
Appl. Comput. Harmon. Anal. 55 (2021) 185–198
Contents lists available at ScienceDirect

Applied and Computational Harmonic Analysis

www.elsevier.com/locate/acha

Letter to the Editor

A stochastic sparse representation: n-best approximation to 

random signals and computation ✩

Wei Qu a, Tao Qian b,∗, Guan-Tie Deng a

a Laboratory of Mathematics and Complex Systems (Ministry of Education), School of Mathematical 
Sciences, Beijing Normal University, China
b Macao Center for Mathematical Sciences, Macau University of Science and Technology, Macau

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 September 2020
Received in revised form 7 May 2021
Accepted 12 May 2021
Available online 17 May 2021
Communicated by Radu Balan

MSC:
42A50
41A30
30B99
60G35
60G07
60G10

Keywords:
Random signal
Stochastic Hilbert space
Stochastic Hardy space
Reproducing kernel
Signal analysis
Image processing

In this paper we first prove the existence of the n-best approximation in terms of 
the parameterized Szegö kernels in the stochastic complex Hardy space of the unit 
disc. It is a generalization to random signals of the corresponding result for the 
Hardy space of the disc, and has applications in signal analysis. The result may be 
generalized to the randomized polydisc case with potential applications in image 
processing. A practical algorithm for the approximation is proposed.
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1. Introduction

In this note we first establish the existence of the n-best Szegö kernel approximation for random periodic 
signals. Then we extend the result to random signals on torus. The n-best approximation problem was 
motivated by the classical one of optimal approximation to complex Hardy space functions by rational 
functions of orders not exceeding n, the latter having been undergoing a long period of studies ([14,2,12]). 
We first give a quick review on the n-best rational approximation problem. Let n be any positive integer. 
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A rational function p/q is said to be n-admissible, if p, q are co-prime polynomials, with their degrees both 
not exceeding n, and q does not have zero inside the unit disc. The following result has been proved by 
several authors (see [14,1,7]). If f ∈ H2(D), the complex Hardy H2-space of the open unit disc D, then 
there exists an n-admissible rational function p/q such that

‖f − p/q‖H2 (1.1)

attains the infimum value over all n-admissible rational functions.
Partial fraction decomposition for rational functions suggests that the n-best rational approximation 

problem has an alternative formulation, being regarded as the kernel form. For any a ∈ D, set

ka(z) = 1
1 − az

and ea(z) =
√

1 − |a|2
1 − az

being, respectively, the Szegö kernel and its H2(D)-norm-one normalization of the disc. The inner product 
of the Hardy space is expressible in terms of the non-tangential boundary limit functions:

〈f, g〉 = 1
2π

2π∫
0

f(eit)g(eit)dt.

We note that ka is the reproducing kernel of H2(D). For any n-tuple (a1, · · · , an) in Dn, denote by l(k)
the multiplicity of ak in the k-tuple (a1, · · · , ak), 1 ≤ k ≤ n. With a little abuse of notation, define the 
(a1, · · · , an)-related multiple kernels to be

k̃ak
(z) =

[(
∂

∂a

)l(k)−1

ka

]
a=ak

(z),

where for a = s + it,

∂

∂a
= 1

2

(
∂

∂s
+ i

∂

∂t

)
.

Then the kernel form of the n-best rational approximation is formulated as: For any f ∈ H2(D), find an 
n-tuple (a1, · · · , an) in Dn, and correspondingly an n-tuple (c1, · · · , cn) in Cn, where C stands for the 
complex number field, such that

‖f −
n∑

k=1

ckk̃ak
‖H2 = inf{‖f −

n∑
k=1

c′kk̃a′
k
‖H2 | (a′1, · · · , a′n) ∈ Dn, (c′1, · · · , c′n) ∈ Cn}.

We note that once an n-tuple (a1, · · · , an) is adopted, then the corresponding best coefficients (c1, · · · , cn)
may be found through the orthogonal projection of f to the span of (k̃a1 , · · · , ̃kan

):

n∑
k=1

ckk̃ak
= Pspan{k̃ak

:k=1,··· ,n}f.

To obtain the projection we use the Gram-Schmidt orthogonalization of the multiple kernels k̃ak
, k =

1, · · · , n. One may show that the corresponding orthonormal system, apart from modulus-one constants, 
coincides with the so called n-Takenaka-Malmquist system, or n-TM system, denoted by {Bk}nk=1, where
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{Bk(z)}nk=1 =

⎧⎨
⎩

√
1 − |ak|2
1 − akz

k−1∏
j=1

z − aj
1 − ajz

⎫⎬
⎭

n

k=1

. (1.2)

In terms of the TM system, the projection can be explicitly written out, as

Pspan{k̃ak
:k=1,··· ,n}f =

n∑
k=1

〈f,Bk〉Bk.

For any n-sequence (a1, · · · , an) the two collections of functions Kn = (k̃a1 , · · · , ̃kan
) and Bn = (B1, · · · , Bn)

span the same n-dimensional function space. Between the two bases there holds

Kt
n = AnB

t
n,

where An is the transform matrix between the bases, and in particular,

An = (〈k̃ai
, Bj〉)i,j=1,··· ,n,

and Kt
n, Bt

n are column vectors, being respectively the transposed matrices of Kn and Bn ([11]).
A function of the form

n∑
k=1

〈f,Bk〉Bk

is said to be an n-Blaschke form of f . The n-best rational approximation problem may be, in essence, 
reformulated as follows. Let f be any function in the Hardy space and n be any positive integer. Show that 
either there exist an integer m1, 0 ≤ m1 < n, and correspondingly an m1-tuple of parameters, (a1, · · · , am1), 
such that f coincides with its m1-Blaschke form induced by (a1, · · · , am1); or otherwise, there exists an n-
tuple (a1, · · · , an) such that

‖f −
n∑

k=1

〈f,Bk〉Bk‖H2

attains the infimum over all possible n-Blaschke form of f . There is an associated algorithm problem to 
actually find the optimal m1-, or n-tuple for the attainability of the infimum. This algorithm problem is so 
far still open. The existing literatures can only claim finding local minimum values ([1,2,12,7,13]).

The above is the formulation for one-dimensional deterministic signals. The present study is to raise and 
solve a similar problem for random signals. The motivation of studying random signals is from two sides. One 
is that a practical signal data obtained through various methods is usually corrupted with noises or errors. 
The other is that a signal under study is maybe just one of some several types of signals that altogether obey 
certain distribution law. Both of these two types are random signals that come from practice. A random 
signal theory in relation to sparse representation is developed in the recent paper [9]. In the present paper 
the stochastic n-best approximations are developed. The one and several complex variables theory are, 
respectively, given in §2 and §3. In §4 we introduce an algorithm called by random cyclic AFD that does 
not theoretically guarantee the global minimum but practical in applications. For applications of n-best 
approximation in system identification we refer the reader to [5,6].

In this note we will concentrate in the disc and the polydisc contexts. The disc context corresponds 
to one-dimensional periodic signals. The polydisc context corresponds to images. We will introduce the 
randomized disc and randomized polydisc in the following sections. For random signals in the whole time 
or whole space range there exist essentially the same theories with the one or several complex variables, or 
the Clifford number variables settings.



188 W. Qu et al. / Appl. Comput. Harmon. Anal. 55 (2021) 185–198
2. n-best approximation in the randomized unit disc

In the beginning of this section we introduce the concept of random signal in the unit disc case.
Let F (t, ω) be a random signal, t ∈ T , where T is a set in the time or the space range, and ω ∈ Ω is 

an arbitrary but fixed probability space. Here we assume that for each fixed t ∈ T , the function F (t, ·) is a 
random variable in Ω with the probability measure dμ; and for each fixed ω in Ω, F (·, ω) is a real-valued 
function in L2(T ). We will be considering the case T = [0, 2π). In order to use complex analytic methods we 
rewrite the above function notation: F (t, ω) = f(eit, ω), eit ∈ ∂D. A natural space for such random signals 
is

L2
ω(∂D) � {f(eit, ω) | ∀ω ∈ Ω : fω � f(·, ω) ∈ L2(∂D);

∀t ∈ [0, 2π), f(eit, ·) is a random variable and Eω‖fω‖2
L2(∂D) < ∞},

where Eω denotes the probability expectation. The quantity Eω‖fω‖2
L2(∂D) is also denoted by ‖f‖2

N . 
The space L2

ω(∂D) is then denoted as N (∂D), or briefly N . The random signals in N are regarded as 
random signals with finite energy or normal random signals. It is standard knowledge of measure the-
ory and Hilbert space theory that such formulated space N is a Hilbert space with the inner product 
〈f, g〉N = Eω〈fω, gω〉L2(∂D). A normal random signal has a Fourier series expansion:

f(eit, ω) =
∞∑
−∞

ck(ω)eikt, ck(ω) = 1
2π

2π∫
0

f(eit, ω)dt.

The Plancherel Theorem implies that Eω‖fω‖2 =
∑∞

k=−∞ Eω|ck(ω)|2 < ∞.
To make use of analytic function methodology we consider the stochastic Hardy space as a closed subspace 

of the space N on the boundary ∂D:

H2
ω(∂D) = {f(eit, ω) =

∞∑
k=0

ck(ω)eikt |
∞∑
k=0

Eω|ck(ω)|2 < ∞}.

The closedness of H2
ω(∂D) in L2

ω(∂D) may be proved through the Fourier series expansions of the functions 
in these spaces and by invoking the Plancherel Theorem. This space coincides with one consisting of the 
non-tangential boundary limits of the analytic functions in the space

H2
ω(D) = {f(z, ω) =

∞∑
k=0

ck(ω)zk |
∞∑
k=0

Eω|ck(ω)|2 < ∞}

(see [3]). The last two spaces are isometric. We accordingly define random n-Blaschke forms to be the 
functions in H2

ω(D) of the form

n∑
k=1

ck(ω)Bk(z),

which is associated with an n-tuple of parameters (a1, · · · , an) determining the n-TM system {Bk}nk=1. For 
any f ∈ N , the forms

n∑
〈fω, Bk〉Bk(z)
k=1
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are called the random n-Blaschke forms of f . If for some positive integer m there holds

f =
m∑

k=1

〈fω, Bk〉Bk(z),

where {Bk}mk=1 is the TM system corresponding to an m-sequence of the parameters {a1, · · · , am} in D, 
then we say that f is by itself a random m-Blaschke form. We note that in the above definitions of random 
Blaschke forms the involved parameters ak ∈ D defining the TM systems are all constants and not random 
variables.

We note that For real-valued random signals f ∈ N there holds c−n(ω) = cn(ω). As a consequence, 
between a real-valued random signal f ∈ N and its stochastic Hardy space projection {fω}+ ∈ H2

ω(D), 
there holds the relation

fω = 2Re{fω}+ − c0(ω).

In such a way, harmonic analysis of a function f in N (∂D) is reduced to complex analysis of the associated 
f+ in H2

ω(D). This paper is to study the theme of best approximation to f+ by n-Blaschke form. After 
obtaining a solution for f+, by taking the real part, we obtain the related n-best approximation for the 
original real-valued function f .

For a general function in N , not necessarily real-valued, one can alternatively project it, through ap-
plying the Hilbert transform for instance, into the stochastic inner- and stochastic outer-Hardy spaces and 
correspondingly gets the decomposition f = f+ + f−, and to each of the two components performs the ap-
proximation, and then puts together. The approximation theories of the stochastic inner- and outer-Hardy 
spaces are parallel. The non-stochastic L2(∂D) case along the same line was studied in the early literature 
(see, for instance, [10,7]).

For one-dimensional random periodic signals we will prove the following stochastic n-best Blaschke form 
approximation result.

Theorem 2.1. Let f ∈ H2
ω(D) be a non-zero random signal. For any positive integer n, there must hold 

one of the following two cases: (i) For some 1 ≤ m1 ≤ n, there exists an m1-tuple of constant parameters 
(a1, · · · , am1) ∈ Dm1 such that f is precisely expressible by

f(z, ω) =
m1∑
k=1

〈fω, Bk〉Bk(z), (2.3)

where {Bk}m1
k=1 is the TM system generated by (a1, · · · , am1); or (ii) There exists an n-tuple of constant 

parameters (a1, · · · , an) ∈ Dn such that

‖f −
n∑

k=1

〈fω, Bk〉L2(∂D)Bk‖N (2.4)

attains its positive infimum over all possible random n-Blaschke forms of f .

The proof of Theorem 2.1 for deterministic signals given in [7] may be adapted to give a proof for the 
present stochastic case. Both the proofs rely on the following result proved in the literature ([12,9]).

Theorem 2.2. Let (a1, · · · , an) be an n-tuple of complex numbers in Dn. Apart from unimodular constants, 
the Gram-Schmidt orthonormalization of (k̃a1 , · · · , ̃kan

) is the corresponding TM system {Bk}nk=1.
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Proof of Theorem 2.1. Denote by d the infimum value of (2.4). Let s(l) = (a(l)
1 , · · · , a(l)

n ) be a sequence of 
n-tuples that leads to the infimum value d along with l → ∞, that is

lim
l→∞

‖f −
n∑

k=1

〈fω, B(l)
k 〉L2(∂D)B

(l)
k ‖N = d ≥ 0. (2.5)

Since Dn is compact in Cn, there exists a subsequence of s(l) having a limit s = (a1, · · · , an) in Dn. 
Without loss of generality we may assume that the sequence s(l) itself has this limit. The complex numbers 
ak, k = 1, · · · , n, may be divided into two groups I and B: I is the set of the limit points ak inside the disc; 
and B is the set of the limit points ak, k = 1, · · · , n, on the boundary of the disc. If B is empty, then the 
limiting points are all in D. Based on continuity of inner product there holds

d = ‖fω −
n∑

k=1

〈fω, Bk〉L2(∂D)Bk‖N ,

where {Bk}nk=1 is associated with (a1, · · · , an). If d = 0 we obtain m1 = n in the case (i), and if d > 0, 
we obtain the case (ii) described by (2.4). Now we assume B is non-empty. We show that in such case 
there must hold d = 0, and we obtain what is described in the case (i) for 1 ≤ m1 < n, and no other 
possibilities. This will conclude the theorem. Since 

∑∞
k=1〈fω, B

(l)
k 〉L2(∂D)B

(l)
k is the projection of f into 

the span{k̃
a
(l)
k

: k = 1, · · · , n}, the latter being irrelevant with the order of the a(l)
k : k = 1, · · · , n, we 

can re-arrange the order of the indices k so that all the indices in I are smaller than those in B. Let 
I = {1, · · · , m1}, m1 < n, and B = {m1 + 1, · · · , n} �= ∅. We will first show that

lim
l→∞

‖
∑
k∈B

〈fω, B(l)
k 〉L2(∂D)B

(l)
k ‖N = 0.

Define

g
(l)
j � fω −

j−1∑
k=1

〈fω, B(l)
k 〉L2(∂D)B

(l)
k = fω −

j−1∑
k=1

〈(g(l)
k )ω, B(l)

k 〉L2(∂D)B
(l)
k (g(l)

1 = fω)

to be the standard orthogonal remainders, where j = 1, · · · , n. There follows that the energy terms

‖g(l)
j ‖2

N = ‖f‖2
N −

j−1∑
k=1

Eω|〈(g(l)
k )ω, B(l)

k 〉|2

form a decreasing sequence along with j increasing. Denote

R
(l)
I = fω −

∑
k∈I

〈(g(l)
k )ω, B(l)

k 〉L2(∂D)B
(l)
k .

We have, in particular, R(l)
I = g

(l)
m1+1. Hence,

‖R(l)
I ‖2

N = ‖f‖2
N −

∑
k∈I

Eω|〈(g(l)
k )ω, B(l)

k 〉|2 ≥ ‖g(l)
j ‖2

N , for j ≥ m1 + 1. (2.6)

Let Pr be the Poisson kernel. For any fixed r < 1 the convolution operator Pr ∗ f is contractive in N . In 
fact,

‖Pr ∗ f‖2
N = Eω‖Pr ∗ fω‖2

L2(∂D) ≤ Eω‖fω‖2
L2(∂D) = ‖f‖N .
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As in L2(∂D), the convolution operator Pr∗, as r → 1−, is an approximation to the identity in N . It comes 
from a Lebesgue dominated convergence argument as follows. For any random signal g in N , and any fixed 
ω ∈ Ω,

lim
r→1−

‖gω − Pr ∗ gω‖2
L2(∂D) = 0;

and

‖gω − Pr ∗ gω‖2
L2(∂D) ≤ 4‖gω‖2

L2(∂D) ∈ L1(Ω, dμ).

Then the Lebesgue Dominated Convergence Theorem concludes

lim
r→1−

‖g − Pr ∗ g‖N = 0. (2.7)

The last relation amounts that Pr∗ is an approximation to the identity in N .
The following inequality chain uses orthogonality of the projections and the remainders, the contraction 

property of the Poisson integral operator in N , the triangle inequality, the Cauchy-Schwarz inequality 
together with the norm-one property of B(l)

k , and finally the relation (2.6):

‖R(l)
I ‖N ≥ ‖R(l)

I −
∑
k∈B

〈(g(l)
k )ω, B(l)

k 〉L2(∂D)B
(l)
k ‖N

≥ ‖Pr ∗ (R(l)
I −

∑
k∈B

〈(g(l)
k )ω, B(l)

k 〉L2(∂D)B
(l)
k )‖N

≥ ‖Pr ∗R(l)
I ‖N −

∑
k∈B

‖g(l)
k ‖N ‖Pr ∗B(l)

k ‖N

≥ ‖Pr ∗R(l)
I ‖N − ‖R(l)

I ‖N
∑
k∈B

‖Pr ∗B(l)
k ‖N . (2.8)

Continuity of the inner product justifies

lim
l→∞

R
(l)
I = RI , in N ,

where, by definition,

RI � fω −
∑
k∈I

〈fω, Bk〉L2(∂D)Bk,

where (B1, · · · , Bm1) is the TM system corresponding to (a1, · · · , am1) with the cited order.
Note that the above formulation allows I = ∅. Since Pr∗ is an approximation to the identity, for any 

given ε ∈ (0, 1), one can choose r1 < 1 sufficiently close to 1 such that

‖Pr1 ∗RI‖N > (1 − ε/2)‖RI‖N .

Now turn to the entries of summation (2.8). Since the convolution operator Pr1∗ is a continuous operator, 
for the fixed r1, for large enough l there also holds

‖Pr1 ∗R
(l)
I ‖N > (1 − ε/2)‖R(l)

I ‖N . (2.9)

In the following argument let r1 be fixed. For each k ∈ B, the convolution operator Pr1∗ applied to the 
non-tangential boundary limit of B(l) reproduces the analytic function B(l)(r1eit) ([3], Ch. 2, Section 3):
k k
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(Pr1 ∗B
(l)
k )(eit) = B

(l)
k (r1eit).

We have, for each k ∈ B,

‖Pr1 ∗B
(l)
k ‖2 = 1

2π

2π∫
0

|B(l)
k (r1eit)|2dt

≤ 1
2π

2π∫
0

|e
a
(l)
k

(r1eit)|2dt

= 1
2π

√
1 − |a(l)

k |2

1 − |r1a(l)
k |2

2π∫
0

1 − |r1a(l)
k |2

|1 − r1a
(l)
k e−it|2

dt

= 1
2π

√
1 − |a(l)

k |2

1 − |r1a(l)
k |2

→ 0, as |a(l)
k | → 1. (2.10)

We note that the above second inequality relation is a crucial step, that is based on the fact that values of 
Blaschke products inside the unit disc are dominated by 1, so through introducing a dominating term the 
roles of the other parameters a(l)

j , j �= k, do not show in the final estimation:

|B(l)
k (r1eit)| =

∣∣∣∣∣∣
√

1 − |a(l)
k |2

1 − a
(l)
k r1eit

k−1∏
j=1

r1e
it − a

(l)
l

1 − a
(l)
l r1eit

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
√

1 − |a(l)
k |2

1 − a
(l)
k r1eit

∣∣∣∣∣∣ = |e
a
(l)
k

(r1eit)|.

As a consequence of (2.10), for l large enough there holds

‖R(l)
I ‖N

∑
k∈B

‖Pr1 ∗B
(l)
k ‖N ≤ ε

2‖R
(l)
I ‖N .

The above estimation together with (2.9) and (2.8) gives, for the large enough l,

‖R(l)
I −

∑
k∈B

〈(g(l)
k )ω, B(l)

k 〉L2(∂D)B
(l)
k ‖N ≥ (1 − ε)‖R(l)

I ‖.

Hence,

‖R(l)
I −

∑
k∈B

〈(g(l)
k )ω, B(l)

k 〉L2(∂D)B
(l)
k ‖2

N = ‖R(l)
I ‖2 − ‖

∑
k∈B

〈fω, B(l)
k 〉L2(∂D)B

(l)
k ‖2

N

> (1 − ε)2‖R(l)
I ‖2

N .

By taking limit l → ∞ this shows

liml→∞‖
∑
k∈B

〈fω, B(l)
k 〉L2(∂D)B

(l)
k ‖N ≤

√
2ε− ε2‖f‖N . (2.11)

Since ε is arbitrary small and positive, the above limit is actually 0. We hence have

d = ‖f −
∑

〈f,Bk〉L2(∂D)Bk‖N = ‖RI‖N .

k∈I
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Next, we divide into two cases: d = 0 and d > 0. The d = 0 case shows that f itself is a random m1-Blaschke 
form where m1 < n. For the d > 0 case, since RI �= 0 and {ka}a∈D is dense in N , one can always find an 
(n −m1)-tuple (bm1+1, · · · , bn) ∈ Dn−m1 , consisting of distinguished elements, such that

Pspan{k̃a1 ,··· ,k̃am1
,kbm1+1 ,··· ,kbn}�span{k̃a1 ,··· ,k̃am1

}(RI) > 0.

This immediately gives a random n-Blaschke form

n∑
k=1

〈fω, B̃k〉L2(∂D)B̃k,

where (B̃1, · · · , B̃n) is the TM system corresponding to (a1, · · · , am1 , ̃bm1+1, · · · , ̃bn), possessing the property

‖f −
n∑

k=1

〈f, B̃k〉L2(∂D)B̃k‖N = d′ < d.

This is contrary to the previously assumed infimum property of d in (2.5). The proof is complete. �
3. n-best approximation in the randomized polydisc

We will write out the detailed theory for the 2-torus case. The general m-torus theory is similar. In image 
processing one deals with functions on the square {(t, s) | t, s ∈ [0, 2π)}. By making the correspondence 
F (t, s) = f(eit, eis), we, instead, work on functions defined on the torus T2 = {(eit, eis) | t, s ∈ [0, 2π)}. In 
the deterministic case we work with the Hardy space with two complex variables:

H2(D2) = {f : D2 → C | f(z, w) =
∑
k,l≥0

cklz
kwl,

∑
k,l≥0

|ckl|2 < ∞}.

Recall that

L2(T2) = {f : T2 → C | f(eit, eis) =
∑

−∞<k,l<∞
ckle

ikteils,
∑

−∞<k,l<∞
|ckl|2 < ∞}.

T2 is called the characteristic boundary of D2. Like in the unit circle case L2(T2) is divided into a “ nearly 
direct sum” of four spaces of which each consists of the radial boundary limits of a space like the Hardy 
space H2(D2). More details of the formulation together with AFD algorithm and its variations, as well as 
some applications, can be found in [8,4,15].

The stochastic-lization of H2(D2) is defined as

H2
ω(D2) = {f : D2 → C | f(ω; z, w) =

∑
k,l≥0

ckl(ω)zkwl,
∑
k,l≥0

Eω|ckl(ω)|2 < ∞},

where Eω stands for, again, the expectation with respect to a general probability space (Ω, dμ). The 
Plancherel Theorem of H2

ω(D2) asserts

Eω‖fω‖L2(T2) =
∑
k,l≥0

Eω|ckl(ω)|2,

where fω(eit, eis) = f(ω; eit, eis), and the space L2(T2) is equipped with the usual inner product
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〈u, v〉L2(T2) = 1
(2π)2

2π∫
0

2π∫
0

u(eit, eis)v(eit, eis)dtds.

The Fourier coefficients of f ∈ H2
ω(D2) are given by

ckl(ω) = 1
(2π)2

2π∫
0

2π∫
0

fω(eit, eis)e−ikte−ilsdtds, k, l ≥ 0.

It is noted that H2
ω(D2) is a Hilbert space, being identical with H2

ω(T2), consisting of the radial boundary 
limits of those in the former. The two spaces are, in fact, isometric under the natural correspondence 
between an analytic function and its boundary limit. Like in the one complex variable case we are interested 
in the optimization problem: Let n1, n2 be two positive integers. Find a = (a1, · · · , an1) ∈ Dn1 and b =
(b1, · · · , bn2) ∈ Dn2 such that

‖f −
∑

1≤k≤n1,1≤l≤n2

〈fω, Ba
k ⊗Bb

l 〉L2(T2)B
a
k ⊗Bb

l ‖H2
ω(D2) (3.12)

is minimized, where {Ba
k}n1

k=1 is the n1-TM system generated by a1, · · · , an1 ; and {Bb
l }n2

l=1 is the n2-TM 
system generated by b1, · · · , bn2 , and (Ba

k ⊗ Bb
l )(z, w) = Ba

k (z)Bb
l (w), 1 ≤ k ≤ n1, 1 ≤ l ≤ n2, are tensor 

products. We note that the system {Ba
k ⊗ Bb

l }1≤k≤n1,1≤l≤n2 for any a1, · · · , an1 and b1, · · · , bn2 is an 
orthonormal system in H2(D2), as well as an orthonormal system in H2

ω(D2). The function
∑

1≤k≤n1,1≤l≤n2

〈fω, Ba
k ⊗Bb

l 〉L2(T2)B
a
k ⊗Bb

l

is said to be the random (n1 × n2)-Blaschke form of f generated by (a1, · · · , an1) and (b1, · · · , bn2). A 
function of the form

∑
1≤k≤n1,1≤l≤n2

ckl(ω)Ba
k ⊗Bb

l

is a general random (n1 × n2)-Blaschke form. We have the following theorem.

Theorem 3.1. Let f ∈ H2
ω(D2) be a non-zero random signal. Let n1 and n2 be any two positive integers. 

Then one of the following two cases must happen: ( i) f itself is a random (m1 × m2)-Blaschke form for 
some m1 ≤ n1 and m2 ≤ n2; or ( ii) there exists an n1-tuple (a1, · · · , an1) and an n2-tuple (b1, · · · , bn2)
such that

‖f −
∑

1≤k≤n1,1≤l≤n2

〈fω, Ba
k ⊗Bb

l 〉L2(T2)B
a
k ⊗Bb

l ‖H2
ω(D2) (3.13)

attains its positive infimum over all possible (n1 × n2)-Blaschke forms.

To the best knowledge of the authors even for the deterministic case such multivariate result has not been 
aware in the literature. Theorem 3.1 asserts the result directly in the randomized polydisc case. Theorem 3.1
generalizes immediately to H2

ω(Dm), m > 2.

Proof of Theorem 3.1. Let f ∈ H2
ω(D2) be the given non-zero function. By using a similar argument as in 

the unit disc case we may assume without loss of generality that limj→∞ a
(j)
k = ak, limj→∞ b

(j)
l = bl, k =

1, · · · , n1, l = 1, · · · , n2, such that
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lim
j→∞

‖f −
∑

1≤k≤n1,1≤l≤n2

〈fω, Baj

k ⊗Bbj

l 〉L2(T2)B
aj

k ⊗Bbj

l ‖H2
ω(D2) = d,

where d is the targeted infimum. We can re-arrange the order of the indices k and l, and find a pair of 
indices k0 and l0 such that if and only for k ≤ k0 the limit ak is an interior point of D; and if and only for 
l ≤ l0 the limit bl is an interior point of D. Note that k0 or l0, or both of them, can be zero. We accordingly 
form

R(j)
k0+1,l0+1 = f −

∑
1≤k≤k0;1≤l≤l0

〈fω, Baj

k ⊗Bbj

l 〉L2(T2)B
aj

k ⊗Bbj

l ,

the (k0 + 1, l0 + 1)-standard orthogonal remainder, and

g
(j)
k′,l′ = f −

∑
1≤k<k′;1≤l<l′

〈fω, Baj

k ⊗Bbj

l 〉L2(T2)B
aj

k ⊗Bbj

l ,

the (k′, l′)-standard orthogonal remainders, in general.
Due to continuity of the inner product, we have

lim
j→∞

R(j)
k0+1,l0+1 = f −

∑
1≤k≤k0;1≤l≤l0

〈fω, Ba
k ⊗Bb

l 〉L2(T2)B
a
k ⊗Bb

l � Rk0+1,l0+1,

where {Ba
k ⊗Bb

l }1≤k≤k0,1≤l≤l0 is the tensor product system of the two TM systems generated by a1, · · · , ak0

and b1, · · · , bj0 , respectively. At this point, if k0 = n1 and j0 = n2, then one can discuss two cases: d = 0
corresponds to the m1 = n1 and m2 = n2 case within the case (i)) in the statement of the theorem; and 
d > 0 corresponds to the stated case (ii) of the theorem. In the following we discuss the otherwise cases: 
k0 < n1 or j0 < n2, or both. We are to show that in such case for any ε ∈ (0, 1) and large enough j there 
holds

‖R(j)
k0+1,l0+1‖H2

ω(D2) (3.14)

≥ ‖R(j)
k0+1,l0+1 −

∑
k′>k0 or l′>l0

〈g(j)
k′,l′ , B

aj

k′ ⊗Bbj

l′ 〉L2(T2)B
aj

k′ ⊗Bbj

l′ ‖H2
ω(D2)

≥ (1 − ε)‖R(j)
k0+1,l0+1‖H2

ω(D2).

Temporarily accepting (3.14), we have that, due to the orthogonality, the sum corresponding to “
k′ > k0 or l′ > l0” has no contribution, that is,

lim
j→∞

‖
∑

k′>k0 or l′>l0

〈g(j)
k′,l′ , B

aj

k′ ⊗Bbj

l′ 〉L2(T2)B
aj

k′ ⊗Bbj

l′ ‖H2
ω(D2) = 0, (3.15)

and, as a consequence,

d = lim
j→∞

‖f −
∑

1≤k≤k0;1≤l≤l0

〈fω, Baj

k ⊗Bbj

l 〉L2(T2)B
aj

k ⊗Bbj

l ‖H2
ω(D2). (3.16)

As in the unit disc context if d = 0 then we have case in (i); and if d > 0 we can accordingly derive a 
contradiction. All the task left for proving the theorem is estimation (3.14).

The strategy to prove (3.14) is to employ the tensor product type Poisson kernels, namely, P (1)
r ⊗

P
(2)
ρ , where P (1)

r and P (2)
ρ denote the Poisson kernels for, respectively, the first and the second circular 

variable. We will use ∗1 and ∗2 to denote the convolutions with respect to the first and the second circular 
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variable, respectively. We will show that in H2
ω(D2) the operator (Pr ⊗ Pρ)∗ is a contraction, as well as an 

approximation to the identity.
To show that the tensor product Poisson convolution is a contraction we have

‖(P (1)
r ⊗ P (2)

ρ ) ∗ fω‖2
H2

ω(D2) = Eω‖(P (1)
r ⊗ P (2)

ρ ) ∗ fω‖2
L2(∂D×∂D)

= Eω‖P (1)
r ∗1 (P (2)

ρ ∗2 fω)‖2
L2(∂D×∂D)

≤ Eω‖P (2)
ρ ∗2 fω‖2

L2(∂D×∂D)

≤ Eω‖fω‖2
L2(∂D×∂D)

= ‖f‖H2
ω(D2).

Now we show that the tensor product Poisson convolution is an approximation to the identity in H2
ω(D2). 

Denote the identity operators for the first and the second variable by I1 and I2, respectively. Since the partial 
Poisson operators are contractions, as well as approximation to the identity in their respective spaces, we 
have

‖(P (1)
r ⊗ P (2)

ρ ) ∗ fω − fω‖H2
ω(D2) ≤ ‖P (2)

ρ ∗2 (P (1)
r ∗1 fω) − P (2)

ρ ∗2 fω‖H2
ω(D2) + ‖P (2)

ρ ∗2 fω − fω‖H2
ω(D2)

= ‖P (2)
ρ ∗2 (P (1)

r ∗1 −I1)fω‖2
H2

ω(D2) + ‖(P (2)
ρ ∗2 −I2)fω‖H2

ω(D2)

≤ ‖(P (1)
r ∗1 −I1)fω‖2

H2
ω(D2) + ‖(P (2)

ρ ∗2 −I2)fω‖H2
ω(D2)

→ 0, as r → 1 − and ρ → 1−,

where, as in the proof of (2.7), the last step invokes the Lebesgue Dominated Convergence Theorem. In the 
way of (2.8) and (2.9) we also have

‖R(j)
k0,l0

‖H2
ω(D2) ≥ (1− ε/2)‖R(j)

k0,l0
‖H2

ω(D2) −‖R(j)
k0,l0

‖H2
ω(D2)

∑
k>k0 or l>l0

‖(P (1)
r1 ⊗P (2)

ρ1
) ∗ (Baj

k ⊗Bbj

l )‖H2(T2).

(3.17)
To prove the relations in the polydisc context counterpart to (2.10), and that to (2.11), we have, for k > k0
or l > l0,

‖(P (1)
r1 ⊗ P (2)

ρ1
) ∗ (Baj

k ⊗Bbj

l )‖2
H2(T2) = ‖P (1)

r1 ∗1 B
aj

k ‖2‖P (2)
ρ1

∗2 B
bj

l ‖2
H2(T2)

≤ 1
4π2

2π∫
0

|e
a
(j)
k

(r1eit)|2dt
2π∫
0

|e
b
(j)
l

(ρ1e
is)|2ds

→ 0,

where r1 and ρ1 are previously chosen to satisfy (3.17) and fixed. The proof is thus complete. �
4. Random cyclic AFD algorithm

AFD, as abbreviation of adaptive Fourier decomposition, is established in [10]. Although its energy 
pursuing idea is the same as greedy algorithm, the advantage of AFD lies on the fact that the AFD types 
look into attainability of the optimal energy gain at each of the iteration step. The attainability of the 
optimal energy is, in particular, based on admitting the unavoidble multiplicities of the parameters. The 
general greedy algorithm principle, on the other hand, does not allow repetition of selection of parameters. 
In this study we go two steps further by concerning attainability of simultaneous selection of a set of n
parameters, as well as the randomization. AFD methods, as a generalization of Fourier theory, involve 
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complex analysis, especially Blaschke products. The motivation of AFD is sparse representation of signals 
into those with positive analytic instantaneous frequency. In [7] and [13] we propose a practical cyclic AFD 
algorithm to solve the n-best problem for the deterministic signals case. In view of the methodology, cyclic 
AFD is not a theoretical solution for the n-best problem. It is only a practical method in the sense that it 
cannot prevent itself from falling into local minimums, and the way to treat this is to start the algorithm 
with multiple and maybe various initial values. This stands as a common computational problem. With 
this understanding in mind cyclic AFD can be extended to the random signals case as a practical method, 
called random cyclic AFD. Cyclic AFD for deterministic signals is summarized as follows.

Let f ∈ H2(D). To get a start, let a0 = (a(0)
1 , · · · , a(0)

n ) be any n-tuple of complex numbers in Dn. Note 
that in the following process multiplicities of parameters are always allowed. This initial n-tuple generates 
a TM system (B(0)

1 , · · · , B(0)
n ). Denote the span of B(0)

1 , · · · , B(0)
n by B0. Now we throw away the first entry 

in the n-tuple, namely, a(0)
1 , and replace it with a better a ∈ D, if exists, and denote this better a by 

a = a
(1)
1 . Here “ better” takes the sense that the energy of the projection, ‖PB1f‖2

H2(D), being larger than 

‖PB0f‖2
H2(D), is maximized by a(1)

1 , where B1 is the TM system corresponding to a1 � (a(1)
1 , a(0)

2 , · · · , a(0)
n ) �

(a(1)
1 , a(1)

2 , · · · , a(1)
n ). This is the first re-selection of the parameters. Next, we re-select the entry a(1)

2 according 
to the maximal projection principle, while the other parameters remain unchanged, and denote the newly 
selected better entry by a(2)

2 , and denote a2 � (a(1)
1 , a(2)

2 , a(1)
3 , · · · , a(1)

n ) � (a(2)
1 , a(2)

2 , a(2)
3 , · · · , a(2)

n ). Next, we 
re-select the entry in the third position, a(2)

3 , to get a(3)
3 , and so on. After the first round of n re-selections 

we can proceed the second one, and cyclically, until the energy is seen to have little gain with any new 
re-selection. As is proved in [7] the n-tuple sequence al converges to an n-tuple a ∈ Dn, being a practical 
solution of the n-best problem for f . For more details of the algorithm and theoretical remarks the author 
is referred to [7] and [13]. While the structure is the same, the difference of stochastic cyclic AFD lies on 
the random maximal selection principle: As is proved in [9] for every f ∈ H2

ω(D) there exists a ∈ D such 
that

Eω|〈fω, ea〉L2(∂D)|2 = max{Eω|〈fω, eb〉L2(∂D)|2 | b ∈ D}.

In practice the expectation can be computed through taking a sample of sufficiently large capacity, being 
based on the Law of Large Numbers, namely,

Eω|〈fω, ea〉L2(∂D)|2 = lim
N→∞

∑N
m=1 |〈(fm)ω, ea〉L2(∂D)|2

N
,

where fm, m = 1, · · · , N , are samples.
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