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2-D Frequency-Domain System Identification
Xiaoyin Wang, Tao Qian, Iengtak Leong, and You Gao

Abstract—In this article, we propose two iterative algorithms
to identify transfer functions of 2-D systems. The proposed
algorithms are modifications of the two-dimensional Adaptive
Fourier Decomposition (abbreviated as 2-D AFD) and Weak
Pre-Orthogonal Adaptive Fourier Decomposition (abbreviated
as W-POAFD). 2-D AFD and W-POAFD are newly established
adaptive representation theories for multivariate functions u-
tilizing, respectively, the product-TM system and the product-
Szegö dictionary. The proposed algorithms give rise to rational
approximations with real coefficients to transfer functions. Owing
to the modified maximal selection principles, the algorithms
achieve a fast convergence rate O(n− 1

2 ). To use 2-D AFD and
W-POAFD for system identification not only the theory is revised,
but also the practical algorithm codes are provided. Experimental
examples show that the proposed algorithms give promising
results. The theory and algorithms studied in this paper are
valid for any n-D case, n ≥ 2.

Index Terms—2-D system identification, multi-dimensional ra-
tional approximation, product-TM system, product-Szegö dic-
tionary, generalized partial backward shift operator, matching
pursuit, modified maximal selection principle.

I. INTRODUCTION

SYstem identification has had a wide range of applications
in engineering (see, for instance, [1]). In recent decades,

more and more complicated systems appear in various fields
such as signal processing [2], [3], digital filter analysis and
designing [4]–[6], model-based control [7]–[9], 2-D text syn-
thesis and classification [10], discretization of partial differen-
tial equations (PDEs) [11]–[13] and so on. Variables in those
fields tend to vary with several variables including time and
space. This has led to an increased interest for identification of
multi-dimensional (n-D) systems, and it has successfully been
applied in, e.g., system identification for PDEs [14]–[16].

As far as we are aware of, the most popular 2-D system
identification methods include those based on 2-D Hankel
theory [17], subspace identification [18]–[20] and neural net-
work [21]. They were put forward as extensions of their
corresponding 1-D methods. In the 1-D case, there have
been studies utilizing rational orthogonal functions to find
an approximation to the transfer function [22]–[28]. Among
them, we are interested in the method in [28] deriving from
AFD (adaptive Fourier decomposition) given in [29]. Being
different from other methods in [22]–[27] which adopt rational
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orthogonal bases, AFD adaptively select rational orthogonal
functions according to the given function, under a maximal
selection principle that does not necessarily result in any basis.
We briefly introduce AFD.

For a given sequence a = {a1, a2, · · · , an, · · · } where each
ai belongs to the unit disk D = {z ∈ C : |z| < 1}, the TM
system (also called the rational orthogonal system) is defined
as the family of functions {Ba

n(z)}, where

Ba
n(z) =

√
1− |an|2
1− anz

n−1∏
l=1

z − al
1− alz

. (1)

For f(z) ∈ H2(D) where H2(D) is the Hardy-2 space on D,
given previously fixed {a1, a2, · · · , an−1}, AFD selects an at
the n-th iteration such that

an = arg max
ζ∈D

∣∣〈f,B{a1,··· ,an−1,ζ}
n

〉
H2(D)

∣∣2,
being called the maximal selection principle. 〈·, ·〉H2(D) is the
inner product. Thus, by repeating the above process for each
iteration, the n-partial sum fn(z) is defined by

fn(z) =
n∑
l=1

〈
f,Ba

l

〉
H2(D)

Ba
l (z),

and adopted to approximate f(z). Moreover, fn(z) satisfies
lim
n→∞

fn(z) = f(z) in the sense of H2(D) norm [29].
We expect to develop the methodology of 1-D system

identification method utilizing AFD in [28] to 2-D system
identification. However, in the n-D cases, it is difficult to exe-
cute an analogous rational approximation process. None of the
several complex variables theory, nor Clifford algebras have as
far reaching functional analysis results as one complex variable
does. In fact, n-variables function theory is different from that
for one complex variable. In one complex variable analytic
function theory, “f(z) = (z − z0)g(z)” is equivalent to “z0

is a zero of f(z)”. However, in several complex variables we
can not always deduce “f(z, w) = (z − z0)(w −w0)g(z, w)”
from the property “(z0, w0) is a zero of f(z, w)”. That means
the pole selection in the 1-D rational approximation is difficult
to carry out in the n-D cases.

In the recent mathematical paper [30], the author defines
“product-TM system” and “product-Szegö dictionary” in the
Hardy-2 space on poly unit disk to access the n-D rational
approximation as an extension of AFD. The present paper
serves as a bridge that leads the theoretical development in [30]
to applications in system identification by providing practical
algorithms and the necessary modifications to the theoretical
formulation. The contribution of this paper is as follows.
We propose two modified algorithms inspired by [30] and
design a two-stage procedure for system identification using
the Cauchy integral and the proposed algorithms. Moreover,
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we give estimates of the convergence rate of the two proposed
algorithms. Utilizing the convergence rate estimations, we
obtain an upper bound for the mathematical expectation of the
approximation error of the two-stage procedure in the presence
of stochastic noise.

The rest of the paper is organized as follows. Section II
reviews some necessary preliminary and states the problem
setting. Section III introduces the modified 2-D AFD and
the modified W-POAFD. Section IV presents a two-stage
process utilizing algorithms in Section III to identify a 2-D
transfer function. With the process in the second stage, we
complete the proofs of two main theorems and obtain rational
approximations with real coefficients. Section V analyzes the
approximation error of the identification process in Section
IV under the consideration of noise. Section VI exhibits the
numerical experiments in both of the two cases, viz., being
with noise and without. We obtain good results for both
cases. Some conclusions are drawn in Section VII and some
necessary technical details are collected in the Appendices.

II. PRELIMINARY AND PROBLEM SETTING

In this paper, we are interested in 2-D discrete, linear time-
invariant (LTI), single input single output (SISO), quadrant
causal systems, whose transfer functions are proper rational
functions having the following form

G(z1, z2) =
Y (z1, z2)

U(z1, z2)
=

n∑
p,q=0

ap,qz
p
1z
q
2

n∑
p,q=0

bp,qz
p
1z
q
2

=
∞∑

p,q=0

gp,qz
−p
1 z−q2 ,

where bn,n = 1, Y (z1, z2), U(z1, z2) are the 2-D Z trans-
formations of output y(i, j) and input u(i, j) in the spatial-
domain, {gp,q} is the impulse response. Popular state s-
pace models, such as Attasi model, Roesser’s model, the
first Fornasini-Marchesini model and the second Fornasini-
Marchesini model, are quadrant causal systems [31]. In ad-
dition, we assume G(z1, z2) has no poles in the region
|z1| ≥ 1, |z2| ≥ 1.

Through the mappings z1 → 1
z , z2 → 1

w , we transform
G(z1, z2) into f(z, w) which is holomorphic in |z| ≤ 1, |w| ≤
1 and f(ejt, eju) = G(e−jt, e−ju), t, u ∈ [0, 2π). In the sequel,
we discuss f(z, w). It is noted f(z, w) ∈ H = H2(D2) (refer
to Appendix A for the definition) and ‖f‖ = ‖G‖L2 , where
‖G‖L2

= 1
4π2

∫ 2π

0

∫ 2π

0
|G(ejt, eju)|2 dtdu. Moreover, f(z, w)

is continuous on the poly unit circle ∂D2 (∂D× ∂D).
In general, we adopt the additive noise assumption for the

input and output measurements in the spatial-domain:

umeasured(i, j) = ureal(i, j) + ν(i, j),

ymeasured(i, j) = yreal(i, j) + µ(i, j),

where ν and µ are stochastic noise sequences. Hence, we
achieve the noisy transfer function model

Gmeasured =
Ymeasured
Umeasured

= Greal ·
1 + Zν

Yreal

1 +
Zµ
Ureal

, (2)

where variable Z represents the 2-D Z transformation of the
corresponding signal according to the subscript. It is noted

that Ymeasured and Umeasured are random variables and each
of them is a sum of a large number of random variables. In
[32], [33], it is shown that the additive noise on the Fourier
coefficients under discrete Fourier transformation (DFT) are
asymptotically circular complex normally distributed random
variables with respect to the number of samples in DFT
provided that the time-domain series are stationary and weakly
correlated. Fortunately, this result still holds in the 2-D case
as long as we add some restrictions to the noise sequences
similar with the stationary and weakly correlated condition in
the 1-D case which can be easily met.

Considering the above assumptions, the formulation of 2-D
frequency-domain system identification is as follows:

Given:
A finite number MN of noisy frequency response measure-

ments {EMN
p,q }p=1...M,q=1...N from a 2-D system

EMN
p,q = f(ejωp , ejω′q )(

1 + ΥY
p,q

1 + ΥU
p,q

), (3)

where f(ejωp , ejω′q ) = G(e−jωp , e−jω′q ), ωp = 2π(p−1)
M , ω′q =

2π(q−1)
N , Υp,q is the stochastic frequency-domain noise di-

vided by the spectra of corresponding spatial-domain data
as described in (2). Without confusion we still name them
frequency-domain noise. Here we let M and N be even.

Assumption:
(i) ΥU , as well as ΥY , are uncorrelated (respect to the

two frequency lines t and u) circular complex normally
distributed stochastic variables with zero mean.

(ii) ΥU and ΥY are independent.
Find:
Approximations fn(z, w) (n is a positive integer) to

f(z, w), thereby approximations Gn(ejt, eju) = fn(e−jt, e−ju)
to G(ejt, eju), such that ‖G−Gn‖L2 = ‖f − fn‖ satisfies

lim
n→∞,M,N→∞

ΥY ,ΥU→0

E‖G−Gn‖L2
= 0 (4)

under certain conditions, which will be stated in Section V.
Here, E represents the mathematical expectation.

III. MODIFIED 2-D AFD AND MODIFIED W-POAFD

In this section, we propose two iterative algorithms refer-
ring to the methodology and framework of 2-D AFD and
W-POAFD in [30] but make some modifications. The key
modification, called conjugate parameters selection, is that
at each iteration we select a parameters pair (a, b), (a, b)
instead of only (a, b). Some mathematical foundations related
to the algorithms are introduced. Algorithm 1 and Algorithm
2 illustrate how we implement the proposed algorithms.

A. Modified 2-D AFD based on product-TM system

Definition 1 (product-TM system): Denote the finite TM
systems of variables z and w as Ba

N (z) = {Ba
k(z)}Nk=1 and

Bb
M (w) = {Bb

l (w)}Ml=1. The product-TM system is defined by

Ba
N ⊗ Bb

M (z, w) = {Ba
k(z)Bb

l (w)}k=1,··· ,N, l=1,··· ,M .

Clearly, Ba
N ⊗ Bb

M (z, w) is an orthonormal system in H.
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Here the different variables z and w are the 2 coordinates
of D2. For brevity, we omit the variables z, w and distinguish
them by parameters a,b in the sequel.

We give a description for the n-th iteration of the modified
2-D AFD as follows. The complete algorithm is by repeating
the same process step by step.

Given f(z, w) ∈ H, for a = {a1, a1, · · · , an, an},b =
{b1, b1, · · · , bn, bn}, denote

S0(f) = 0, Sn(f) =
∑

1≤k,l≤2n

〈
f,Ba

kB
b
l

〉
Ba
kB

b
l ,

Dn(f) = Sn(f)− Sn−1(f) =
2n∑

max{k,l}=2n−1

〈
f,Ba

kB
b
l

〉
Ba
kB

b
l .

(5)

Sn(f) is called the n-partial sum and Dn(f) is called the n-
partial sum difference having 8n−4 entries. Since Ba

2n⊗Bb
2n

is an orthonormal system as mentioned in Definition 1,

‖Sn(f)‖2 = ‖Sn−1(f)‖2 + ‖Dn(f)‖2.

For previously fixed (a1, a1, · · · , an−1) ⊂ D and (b1, b1, · · · ,
bn−1) ⊂ D, to pursue the maximal energy gain of Sn(f),
we apply the modified Maximal Selection Principle: select
an, bn ∈ D such that ‖Dn(f)‖2 attains its maximum value
among all possible selections, namely

‖Dn(f)‖2 = max
a,b∈D

‖Dã,b̃
n (f)‖2 (6)

where ã = (a1, a1, · · · , an−1, a, a), b̃ = (b1, b1, · · · , bn−1,

b, b), Dã,b̃
n (f) =

2n∑
max{k,l}=2n−1

〈
f,Bã

kB
b̃
l

〉
Bã
kB

b̃
l . Sn(f) is obtained as

the n-th approximation to f .
It is worth mentioning that the maximum in (6) is attainable

owing to the “boundary vanish condition” for f(z, w) ∈ H:

lim
|an|→1,|bn|→1

∣∣ 〈f,Ba
kB

b
l

〉 ∣∣ = 0,

where max{k, l} = 2n− 1, 2n.
To sum up, the modified 2-D AFD gives rise to approxima-

tions, consisting of orthogonal rational functions, to the given
function using the adaptively determined product-TM system.

Algorithm 1 Modified 2-D AFD.
Input: Signal f(ejt, eju), t, u ∈ [0, 2π); Positive integer K.
Output: Parameters a = {a1, a1, · · · , aK}, b = {b1, b1, · · · ,

bK}; Product-TM system {Ba
kB

b
l }2Kk,l=1; Coefficients

{ck,l}2Kk,l=1; K-partial sum SK(f).
1: Initialize S0(f) = 0.
2: for n = 1 to K do
3: Get the optimal solution (an, bn) by solving the max-

imum problem in (6).
4: Compute Ba

kB
b
l , ck,l =

〈
f,Ba

kB
b
l

〉
where max {k, l}

= 2n− 1 or 2n using the selected parameters an, bn.

5: Set Sn(f) = Sn−1(f) +
2n∑

max {k,l}=2n−1

ck,lB
a
kB

b
l .

6: end for
7: return a = {a1, a1, · · · , aK}, b = {b1, b1, · · · , bK},
{Ba

kB
b
l }2Kk,l=1, {ck,l}2Kk,l=1, SK(f).

B. Modified W-POAFD based on product-Szegö dictionary
Definition 2 (product-Szegö dictionary): Denote the Szegö

kernel as ea(z) =

√
1−|a|2
1−az , a ∈ D. The set of the product-

Szegö kernels

D2 = {ea(z)eb(w) : a, b ∈ D}, (7)

is a dictionary of H. We call it the product-Szegö dictionary.
For f ∈ H, the reproducing property holds:

〈f, eaeb〉 =
√

1− |a|2
√

1− |b|2f(a, b).

Similar to the modified 2-D AFD, we give a description for
the n-th iteration of the modified W-POAFD.

Given f(z, w) ∈ H, for a = {a1, a1, · · · , an, an},b =
{b1, b1, · · · , bn, bn}, denote

S̃0(f) = 0,

En = {vk}2nk=1 = {ea1eb1 , ea1eb1 , . . . , eanebn},

S̃n(f) =
n∑
k=1

[〈
f,Bk

〉
Bk +

〈
f, B̃k

〉
B̃k
]
,

D̃n(f) = S̃n(f)− S̃n−1(f), gn+1 = f − S̃n(f),

(8)

where {B1, B̃1, · · · , Bn, B̃n} is G-S orthonormalization of En
as follows:

uk = vk −
k−1∑
p=1

〈vk, up〉
‖up‖2

up, k = 1, 2, · · · , 2n;

Bk =
u2k−1

‖u2k−1‖
, B̃k =

u2k

‖u2k‖
, k = 1, 2, · · · , n,

(9)

Note that S̃n(f) in (8) is the projection of f onto the subspace
spanEn of H. S̃n(f) is called the n-partial sum and D̃n(f)
is called the n-partial sum difference having 2 terms. gn+1 is
called the orthogonal standard remainder. Clearly,

‖S̃n(f)‖2 = ‖S̃n−1(f)‖2 + ‖D̃n(f)‖2.

For previously fixed (a1, a1, · · · , an−1) ⊂ D and (b1, b1, · · · ,
bn−1) ⊂ D, to make the energy of S̃n(f) gain with a fast rate,
we apply the modified Pre-Orthogonal ρ-Maximal Selection
Principle: select an, bn ∈ D such that ‖D̃n(f)‖2 is as large
as possible according to the following criterion:

‖D̃n(f)‖2 ≥ ρ sup
α∈D2

{∣∣〈gn, Bαn〉∣∣2 +
∣∣〈gn, B̃αn〉∣∣2}, (10)

where 0 < ρ < 1, α = eaeb, {B1, B̃1, · · · , Bαn , B̃αn} is the
G-S orthonormalization of {ea1eb1 , ea1eb1 , · · · , ean−1

ebn−1
,

eaeb, eaeb}. S̃n(f) is obtained as the n-th approximation to
f .

To sum up, the modified W-POAFD gives rise to approxima-
tions, consisting of orthogonal rational functions, to the given
function using the projection onto an adaptively determined
subspace of H. The subspace is spanned by some items
selected from the dictionary D2 of H.

Remark 3: The nonlinear optimization problems in (6)
and (10) are difficult to solve. One practical method to
solve them is through discretization of the domain D of
the parameters an, bn with rectangular grids. Namely, search
the optimal parameters pair (an, bn) in a discretization set
P = {(a(s), b(s))}s=1,2,··· ,S where a(s), b(s) ∈ D.
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Algorithm 2 Modified W-POAFD.
Input: Signal f(ejt, eju), t, u ∈ [0, 2π); Positive integer K.
Output: Parameters a = {a1, a1, · · · , aK}, b = {b1, b1, · · · ,

bK}; G-S orthonormalization {B1, B̃1, · · · , BK , B̃K};
Coefficients {cl}2Kl=1; K-partial sum S̃K(f).

1: Initialize S̃0(f) = 0.
2: for n = 1 to K do
3: Set gn = f − S̃n−1(f).
4: Get one parameters pair (an, bn) satisfying (10).
5: Compute the G-S orthonormalization terms Bn, B̃n of
eanebn , eanebn using the selected an, bn.

6: Compute c2n−1 =
〈
f,Bn

〉
, c2n =

〈
f, B̃n

〉
.

7: Set S̃n(f) = S̃n−1(f) + c2n−1Bn + c2nB̃n.
8: end for
9: return a = {a1, a1, · · · , aK}, b = {b1, b1, · · · , bK},
{B1, B̃1, · · · , BK , B̃K}, {cl}2Kl=1, S̃K(f).

C. Convergence of two modified algorithms
Despite of the modifications, i.e., the conjugate parameters

selection, the proposed algorithms are convergent due to the
following Theorem 4 and 5. The proofs of the two theorems
are similar to the ones of the convergence theorems in [30] but
with some minor modifications. We omit proofs in this paper.

Theorem 4 (convergence of modified 2-D AFD): Let f ∈ H.
For previously fixed {a1, a1, · · · , an−1}, {b1, b1, · · · , bn−1},
by selecting (an, bn), · · · according to the modified Maximal
Selection Principle, we have limn→∞ ‖f − Sn(f)‖ = 0.

Theorem 5 (convergence of modified W-POAFD): For
f ∈ H, with a sequence of consecutively selected {ea1eb1 ,
ea1eb1 , · · · , eanebn , eanebn , · · · } from D2 under the modi-
fied Pre-Orthogonal ρ-Maximal Selection Principle, we have
limn→∞ ‖f − S̃n(f)‖ = 0.

IV. ADAPTIVE APPROXIMATION FOR 2-D SYSTEM
IDENTIFICATION

In this section, given measurements {EMN
p,q } of f(z, w) on

∂D2, we design a two-stage procedure to identify f(z, w) like
certain nonlinear algorithms [28], [34] for 1-D system iden-
tification. The first stage involves constructing a holomorphic
approximation f̃ on D2 to f making use of the measurements.
The second stage involves constructing an approximation f̂ to
f̃ , consisting of rational orthogonal entries, through utilizing
the proposed algorithms in Section III.

A. First stage
Based on the Cauchy integral in complex analysis, for

the counterclockwise closed curve ∂D whose parameterized
equation is ζ = ejt (0 ≤ t < 2π), and g(ζ1, ζ2) defined on
∂D2, we define the tensor product type Cauchy integral of
g(ζ1, ζ2) along the tensor of two curves ∂D2 as

C(g)(z, w) = (
1

2πj
)2

∫
∂D

∫
∂D

g(ζ1, ζ2)

(ζ1 − z)(ζ2 − w)
dζ1dζ2

= − 1

4π2

∫ 2π

0

∫ 2π

0

g(ejt, eju)

(ejt − z)(eju − w)
dejtdeju

= − 1

4π2

∫ 2π

0

∫ 2π

0

g(ejt, eju)

(ejt − z)(eju − w)
jejtjejudtdu.

Utilizing the tensor product type Cauchy integral above, f̃
is formulated as

f̃(z, w) = − 1

4π2

∫ 2π

0

∫ 2π

0

∑
p,q
EMN
p,q χp,q(t, u)

(ejt − z)(eju − w)
dejtdeju, (11)

where

χp,q(t, u) =



χ[ωp,ωp+1)×[ω′q,ω
′
q+1)(t, u), case 1

χ[ωp,ωp+1)×(ω
′
q−1,ω

′
q ]

(t, u), case 2

χ(ωp−1,ωp]×[ω′q,ω
′
q+1)(t, u), case 3

χ(ωp−1,ωp]×(ω
′
q−1,ω

′
q ]

(t, u), case 4

case 1 = {p = 1, · · · , M2 , q = 1, · · · , N2 }, case 2 = {p =
1, · · · , M2 , q = N

2 + 2, · · · , N + 1}, case 3 = {p = M
2 +

2, · · · ,M+1, q = 1, · · · , N2 }, case 4 = {p = M
2 +2, · · · ,M+

1, q = N
2 + 2, · · · , N + 1},

χ[t1,t2)×[u1,u2)(t, u) =

{
1, (t, u) ∈ [t1, t2)× [u1, u2)

0, otherwise,

is the characteristic function and EMN
p,q is defined in (3).

Here, when M,N is large enough and the stochastic noise
is small enough, the step function

∑
p,q
EMN
p,q χp,q(t, u) is almost

equal to f(ejt, eju). Therefore, by the Hardy space theory (see,
for instance, [35]), f̃(z, w) is holomorphic on D2 and

‖f̃ − f‖L2
= ‖f̃ − f‖ ≤ C‖

∑
p,q

EMN
p,q χp,q − f‖L2

, (12)

where C is a constant.
Moreover, if {EMN

p,q } is noise-free, then f̃(z, w) enjoys the
conjugate symmetry property as the frequency response data
G(ejt, eju) does: G(ejt, eju) = G(e−jt, e−ju). In fact,

f̃(z, w) = f̃(z, w)

= − 1

4π2

 M
2∑

p=1

N
2∑

q=1

ln(
ejωp+1 − z
ejωp − z

)ln(
ejω′q+1 − w
ejω′q − w

)EMN
p,q

+

M
2∑

p=1

N
2∑

q=1

ln(
e−jωp+1 − z
e−jωp − z

)ln(
e−jω′q+1 − w
e−jω′q − w

)EMN
p,q

+

M
2∑

p=1

N+1∑
q=N

2 +2

ln(
ejωp+1 − z
ejωp − z

)ln(
ejω′q − w

ejω′q−1 − w
)EMN

p,q

+

M
2∑

p=1

N+1∑
q=N

2 +2

ln(
e−jωp+1 − z
e−jωp − z

)ln(
e−jω′q − w

e−jω′q−1 − w
)EMN

p,q

 .
B. Second stage

In the second stage we formulate the partial sums that at
the same time addresses the conjugate parameters selection
issue. The following two theorems, Theorem 6 and 10, state
that through such selection the partial sums obtained have real
coefficients.
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1) Modified 2-D AFD:
Theorem 6: Let f(z, w) ∈ H with real coefficients, namely

f(z, w) = f(z, w). Sn(f) is the n-partial sum in (5) obtained
by the modified 2-D AFD. Then Sn(f) has real coefficients.

Before we come to the proof, we give a definition and some
related results.

Definition 7: Let h(z, w) ∈ H. The generalized partial
backward shift operator with respect to variable z via a ∈ D
is defined by

S(1)
a (h)(z, w) =

h(z, w)− 〈h, ea · 1〉(1)
(w)ea(z) · 1

z−a
1−az

,

where 〈f, g〉(1)
(w) = 1

2π

∫ 2π

0
f(ejt, w)g(ejt, w)dt is the inner

product of H2(D) space with respect to the variable z for
f, g ∈ H. For the variable w and b ∈ D, we define the similar
operator S(2)

b (h).
The operator is proposed in [30] to prove the existence of

the optimal solution to the maximum problem involved in
the maximal selection principle for 2-D AFD. It plays the
same role in the modified 2-D AFD. The following two results
regarding the operator are needed in the proof of Theorem 6.
They follow from Proposition 17, which is given in Appendix
B.

Corollary 8: Let f(z, w) ∈ H. For positive integers m,n
and parameters a = {a1, a2, · · · , an}, b = {b1, b2, · · · , bm}
from D, the following equality holds,〈m−1∏

l=1

S
(2)
bl

n−1∏
k=1

S(1)
ak

(f), eanebm
〉

=
〈
f,Ba

nB
b
m

〉
.

Corollary 9: Let f(z, w) ∈ H be a rational function with
real coefficients, namely f(z, w) = f(z, w), and a ∈ D,
then S(1)

a S
(1)
a (f) is a rational function with real coefficients.

Furthermore, if a ∈ R then S(1)
a (f) is a rational function with

real coefficients. Operator S(2)
b (f) has the same properties.

Now we go back to prove Theorem 6 utilizing the general-
ized partial backward shift operator.

Proof of Theorem 6:
Sn(f) is a sum of 4n2 terms. We claim that if we divide

all the terms into n2 groups by collecting 4 terms with
adjacent summation indices to one group, then each group
has real coefficients. Denote a = {ak}2nk=1 = {a1, a1, · · · ,
an, an},b = {bk}2nk=1 = {b1, b1, · · · , bn, bn}. We define

PSn(f) by PSn(f) =
2n∑

k=2n−1

2∑
l=1

〈
f,Ba

kB
b
l

〉
Ba
kB

b
l and prove,

as an example, that the group PSn(f) has real coefficients.
The same result holds for the other groups.

Denote F =
2(n−1)∏
k=1

S
(1)
ak (f). Since f has real coefficients,

by Corollary 9 and the conjugate parameters selection of a,
F is a rational function with real coefficients. Together with
Corollary 8 it holds that PSn(f) = I1I2, where

I1 = (1− |an|2)(1− |b1|2)B̃a
2(n−1),

B̃a
2(n−1) =

2(n−1)∏
k=1

z − ak
1− akz

;

I2 =
[
c1(1− anz)(1− b1w) + c2(z − an)(1− b1w)

+ c3(1− anz)(w − b1) + c4(z − an)(w − b1)
]
/[

(1− anz)(1− anz)(1− b1w)(1− b1w)
]
,

c1 = F (an, b1),

c2 =
(1− an2)F (an, b1)− (1− |an|2)F (an, b1)

an − an
,

c3 =
(1− b1

2
)F (an, b1)− (1− |b1|2)F (an, b1)

b1 − b1
,

c4 =
[
(1− an2)(1− b1

2
)F (an, b1)− (1− |an|2)(1− b1

2
)

F (an, b1)− (1− an2)(1− |b1|2)F (an, b1) + (1−
|an|2)(1− |b1|2)F (an, b1)

]/[
(an − an)(b1 − b1)

]
.

We observe that I1 and the denominator of I2 have real co-
efficients due to the conjugate parameters selection of a,b. In
addition, the numerator of I2, denoted by F1, is a polynomial
having real coefficients since

F1(z, w) = C1 + C1z + C3w + C4zw,

where

C1 = 2Re
[
anb1(1− a2

n)(1− b21)F (an, b1)

− anb1(1− an2)(1− b21)F (an, b1)
]
,

C2 = 2Re
[
− b1(1− a2

n)(1− b22)F (an, b1)

+ b1(1− an2)(1− b21)F (an, b1)
]
,

C3 = 2Re
[
− an(1− a2

n+1)(1− b21)F (an, b1)

+ an(1− an2)(1− b21)F (an, b1)
]
,

C4 = 2Re
[
(1− a2

n)(1− b21)F (an, b1)

− (1− an2)(1− b21)F (an, b1)
]
.

Here, Re represents taking the real part of a complex number.
As a result, PSn(f) is a rational function with real coeffi-

cients. �
2) Modified W-POAFD:
Theorem 10: Let f(z, w) ∈ H with real coefficients and

S̃n(f) be the n-partial sum in (8) obtained by the modified
W-POAFD. Then S̃n(f) has real coefficients.

To prove the theorem, we need the following proposition. In
order to improve readability, the proof of the latter is deferred
to Appendix C.

Proposition 11: Assume {v1, v2, · · · vm, · · · } is selected
from D2 according to conjugate parameters selection. Namely,
for any even number m, if vm−1 = eaeb, then vm = eaeb.
Use the same notations in the G-S orthonormalization (9),

uk = vk −
k−1∑
p=1

〈vk, up〉
‖up‖2

up, k = 1, 2 · · · , (13)

then for any even number m, there are reformulations

um−1 = vm−1 + h1, um = vm + tum−1 + h2, (14)

where h1 = αm−2vm−2 + αm−3vm−3 + · · · + α2v2 + α1v1,
h2 = αm−3vm−2 + αm−2vm−3 + · · · + α1v2 + α2v1, α1,
· · · , αm−2 are complex numbers related to um−1 and t =

− 〈vm,um−1〉
‖um−1‖2 . In this case, if we replace the coefficients of h1

with their conjugates, we obtain h2.
Proof of Theorem 10:
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S̃n(f) is a sum of 2n terms. We claim that if we divide
S̃n(f) into n groups by collecting 2 terms with adjacent
summation indices to one group, then each group has real
coefficients. We define PS̃n(f) by PS̃n(f) =

〈
f,Bn

〉
Bn +〈

f, B̃n
〉
B̃n and prove, as an example, that the group PS̃n(f)

has real coefficients.
According to Proposition 11, we reformulate u2n−1, u2n as

u2n−1 = v2n−1 + h1, u2n = v2n + tu2n−1 + h2,

where t = − 〈v2n,u2n−1〉
‖u2n−1‖2 . Since h2 is the formula obtained

by replacing the coefficients of h1 with their conjugates and
f(z, w) = f(z, w), 〈f, h1〉 = 〈f, h2〉. By a direct calculation,
we note

PS̃n(f) =
1

‖u2n−1‖2
〈f, u2n−1〉u2n−1 +

1

‖u2n‖2
〈f, u2n〉u2n

=d2v2n + (d1 + td2)v2n−1 + (d1 + td2)h1 + d2h2,

where d1 = 〈f,u2n−1〉
‖u2n−1‖2 , d2 = 〈f,u2n〉

‖u2n‖2 .
It is easy to verify that d2 = d1 + td2. In fact,

d2 =
〈f, v2n〉+ t 〈f, v2n−1〉+ t 〈f, h1〉+ 〈f, h2〉

‖u2n‖2

=
〈f, v2n−1〉+ t 〈f, v2n〉+ t 〈f, h2〉+ 〈f, h1〉

‖u2n‖2
,

d1 + td2 =
(1− |t|2) 〈f, u2n−1〉+ t 〈f, u2n〉

‖u2n‖2
=
[
(〈f, v2n−1〉+ 〈f, h1〉)(1− |t|2) + t(〈f, v2n〉
+ t 〈f, v2n−1〉+ t 〈f, h1〉+ 〈f, h2〉)

]/
‖u2n‖2

=
t 〈f, v2n〉+ 〈f, v2n−1〉+ t 〈f, h2〉+ 〈f, h1〉

‖u2n‖2
.

Recall that the coefficients of v2n, v2n−1 are conjugate to each
other and the coefficients of h1, h2 are conjugate to each other.
Taking these into account, in the formula of PS̃n(f), d2v2n+
(d1+td2)v2n−1 and (d1+td2)h1+d2h2 have real coefficients.
As a result, PS̃n(f) has real coefficients. �

Remark 12: The modified 2-D AFD and the modified W-
POAFD can be generalized to the n-variables cases as long as
we use the tensor form n-variables product-TM system

Ba1
N1
⊗ Ba2

N2
· · · ⊗ Ban

Nn
(z1, z2, · · · , zn)

={Ba1
k1

(z1)Ba2
k2

(z2) · · ·Ban
kn

(zn)}k1=1,··· ,N1;··· ;kn=1,··· ,Nn

and the tensor form n-variables product-Szegö dictionary

Dn = {ea1(z1)ea2(z2) · · · ean(zn) : a1, · · · , an ∈ D}.

Here, z1, z2, · · · , zn are the n coordinates of the polydisk
Dn. Meanwhile, the conjugate parameters selection and the
modified maximal selection principles need to be presented
in the n-variables structure similarly. Therefore, by utilizing
the n-polydisk tensor product type Cauchy integral of function
g(ejt1 , ejt2 , · · · , ejtn) defined on n-torus ∂Dn

C(g)(z1, z2, · · · , zn)

=(
1

2πj
)n
∫ 2π

0

· · ·
∫ 2π

0

g(ejt1 , ejt2 , · · · , ejtn)

(ejt1 − z1) · · · (ejtn − zn)
dejt1 · · · dejtn ,

in the first stage, the two-stage procedure stated in Section IV
can be generalized to solve the n-D system identification as
well.

V. ERROR ANALYSIS

To achieve (4) in Section II, which estimates the approxi-
mation error of the two-stage procedure in Section IV, we take
two steps. First, we give estimates for the convergence rate of
the proposed algorithms. Second, under the assumptions for
the stochastic noise, we obtain an upper bound in term of
mathematical expectation of the approximation error in the H
norm sense.

A. Convergence Rate

To begin with, for the Hilbert space H and the dictionary
D2 we define the class of functions

A(D2, R) =
{
f ∈ H : f =

∞∑
s=1

(csws + csw̃s) where ws =

easebs ∈ D2, w̃s = easebs ,
∞∑
s=1

|cs| ≤
R

2
and R > 0

}
.

Theorem 13: For f ∈ A(D2, R), let Sn(f) be the n-partial
sum obtained by the modified 2-D AFD, we have

‖f − Sn−1(f)‖ ≤ R√
n
.

Proof: Let gn = f −Sn−1(f). According to the definition of
A(D2, R), on one hand we have

‖gn‖2

=| 〈gn, f〉 | = |〈gn,
∞∑
s=1

(csws + csw̃s)〉|

≤
∞∑
s=1

|cs| sup
s

(
|〈gn, ws〉|+ |〈gn, w̃s〉|

)
≤R

2
sup
s

(
|〈gn, easebs〉|+ |〈gn, easebs〉|

)
=
R

2
sup
s

√
(1− |as|2)(1− |bs|2)

(
|gn(as, bs)|+ |gn(as, bs)|

)
,

on the other hand, from the modified Maximal Selection
Principle we have

‖Dn(f)‖2

= sup
a,b∈D

2n∑
max{k,l}=2n−1

∣∣〈gn, Bã
kB

b̃
l

〉∣∣2
≥ sup
a,b∈D

(∣∣〈gn, Bã
2n−1B

b̃
2n−1

〉∣∣2 +
∣∣〈gn, Bã

2nB
b̃
2n

〉∣∣2)
= sup
a,b∈D

(∣∣〈hn, eaeb〉∣∣2 +
∣∣〈h̃n, eaeb〉∣∣2)

≥ sup
s

(∣∣〈hn, ws〉∣∣2 +
∣∣〈h̃n, w̃s〉∣∣2)

≥ sup
s

(1− |as|2)(1− |bs|2)
(
|gn(as, bs)|2 + |gn(as, bs)|2

)
≥ sup

s
(1− |as|2)(1− |bs|2)

( |gn(as, bs)|+ |gn(as, bs)|
2

)2
,

where hn = gn
2n−2∏
k=1

1−akz
z−ak

1−bkw
w−bk , h̃n = gn

2n−1∏
k=1

1−akz
z−ak

1−bkw
w−bk .

In the fifth equality-inequality relation of the above derivation
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we used |hn(a, b)| ≥ |gn(a, b)| that is because | 1−azz−a | > 1 for
|z| < 1, a ∈ D.

Comparing the above two inequalities, we have

‖gn+1‖2 = ‖gn‖2 − ‖Dn(f)‖2 ≤ ‖gn‖2 −
1

R2
‖gn‖4

= ‖gn‖2(1− ‖gn‖
2

R2
).

Thus, by Lemma 3.4 in [30], we obtain ‖gn‖ ≤ R√
n
. �

Theorem 14: For f ∈ A(D2, R), let S̃n(f) be the n-partial
sum obtained by the modified W-POAFD, we have

‖f − S̃n−1(f)‖ ≤ RnR

ρ

1√
n
,

where Rn = max{r1, · · · , rn}, rn = sup
s
{max{rn(ws),

r̃n(w̃s)}}, rn(w) = ‖Q{v1,··· ,vn−1,ṽn−1}(w)‖, r̃n(w) =
‖Q{v1,··· ,vn−1,ṽn−1,vn}(w)‖, Q{α1,α2,··· ,αn}(w) = w −
n−1∑
k=1

〈w,Xk〉Xk and {X1, · · · , Xn} is the G-S orthonormal-

ization of {α1, · · · , αn}.
The proof is similar with Theorem 3.3 in [30] but needs some
modifications that we omit in this paper.

B. An Upper Bound for the Approximation Error

We adopt the noise model in (3) and assume ΥU
pq ∼

NC
1 (0, σ2

U ), ΥY
pq ∼ NC

1 (0, σ2
Y ).

Theorem 15: Let f(z, w) ∈ H and be continuous on D2
.

With an extra condition |1+ΥU
pq| ≥ CU where CU is a constant

∈ (0, 1), if f̃ ∈ A(D2, R), then by using the modified 2-D
AFD, we have

E‖f − Sn(f)‖2 ≤ 2C∆2
MN + 2CI2

MN

(σ2
U + σ2

Y )

C2
U

+ 2
R2

n
,

where ∆MN = max
constraint

|f(ejt1 , eju1) − f(ejt2 , eju2)|, constraint

= {t1, t2, u1, u2 ∈ [0, 2π), |t1 − t2| < 2π
M , |u1 − u2| < 2π

N },
IMN = max

1≤p≤M,1≤q≤N
|f(ejωp , ejω′q )|, C > 0 is a constant. Similarly,

by using the modified W-POAFD, we have

E‖f − S̃n(f)‖2 ≤ 2C∆2
MN + 2CI2

MN

(σ2
U + σ2

Y )

C2
U

+ 2
R2
nR

2

ρ2n
,

where Rn is defined in Theorem 14.
Proof: We prove the theorem in the case of using the modified
2-D AFD. The proof is similar for the modified W-POAFD.

By the triangle inequality for the norm, we have

E‖f − Sn(f)‖2 ≤ E(‖f − f̃‖+ ‖f̃ − Sn(f)‖)2

≤ 2E‖f − f̃‖2 + 2E‖f̃ − Sn(f)‖2.

That means, corresponding to the two stages in Section IV, the
mathematical expectation of the total error E‖f−Sn(f)‖2 can
be estimated separately by E‖f − f̃‖2 and E‖f̃ − Sn(f)‖2,
caused, respectively, by the noise in the measurements and the
error by the proposed algorithms. It follows from Theorem 13
that E‖f̃ − Sn(f)‖2 ≤ R2

n . To estimate E‖f − f̃‖2, we first
introduce the following inequality (15).

Assume ξ and η are two independently complex normally
distributed random variables, namely ξ ∼ NC

1 (0, σ2
ξ ), η ∼

NC
1 (0, σ2

η). Then the expectation E| 1+ξ
1+η − 1|2 = E| ξ−η1+η |

2 is
infinity for the singularity in the denominator. However if we
add a condition |1 + η| ≥ t where 0 < t < 1, the expectation
is computable and

E|ξ − η
1 + η

|2 ≤ 1

t2
E|ξ − η|2 =

σ2
ξ + σ2

η

t2
. (15)

In fact, condition |1 + η| ≥ t excludes a small neighbourhood
on the complex plane around the singularity η = −1 as
proceeded in [36] and thus can be estimated according to the
literature.

Therefore, from (12) and (15),

E‖f − f̃‖2

≤2CE
∥∥[∑

p,q

f(ejωp , ejω′q )−
∑
p,q

EMN
p,q

]
χp,q(t, u)

∥∥2

L2

+ 2CE‖f(ejt, eju)−
∑
p,q

f(ejωp , ejω′q )χp,q(t, u)‖2L2

≤2CE‖
∑
p,q

f(ejωp , ejω′q )(
1 + ΥY

p,q

1 + ΥU
p,q

− 1)χp,q(t, u)‖2L2

+ 2C∆2
MN

≤2CI2
MN

σ2
U + σ2

Y

C2
U

+ 2C∆2
MN ,

where C is a constant. The proof is complete. �
Consequently, if we take Gn(ejt, eju) = Sn(f)(e−jt, e−ju)

by using the modified 2-D AFD (or Gn(ejt, eju) =
S̃n(f)(e−jt, e−ju) by using the modified W-POAFD) as the
approximation to G(ejt, eju), we conclude (4) utilizing Theo-
rem 15 under the assumptions in Theorem 15.

VI. NUMERICAL EXPERIMENTS

We apply the proposed system identification procedure to
the examples in [37], and we solve the optimization problems
(6) and (10) by discretization, as suggested in Remark 3.
In addition, we will make the comparison with the multi-
Fourier expansion, as, in fact, Fourier series of several complex
variables is the generalization of FIR model in the n-D cases.
In particular, if we select parameters an, bn = 0 at every
iteration, the modified 2-D AFD gives rise to Fourier series.
The code is implemented in Matlab.

We give two evaluation criteria to evaluate the approxima-
tion fn(z, w) to f(z, w) obtained by the proposed methods,
which is Sn(f) in the modified 2-D AFD and S̃n(f) in the
modified W-POAFD.
(1) Given measurements EMN

p,q = f(ejωp , ejω′q )
1+ΥYp,q
1+ΥUp,q

, p =

1, · · · ,M, q = 1, · · · , N, the relative error between f
and fn is defined to evaluate the accuracy of energy
approximation as below

RE =

M∑
p=1

N∑
q=1
|f(ejωp , ejω′q )− fn(ejωp , ejω′q )|2

M∑
p=1

N∑
q=1
|f(ejωp , ejω′q )|2

.

(2) If the input {u(i, j)} is a zero-mean wide-sense stationary
process, the power spectral densities Su(ω, ω′), Sy(ω, ω′)
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of input u(i, j) and output y(i, j) and the transfer function
G(z1, z2) have the following relation

Sy(ω, ω′) = |G(ejω, ejω′)|2Su(ω, ω′).

Besides the above quantitative criteria, in the comparison
we also draw color graphs to show log10 |fn(ejωp , ejω′q )|2
which reflects the details of fn at the frequency (ωp, ω

′
q).

Example 1: The transfer function is

G(z1, z2)

=
(2 + z−1

1 ) + (3− .5z−1
1 )z−1

2

(1− 1.6z−1
1 + 1.4z−2

1 − .48z−3
1 )(1− .6z−1

2 + .25z−2
2 )

.

We apply the proposed methods to f(z, w) obtained from
G(z1, z2) through the mappings z1 → 1

z , z2 → 1
w .

TABLE I
THE RES BY THE MODIFIED 2-D AFD WITH VARYING OUTPUT AND INPUT
NOISE FOR EXAMPLE 1. THE NOISE OF OUTPUT AND INPUT ARE ADDED IN

THE FOLLOWING WAY. TAKING THE OUTPUT AS AN EXAMPLE, ASSUME
THE STOCHASTIC NOISE ΥY

p,q ∼ NC
1 (0, σ2). THE POWER OF THE

NOISE-FREE OUTPUT Y AND NOISE YΥY ARE CALCULATED AND σ IS
SELECTED TO ACHIEVE THE DESIRED SNR. NOTATION SNR=X MEANS

WE ONLY ADD OUTPUT NOISE WITH SNR=X. NOTATION SNR=X/Y
MEANS WE ADD OUTPUT NOISE WITH SNR=X AND INPUT NOISE WITH

SNR=Y. M = N = L AND MN IS THE NUMBER OF MEASUREMENTS. n
IS THE NUMBER OF ITERATIONS.

(a) SNR=∞
n L=64 L=128 L=256 L=512 L=1024
1 0.0422 0.0423 0.0423 0.0423 0.0423
2 0.0155 0.0155 0.0155 0.0155 0.0155
3 7.29e-04 7.29e-04 7.29e-04 7.29e-04 7.29e-04
4 1.76e-04 1.76e-04 1.76e-04 1.76e-04 1.76e-04

(b) SNR=20
n L=64 L=128 L=256 L=512 L=1024
1 0.0423 0.0423 0.0423 0.0423 0.0423
2 0.0157 0.0155 0.0155 0.0155 0.0155
3 0.0012 7.64e-04 7.67e-04 7.37e-04 6.90e-04
4 8.17e-04 4.18e-04 2.23e-04 1.88e-04 1.79e-04

(c) SNR=10
n L=64 L=128 L=256 L=512 L=1024
1 0.0445 0.0424 0.0423 0.0423 0.0423
2 0.0117 0.0161 0.0156 0.0155 0.0155
3 0.0076 0.0022 9.04e-04 7.63e-04 7.50e-04
4 0.0138 0.0022 7.01e-04 2.92e-04 2.09e-04

(d) SNR=20/20
n L=64 L=128 L=256 L=512 L=1024
1 0.0427 0.0423 0.0423 0.0423 0.0423
2 0.0191 0.0156 0.0155 0.0155 0.0155
3 0.0020 9.24e-04 7.17e-04 7.44e-04 6.46e-04
4 0.0023 5.63e-04 2.90e-04 1.97e-04 1.83e-04

From TABLE I, it is noted that given different number of
measurements, we achieve relative errors ≤ 10−2 within 3
iterations no matter whether it is in the presence of noise or
not. With the increase of noise, it needs more measurements to
achieve a similar accuracy compared with the noise-free case.

TABLE II lists the parameters pairs of the product-TM
system selected by the modified 2-D AFD in the previous 3
iterations (omit the conjugate pairs) with varying noise when
L = 1024. We notice that in some iterations parameters change
greatly when the measurements are disrupted by noise. This
phenomenon may happen since the optimal solution of the

TABLE II
THE PARAMETERS PAIRS OF THE PRODUCT-TM SYSTEM SELECTED BY

THE MODIFIED 2-D AFD IN THE PREVIOUS 3 ITERATIONS WITH VARYING
OUTPUT AND INPUT NOISE WHEN L = 1024 FOR EXAMPLE 1. n IS THE

NUMBER OF ITERATIONS.

(a) parameter a
n 1 2 3

SNR=∞ 0.5037 + 0.6986j 0.7409 + 0.1768j 0.4815 + 0.7586j
SNR=20 0.5037 + 0.6986j 0.7409− 0.1723j 0.4815 + 0.7586j
SNR=10 0.5037 + 0.6986j 0.7409− 0.1768j 0.4815− 0.7586j

SNR=20/20 0.5037− 0.6986j 0.7364− 0.1723j 0.4815− 0.7586j

(b) parameter b
n 1 2 3

SNR=∞ 0.2999− 0.3984j 0.2999− 0.3984j 0.2999− 0.3984j
SNR=20 0.2999 + 0.4006j 0.5800− 0.6875j 0.5867− 0.6809j
SNR=10 0.2999 + 0.3984j 0.7839 + 0.4406j 0.5778 + 0.6898j

SNR=20/20 0.2999− 0.3984j 0.4437 + 0.6000j 0.7706 + 0.4628j
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Fig. 1. The six figures show the parameters a, b in ã = {a1, · · · , an−1,

a, a}, b̃ = {b1, · · · , bn−1, b, b} corresponding to ‖Dã,b̃
n (f)‖2 ≥ (1 −

10−4) × ‖Dn(f)‖2 at the n-th iteration when L = 1024 and the mea-
surements are noise-free by the modified 2-D AFD for example 1. The three
columns are in turn for the 1-th, 2-th, 3-th iteration. The first row is for
parameter a and the second row is for parameter b.

maximum problem in (6) may not be unique although the
maximum value of (6) is unique. To verify the statement, we
give fix scatter plots in Fig. 1 for the parameters satisfying
certain condition (refer to the caption of Fig. 1) in the previous
3 iterations in the noise-free case. To a certain extent, all
those parameters can be regarded as the optimal solutions
approximately since they correspond to ‖Dã,b̃

n (f)‖2 which is
almost equal to the maximum value ‖Dn(f)‖2. From Fig. 1,
we observe that S2(f), S3(f) obtained by the modified 2-D
AFD are not unique.

In TABLE III, we show relative errors when the modified
W-POAFD is applied to example 1 with varying output and
input noise. In TABLE IV, we show the parameters pairs
selected by the modified W-POAFD in the previous 6 iterations
when L = 1024. Compared with the modified 2-D AFD, it
needs more iterations to achieve a similar accuracy. Besides,
the parameter pairs chosen by two proposed algorithms are
different because of the usage of different modified maximal
selection principles. On the other hand, corresponding to the
same iteration number n, the modified 2-D AFD has 4n2

orthogonal terms while the modified W-POAFD only has 2n
orthogonal terms.

In TABLE V, we list the relative errors obtained by Fouri-
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TABLE III
THE RES BY THE MODIFIED W-POAFD WITH VARYING OUTPUT AND
INPUT NOISE FOR EXAMPLE 1. THE NOTATIONS USED HERE ARE THE

SAME AS THOSE IN TABLE I.

(a) SNR=∞
n L=64 L=128 L=256 L=512 L=1024
1 0.2611 0.2611 0.2611 0.2611 0.2611
2 0.1140 0.1140 0.1140 0.1140 0.1140
3 0.0587 0.0587 0.0587 0.0587 0.0587
6 0.0069 0.0069 0.0069 0.0069 0.0069
9 8.20e-04 8.21e-04 8.21e-04 8.21e-04 8.21e-04

10 5.28e-04 5.28e-04 5.28e-04 5.28e-04 5.28e-04

(b) SNR=20
n L=64 L=128 L=256 L=512 L=1024
1 0.2611 0.2611 0.2611 0.2611 0.2611
2 0.1140 0.1140 0.1140 0.1140 0.1140
3 0.0573 0.0588 0.0588 0.0587 0.0587
6 0.0061 0.0071 0.0061 0.0069 0.0069
9 0.0022 0.0011 0.0015 7.17e-04 8.22e-04

10 0.0015 6.93e-04 8.93e-04 4.35e-04 5.29e-04

(c) SNR=10
n L=64 L=128 L=256 L=512 L=1024
1 0.2614 0.2611 0.2611 0.2611 0.2611
2 0.1144 0.1140 0.1140 0.1140 0.1140
3 0.0595 0.0580 0.0573 0.0587 0.0587
6 0.0080 0.0061 0.0057 0.0060 0.0069
9 0.0061 0.0017 0.0014 0.0014 8.34e-04

10 0.0062 0.0012 8.73e-04 8.10e-04 5.42e-04

(d) SNR=20/20
n L=64 L=128 L=256 L=512 L=1024
1 0.2611 0.2611 0.2611 0.2611 0.2611
2 0.1140 0.1140 0.1140 0.1140 0.1140
3 0.0582 0.0588 0.0587 0.0587 0.0587
6 0.0093 0.0067 0.0082 0.0069 0.0069
9 0.0022 0.0022 0.0015 8.12e-04 8.22e-04
10 0.0017 0.0015 9.22e-04 5.31e-04 5.30e-04

TABLE IV
THE SZEGö KERNEL PARAMETERS PAIRS SELECTED BY THE MODIFIED

W-POAFD WITH VARYING OUTPUT AND INPUT NOISE SNR=∞, 20, 10,
20/20 WHEN L = 1024 FOR EXAMPLE 1. THE SELECTED PARAMETERS

ARE THE SAME IN THE 4 CASES.

n parameter a parameter b
1 0.5111 + 0.6889i 0.5611 + 0.2389i
2 0.5111 + 0.6889i 0.2167− 0.6167i
3 0.5111 + 0.7333i 0.3944 + 0.5833i
4 0.7278 + 0.0276i 0.5167− 0.4278i
5 0.5333 + 0.7111i 0.3167− 0.5389i
6 0.4889 + 0.7111i 0.4611 + 0.2056i

er series and relative errors corresponding to the identified
transfer functions given in [37] in the presence of noise or
not. The method in [37] identify the transfer functions by
calculating the coefficients of polynomials of two complex
variables in the numerator and denominator. For example 1,
the authors of [37] assume that the numerator is already known
and only calculate the denominator. From TABLE I, TABLE
III, TABLE V, we find out that to obtain a similar accuracy
with the method in [37], the modified 2-D AFD, the modified
W-POAFD and Fourier series need 3, 9 and 14 iterations
respectively in the noise-free case. When the measurements
are disrupted by noise, the modified 2-D AFD and modified
W-POAFD still give comparable results within almost equal
number of iterations, but Fourier series does not.

In Fig. 2, color graphs of log10 |fn(ejωp , ejω′q )|2 for the

TABLE V
THE RES OBTAINED BY TWO OTHER METHODS WITH VARYING OUTPUT

AND INPUT NOISE WHEN L = 1024 FOR EXAMPLE 1.

(a) relative errors by the Fourier series
n 1 2 4 8 14 20

SNR=∞ 0.5941 0.3086 0.1362 0.0187 0.0013 1.08e-04
SNR=20 0.6035 0.3180 0.1458 0.0282 0.0109 0.0097
SNR=10 0.6909 0.4051 0.2330 0.1152 0.0978 0.0965

SNR=20/20 0.6135 0.3281 0.1555 0.0381 0.0206 0.0194

(b) relative errors by the method in [37]
SNR=∞ SNR=20 SNR=10

method in [37] 0.0027 0.0014 3.30e-04

approximations obtained by two proposed algorithms at some
iterations when L = 256 and SNR=10 are shown. We can see
the approaching details at given frequencies.

Example 2: The transfer function is

G(z1, z2) =
(1 + z−1

1 ) + (3 + z−1
1 )z−1

2

(1 + .6z−1
1 + .36z−2

1 + .48z−3
1 )(1 + .7z−1

2 )
.

We apply the proposed methods to f(z, w) obtained from
G(z1, z2) through the mappings z1 → 1

z , z2 → 1
w .

TABLE VI
THE RES OBTAINED BY THE MODIFIED 2-D AFD, MODIFIED W-POAFD
AND FOURIER SERIES WITH SNR=20/20 WHEN L=256 FOR EXAMPLE 2.

modified 2-D AFD modified W-POAFD Fourier series
n SNR=∞ SNR=20/20 SNR=∞ SNR=20/20 SNR=∞ SNR=20/20
1 0.0280 0.0280 0.1014 0.1014 0.4792 0.4991
2 8.02e-04 8.12e-04 0.0686 0.0686 0.1088 0.1280
3 2.10e-05 5.27e-05 0.0149 0.0150 0.0258 0.0449
4 5.83e-07 9.96e-05 4.43e-03 4.45e-03 6.10e-03 0.0253

[37] only gives estimation in the noise-free case as

Ĝ(z1, z2)

=
1 + 1.0364z−1

1 + 3.2713z−1
2 + 1.0485z−1

1 z−1
2

(1 + .6027z−1
1 + .3897z−2

1 + .0551z−3
1 )(1 + .6978z−1

2 )
.

Relative error between Ĝ and G is 0.0154. From TABLE
VI, we find that the modified 2-D AFD and the modified W-
POAFD give models having comparable relative errors with
Ĝ after 2 and 4 iterations even when we add noise. Here, for
example 2, we do not include the parameters pairs and figures
for the identified models obtained by the proposed methods.

Remark 16: What [37] addresses is reconstruction of sparse
signals, and thus, compared with the proposed algorithms of
the same system order, the results of [37] are better. The AFD
type decompositions, however, are designed for reconstruction
of general signals that are not necessarily sparse. The latter
uses the energy matching principle that, as a result, gives
rise to a sparse representation in the energy sense. By this
principle, if, for instance, one is given a signal composed
of two reproducing kernels of almost balanced energy, then
the first step of the energy matching would not give any one
of the two reproducing kernels, and due to the result of the
first step, the second step would not give any one of them,
either. Although the proposed algorithms do not give rise to
the correct decomposition of a sparse signal, the algorithms
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(a) The five color graphs from left to right and from the first row to the second
are, respectively, for f , noisy f , S1(f), S2(f), S3(f) by the modified 2-D
AFD when L = 256 and SNR=10. The sixth color graph is the colorbar of
the previous 5 graphs.
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(b) The eight color graphs from left to right and from the first row to the
second and then the third are, respectively, for f , noisy f , S̃1(f), S̃2(f),
S̃3(f), S̃6(f),S̃9(f), S̃10(f) by the modified W-POAFD when L = 256 and
SNR=10. The ninth graph is the colorbar of the previous 8 graphs.

Fig. 2. The color in the graphs represents the value of log10 |g(ejωp , e
jω′q )|2

for function g and the x-axis and y-axis represent the frequency ω and ω′
respectively.

do lead to a fast converging decomposition of the signal and
the results in a sparse representation.

A variation of AFD can get the correct decomposition of
a sparse signal: A cyclic AFD method is established for this
purpose. 1-D Cyclic AFD is developed in [38] to treat the
n-best rational approximation problem and gets promising
applications in model reduction [39]. This article does not
develop this aspect. For a given and fixed n, cyclically use
the algorithms proposed in the present paper one can indeed
get the correct decomposition of a sparse signal in the 2-D
case as well.

VII. CONCLUSION

In this paper, we propose two practical methods to solve
2-D system identification. The key advantage of the proposed

algorithms is that the system identifying partial sum sequence,
based on the adaptively chosen parameters, converges to
the original transfer function at a fast rate, and thus offers
a sparse representation in the energy sense. Moreover, the
methodology of the modified W-POAFD can be generalized
to any reproducing kernel Hilbert space with the so called
boundary vanishing condition [30], [40].

APPENDIX A
DEFINITION OF HARDY-2 SPACE ON POLY UNIT DISK

Denote by H = H2(D2) the Hardy space defined on
D2 consisting of all complex valued holomorphic functions
satisfying

sup
0≤r1,r2<1

∫ 2π

0

∫ 2π

0

|f(r1ejt, r2eju)|2 dtdu <∞,

where D2 = {(z, w) : |z| < 1, |w| < 1}. H is a reproducing
kernel Hilbert space with inner product 〈·, ·〉 defined by

〈f, g〉 =
1

4π2

∫ 2π

0

∫ 2π

0

f(ejt, eju)g(ejt, eju)dtdu,

where g is the conjugate of g. We call ‖f‖2 the “energy” of
f . The norm ‖f‖ =

√
〈f, f〉 is induced by the inner product.

APPENDIX B
SOME RESULTS RELATED TO THE GENERALIZED PARTIAL

BACKWARD SHIFT OPERATOR

Here, we omit the factor 1 in the tensor, for instance, we
write ea · 1 as ea in brief.

Proposition 17: Let f(z, w) ∈ H, then
m∏
l=1

S
(2)
bl

n∏
k=1

S(1)
ak

(f)(z, w)

=
1

B̃a
n(z)B̃b

m(w)

[
f(z, w)−

n∑
k=1

〈f,Ba
k〉

(1)
(w)Ba

k(z)−

m∑
l=1

〈
f,Bb

l

〉(2)
(z)Bb

l (w) +

m∑
l=1

n∑
k=1

〈
f,Ba

kB
b
l

〉
Ba
k(z)Bb

l (w)
]

holds for all nonnegative integer m,n where B̃a
n(z) =

n∏
k=1

z−ak
1−akz , B̃b

m(w) =
m∏
l=1

w−bl
1−blw

, a = {a1, · · · , an}, b =

{b1, · · · , bm}.
Proof: We use mathematical induction.

Firstly, the cases m,n = 0 and m,n = 1 hold trivially.
Secondly, we assume the proposition holds for all integers

m ≤ p− 1 and n ≤ q − 1 for fixed p, q.
Finally, we prove the cases m ≤ p and n ≤ q. We divide

them into two subcases: (m, q) where m ≤ p − 1 and (p, n)
where n ≤ q. We discuss the first subcase and the other is
similar.

It is noticed that if f ∈ H, then S
(1)
a (f) and S

(2)
b (f) are

still in H for a, b ∈ D. By computation we know

1
z−a
1−az

∣∣
z=ejt

=
1− aejt

ejt − a
=

z − a
1− az

∣∣∣
z=ejt

.
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It is easy to deduce that

〈 m∏
l=1

S
(2)
bl

q−1∏
k=1

S(1)
ak

(f), eaq
〉(1)

=
〈 1

B̃b
m

[
f −

q−1∑
k=1

〈f,Ba
k〉

(1)
Ba
k −

m∑
l=1

〈
f,Bb

l

〉(2)
Bb
l

+
m∑
l=1

q−1∑
k=1

〈
f,Ba

kB
b
l

〉
Ba
kB

b
l

]
, Ba

q

〉(1)

=

〈
f,Ba

q

〉(1) −
m∑
l=1

〈
f,Ba

qB
b
l

〉
B̃b
m

,

holds for m ≤ p−1. By directly plugging in the last equation,
the proposition holds for the subcase (m, q) where m ≤ p−1
immediately since

m∏
l=1

S
(2)
bl

q∏
k=1

S(1)
ak

(f)(z, w)

=S(1)
aq (

m∏
l=1

S
(2)
bl

q−1∏
k=1

S(1)
ak

(f))(z, w)

=

m∏
l=1

S
(2)
bl

q−1∏
k=1

S
(1)
ak (f)−

〈 m∏
l=1

S
(2)
bl

q−1∏
k=1

S
(1)
ak (f), eaq

〉(1)
eaq

z−aq
1−aqz

.

The proof is complete. �
Corollary 8 is directly derived from Proposition 17. �
Proof of Corollary 9: By Proposition 17, Corollary 8 and the

reproducing property of the Szegö kernel, we directly calculate

S
(1)
a S(1)

a (f)(z, w) =
|a|2z2 − 2Re(a)z + 1

z2 − 2Re(a)z + |a|2
f(z, w)

− 1− |a|2

z2 − 2Re(a)z + |a|2
F (z, w)

2Im(a)j
,

where F (z, w) = (1 − a2)(z − a)f(a,w) − (1 − a2)(z −
a)f(a,w), Re and Im represent taking the real part and the
imaginary part of a complex number. Since f(z, w) = f(z, w),
the first term in the last equality has real coefficients. As for
the second term, it is noted that F (z, w) = −F (z, w). Then
together with the imaginary part 2Im(a)j in the denominator,
it has real coefficients. Consequently, S(1)

a S
(1)
a (f) is a rational

function with real coefficients.
If a ∈ R, it is obvious that S(1)

a (f) = [(1 − az)f(z, w) −
(1− |a|2)f(a,w)]/(z − a) is a real rational function. �

APPENDIX C
SOME RESULTS RELATED TO G-S ORTHONORMALIZATION

Proof of Proposition 11: We use mathematical induction.
Firstly, the proposition holds trivially when m = 2.
Secondly, let n be an even number and assume the propo-

sition holds for all even numbers m ≤ n.
Finally, we aim to prove the proposition holds when m =

n + 2 using the above assumption. Actually, with the above
assumption, we can conclude the following results (a) and (b).
For all even numbers m ≤ n,

(a) ‖um‖2 = ‖um−1‖2 − |〈vm,um−1〉|2
‖um−1‖2 ,

(b) 〈vm+1,um〉〈vm,um−1〉
‖um‖2‖um−1‖2 − 〈vm+1,um−1〉

‖um−1‖2 = − 〈vm+2,um〉
‖um‖2 .

We prove (a) using mathematical induction.
Trivially, note that ‖u2‖2 = 1 − |〈v2,u1〉|2

‖u1‖2 = ‖u1‖2 −
|〈v2,u1〉|2
‖u1‖2 . Assume that (a) holds for all even numbers k < n,

next we derive the n case. We claim
k∑

p=k−1

| 〈vn, up〉 |2

‖up‖2
=

k∑
p=k−1

| 〈vn−1, up〉 |2

‖up‖2
, (16)

holds for all even numbers k < n.
In fact, from the assumption, uk−1, uk are reformulated as

uk−1 = vk−1 + h1, uk = vk + suk−1 + h2,

where s = − 〈vk,uk−1〉
‖uk−1‖2 , h1 = βk−2vk−2 + βk−3vk−3 + · · · +

β2v2 +β1v1, h2 = βk−3vk−2 +βk−2vk−3 + · · ·+β1v2 +β2v1,
and β1, · · · , βk−2 are complex numbers. Here, if we replace
the coefficients of function h1 with their conjugates we will
obtain function h2. This relation is a key point to deduce the
formulas below:
| 〈vn, uk−1〉 |2

‖uk−1‖2
+
| 〈vn, uk〉 |2

‖uk‖2

=
| 〈vn, uk−1〉 |2(1− |s|2)‖uk−1‖2 + | 〈vn, uk〉 |2‖uk−1‖2

‖uk−1‖2‖uk‖2
=
{[
| 〈vn, vk〉 |2 + | 〈vn, vk−1〉 |2

]
+
[
| 〈vn, h1〉 |2+

| 〈vn, h2〉 |2
]

+
[
〈vn, h1〉 〈vn, vk−1〉+ 〈vn, h2〉 〈vn, vk〉

]
+
[
〈vn, h1〉 〈vn, vk−1〉+ 〈vn, h2〉 〈vn, vk〉

]
+
[
s 〈vn, h1〉

〈vn, vk〉+ s〈vn, h2〉 〈vn, vk−1〉
]

+
[
s〈vn, h1〉 〈vn, vk〉+

s 〈vn, h2〉 〈vn, vk−1〉
]

+
[
s 〈vn, vk〉 〈vn, vk−1〉+

s 〈vn, vk−1〉 〈vn, vk〉+ s 〈vn, h1〉 〈vn, h2〉
+ s〈vn, h1〉 〈vn, h2〉

]}
/‖uk‖2

=
{[
| 〈vn−1, vk〉 |2 + | 〈vn−1, vk−1〉 |2

]
+
[
| 〈vn−1, h1〉 |2+

| 〈vn−1, h2〉 |2
]

+
[
〈vn−1, h1〉 〈vn−1, vk−1〉+ 〈vn−1, h2〉

〈vn−1, vk〉
]

+
[
〈vn−1, h1〉 〈vn−1, vk−1〉+ 〈vn−1, h2〉

〈vn−1, vk〉
]

+
[
s 〈vn−1, h1〉 〈vn−1, vk〉+ s〈vn−1, h2〉

〈vn−1, vk−1〉
]

+
[
s〈vn−1, h1〉 〈vn−1, vk〉+ s 〈vn−1, h2〉

〈vn−1, vk−1〉
]

+
[
s 〈vn−1, vk〉 〈vn−1, vk−1〉+

s 〈vn−1, vk−1〉 〈vn−1, vk〉+ s 〈vn−1, h1〉 〈vn−1, h2〉+
s〈vn−1, h1〉 〈vn−1, h2〉

]}
/‖uk‖2

=
| 〈vn−1, uk−1〉 |2

‖uk−1‖2
+
| 〈vn−1, uk〉 |2

‖uk‖2
.

In order to obtain the third equality in last formulas, we adjust
the order of terms in each bracket in the second equality.

Hence, we attain equation (a) easily because ‖up‖2 = 1 −
p−1∑
q=1

|〈vp,uq〉|2
‖uq‖2 holds for any integer p.

(b) can be inferred from (a) and the assumption that the
proposition, namely (14), holds for all even number m ≤ n.
Actually if denote t = − 〈vm,um−1〉

‖um−1‖2 , there is

〈vm+1, um〉 〈vm, um−1〉
‖um‖2‖um−1‖2

− 〈vm+1, um−1〉
‖um−1‖2
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=− t 〈vm+1, um〉
‖um‖2

− 〈vm+1, um−1〉
‖um−1‖2

(a)
=

[−t 〈vm+1, um〉 − 〈vm+1, um−1〉 (1− |t|2)]‖um−1‖2

‖um‖2‖um−1‖2

=− 〈vm+2, um〉
‖um‖2

.

Now we are prepared to prove the proposition when m =
n+2. We just verify that the coefficient of the term v1 in un+2

can be determined by the coefficients of the terms v1, v2 in
un+1. The remain formulas can be proved similarly. Denote
the coefficient of v1 in uk as xk and the coefficient of v2 in
uk as yk. Thus

xn+2

(13)
= − 〈vn+2, un+1〉

‖un+1‖2
xn+1 −

〈vn+2, un〉
‖un‖2

xn − · · ·

− 〈vn+2, u2〉
‖u2‖2

x2 −
〈vn+2, u1〉
‖u1‖2

x1

=− 〈vn+2, un+1〉
‖un+1‖2

xn+1 −
〈vn+2, un〉
‖un‖2

[
− 〈vn, un−1〉
‖un−1‖2

xn−1 + yn−1

]
− 〈vn+2, un−1〉

‖un−1‖2
xn−1 − · · ·

− 〈vn+2, u2〉
‖u2‖2

[
− 〈v2, u1〉
‖u1‖2

x1 + y1

]
− 〈vn+2, u1〉

‖u1‖2
x1

(b)
= − 〈vn+2, un+1〉

‖un+1‖2
xn+1 −

〈vn+1, un〉
‖un‖2

xn−1+

[ 〈vn+1, un〉
‖un‖2

〈vn, un−1〉
‖un−1‖2

− 〈vn+1, un−1〉
‖un−1‖2

]
yn−1 + · · ·

− 〈vn+1, u2〉
‖u2‖2

x1 +
[ 〈vn+1, u2〉
‖u2‖2

〈v2, u1〉
‖u1‖2

−

〈vn+1, u1〉
‖u1‖2

]
y1

=− 〈vn+2, un+1〉
‖un+1‖2

xn+1 −
〈vn+1, un〉
‖un‖2

[
xn−1−

〈vn, un−1〉
‖un−1‖2

yn−1

]
− 〈vn+1, un−1〉

‖un−1‖2
yn−1 · · ·

− 〈vn+1, u2〉
‖u2‖2

[
x1 −

〈v2, u1〉
‖u1‖2

y1

]
− 〈vn+1, u1〉

‖u1‖2
y1

=− 〈vn+2, un+1〉
‖un+1‖2

xn+1 −
〈vn+1, un〉
‖un‖2

yn −
〈vn+1, un−1〉
‖un−1‖2

yn−1 · · · −
〈vn+1, u2〉
‖u2‖2

y2 −
〈vn+1, u1〉
‖u1‖2

y1

(13)
= − 〈vn+2, un+1〉

‖un+1‖2
xn+1 + yn+1.

This is exactly the expression for the coefficient of the term
v1 in un+2 by this proposition. The proof is complete. �
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