−1Kq = hq, q ∈ E.
From this, existence and uniqueness of the solution of the inverse problem follow. Next
we work out the explicit series expansion. Adaptively expand F by using POAFD:

F =
∞∑
k=1

⟨F,Bk⟩HK
Bk.(3.16)

The isometry operator maps the orthonormal system {Bk}∞k=1 to the orthonormal system
{L−1Bk}∞k=1. We have

Theorem 3.1. With the POAFD-selected parameters q1, · · · , qn, · · · , there holds

S2 = L−1F =
∞∑
k=1

⟨F,Bk⟩HK
L−1Bk,

where the convergence is in the H-norm sense. In the matrix notation the above solution
is written

S2 = FBA−1K,(3.17)

where FB, B,A and K are as defined in (3.16) and (3.15).
With the n-truncated matrices there holds, for F ∈ MM ,

∥L−1F − FBnA−1
n Kn∥H ≤ M√

n
.(3.18)

The proof is routine except (3.18). For the self-containing purpose we include the proof
for the main convergence part and refer the proof of (3.18) to [16].

Proof. The H-HK formulation shows that there uniquely exists a solution f+ = L−1F.
Since L−1 is an isometry between HK and N(L)⊥, the system {L−1Bk} is orthonormal
in the closed subspace N(L)⊥. Since

∑∞
k=1 |⟨F,Bk⟩HK

|2 < ∞, the Riesz-Fisher Theorem
concludes that there exists a function g in N(L)⊥ such that

g =
∞∑
k=1

⟨F,Bk⟩HK
L−1Bk.

We need to show that f+ = g. It suffices to show

lim
n→∞

∥f+ −
n∑

k=1

⟨F,Bk⟩HK
L−1Bk∥2H = 0.(3.19)

By using the isometric property of L−1 and the relation (3.16), we have

lim
n→∞

∥L−1F − L−1(
n∑

k=1

⟨F,Bk⟩HK
Bk)∥2 = lim

n→∞
∥F −

n∑
k=1

⟨F,Bk⟩HK
Bk∥2

= lim
n→∞

∥
∞∑

k=n+1

⟨F,Bk⟩HK
Bk∥2

= lim
n→∞

∞∑
k=n+1

|⟨F,Bk⟩HK
|2 = 0.
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The proof is complete. �
With a POAFD expansion of F we can get a series expansion with the same speed of
convergence for the inverse problem f+ = L−1F.
To practically solve an inverse problem under the H-HK formulation the difficulty would
be on finding and characterizing the related objects N(L), N(L)⊥ and Kq. In any case
the span of the functions in {hq}q∈E is a dense subset of N(L)⊥. In a separate paper we
will treat the special case where the span of {hq}q∈E is a dense set of H itself, and then
the whole thing corresponds to approximation to identity.

3.3. The Moore-Penrose Pseudo-Inversion Problem (iii). Problem (iii) is under
the assumption that HK is a closed subspace of a larger Hilbert space H̃. For a given
element F ∈ H̃ the aim is to find

f ∈ H such that ∥f∥H = min{∥f̃∥H | f̃ : ∥Lf̃ − F∥H̃ is minimized}.
The solution of this problem is divided into two steps.
The First Step Find the unique function G ∈ HK that minimizes ∥F − G̃∥ over all
G̃ ∈ HK . As given in the basis method in §1, the function G is, in fact, the projection of
F intoHK , denotedG = PHK

F. As we already deduced in §1, there holdsG(q) = ⟨F,Kq⟩H̃.
The Second Step We seek a POAFD series expansion of G = ⟨F,Kq⟩H̃ as

G =
∞∑
k=1

⟨G,Bk⟩HK
Bk =

∞∑
k=1

⟨⟨F,K(·)⟩H̃, Bk⟩HK
Bk,

where the POAFD is with respect to the reproducing kernel of HK , and the convergence
is in the HK norm. The principle of POAFD shows that the convergence rate is M√

n
if the

projection function is in MM . Thus we have

Theorem 3.2. Under the H-HK formulation and the assumption that HK is a closed
subspace of H̃ the solution of the Moore-Penrose pseudo-inverse for F ∈ H̃ is given by
the H converging POAFD series

S3 =
∞∑
k=1

⟨⟨F,K(·)⟩H̃, Bk⟩HK
L−1Bk.

By denoting dF the distance from F to HK , there holds

∥F −
n∑

k=1

⟨⟨F,K(·)⟩H̃, Bk⟩HK
L−1Bk∥ ≤ dF +

M√
n

if the projection function PHK
F = ⟨F,K(·)⟩H̃ ∈ MM .
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