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Abstract

Herein, the theory of Bergman kernel is developed to the weighted case. A general
form of weighted Bergman reproducing kernel is obtained, by which we can calculate
concrete Bergman kernel functions for specific weights and domains.
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1 Introduction

The theory of Bergman spaces has, in the past several decades, become important in
complex analysis of both one and several complex variables, see [7,8]. Recall that, for
an arbitrary domain Q C C”, the Bergman space A” () is defined as the collection
of analytic functions F' that satisfy

1

1Fllar = {/Q|F(z)|”dA<z>}” < o0,
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where d A(z) = dxdy is the Lebesgue measure on C". When p = 2, the reproducing
kernel plays an important role in the Hilbert space. For the classical Bergman spaces,
the reproducing properties and biholomorphic invariance are investigated in [3,5].

Bergman kernels have also been considered in some weighted cases. Since a repro-
ducing kernel delivers certain fundamental information of the corresponding space,
it is important to obtain the concrete form of the kernel function. However, we must
confess that their weighted Bergman kernel can almost never be calculated explicitly
except for some special cases. Among the latter, the Bergman kernels are given for
functions defined on the Hermitian ball and polydisc in [7]. Some concrete expressions
of the Bergman kernel are also available for some classical homogeneous bounded
symmetric domains of Cartan in [6].

Since the set of polynomials is dense in the Bergman spaces of bounded domains,
the corresponding reproducing kernels can be obtained from the general representa-
tion formula K (z, w) = 22021 én(2)Pn(w), where {¢,,} is any complete orthonormal
basis obtained through orthonormalization of polynomials. However, for unbounded
regions, density of polynomials can not be guaranteed. In such case, appropriate
weight functions are introduced to make the weighted polynomials dense in certain
Bergman spaces of unbounded domains. Then the kernel representations can be sim-
ilarly obtained. In this paper, we apply the Laplace transform to the case of Bergman
spaces on tube domains, which will be an effective and new method to calculate
reproducing kernels.

Herein, we develop the theory of the weighted Bergman spaces and obtain a general
representation formula of the kernel function for the spaces on tubular domains. As
a complementary part to the general study, we calculate the concrete forms of the
Bergman kernels for some special weights on the tube domains.

In some previous studies, the concerned reproducing kernels can be computed
by using our general representation formula, since the given weight functions sat-

isfy the set conditions in our theorems. For example, taking the weight function

2g—2 . .
p(y) = 71123(2—{;_1), we can derive that the Bergman—Selberg reproducing kernel on

. 2q
the upper half plane is in the form of K, (z, w) = I'(2¢) (ﬁ) with g > %, which
is introduced in [9]. For the weight function p(iy) = y’~!, a direct computation gives

that the corresponding kernel is of the form K (z, w) = ZL;J (#)_v_l, which is
studied in [2]. For weighted Bergman spaces associated with Lorentz cones, referring
to [1], the kernel functions can be also obtained by our formula. The related calculation
process is given as an example in the final section. Especially, in the un-weighted case,

i.e., letting p(iy) = 1, it follows that the classical Bergman kernel on the upper half
SN2
plane is K (z, w) = % (ﬁ) )

2 Preliminaries
Let €2 be an arbitrary domain (an open connected set) in the complex n-dimensional

Euclidean space C" = {z = x + iy : x,y € R"}. Suppose that p(z) is a positive
continuous function on €2 that takes the value O for z ¢ 2. We consider the weighted
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Reproducing Kernels of Some Weighted Bergman Spaces 9529

volume measure
dA,(2) = p(2)dA(2),

where dA(z) = dxdy is the Lebesgue measure on C". For p > 0, we denote by Lﬁ
the space of measurable functions on €2 such that

1

IEll Ly = (/Q IF(z)|PdAp(z))p < 0. (1

The space of such functions is called the weighted Lebesgue space with weight p. The
quantity || F|| L is called the norm of the function F, which is a true norm if p > 1.
We denote by A} the collection of functions F that are holomorphic on  and
satisfy the condition (1). Such a class is called the weighted Bergman space with
weight p. It is obvious that Aﬁ - Lg.
We first assert that functions in the weighted Bergman space cannot grow too rapidly
near the boundary.

Lemma 1 Point evaluation is a bounded linear functional in each weighted Bergman
space Af)) . More specifically, each function F € Aﬁ has the property

FQI = @ue) 7 (6277 [IFlL. @

Here, wy, = —',' is the volume of unit ball B>,(0, 1), §; = min{l, 2~ Vdist(z, 982)}
where dist(z, 02)} is the distance from z to the boundary of 2, and ¢, = min{p({) :
[ —z] <6}

Proof For fixed point z € €2, the bounded closed ball By, (z, ;) lies in 2. Since
p(¢) is a positive continuous function on €2, then for any ¢ € B»,(z, §;), we have
&; = min p(¢) > 0. Therefore,

1
For s —o [ F©rdae
02082 J By, (2,5,)
1 [F ()P
< dA,(©)
@282 JBon(z.5,) L&)
o
< —- [F(OIPdAL)
gszn‘Szn B, (z,8;) g
< F PdA
< 82%82" / F©OIPdA, (@)
= ! IIF ||p
= Szwznazn p,
which is the stated result. O
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As a consequence of the above lemma, we conclude that the weighted Bergman space
A ,’; is a Banach space when 1 < p < oo and a complete metric space when0 < p < 1.

Lemma 2 Suppose that p(z) is a positive continuous function on S2 that takes the value
0forz ¢ Q. For 0 < p < 00, the weighted Bergman space Ag is closed in Lg.

Proof Let {F,} be a sequence in Af)’ and assume F;, — F in Lﬁ. In particular, {F,} is
a Cauchy sequence in Lg . Applying the previous lemma, we see that { F},} converges
uniformly on every compact subset of 2. Combining with the assumption that F,, — F
in Lﬁ , we conclude that F,, — F uniformly on every compact subset of 2. Therefore,
F is analytic in € and belongs to A%. O

Now let p = 2, Af) is a Hilbert space with inner product

(F,G), = / F(2)G(z)dAy(z)
Q
for F, G € A2,
Since each point evaluation functional 7[F] = F(z) of Azp is bounded, the Riesz
representation theorem for Hilbert space guarantees existence of a unique function
K(£.2) = K.(¢) € A2 such that F(z) = (F, K_), for every F € A2. The function

K (¢, z) is known as the reproducing kernel with weight p, or the weighted Bergman
kernel function. It has the reproducing property

F(z) = /Q FOR-DdA, () 3)

for each function F € A%. Taking F(z) = K(z, ¢) for some ¢ € €2, we see that

K(z, §)=/QK(77, $)K(n,2)dA, () = K(¢, 2). “)

Thus the kernel function has the symmetry property K (z, ) = K (¢, z), which also
shows that K (z, ¢) is analytic in z and anti-analytic in ¢. Another consequence is the
formula

K(z,2) = /Q K (2, O)PdA(©) = IK (2, )7 > 0. )

In view of (5), applying the Schwarz inequality to (3), there holds

IF@I = VK DIF -

Then for each point ¢ € €,

1
— < ||F
XD = IFllaz
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for all F € A%(Q, p) with F(¢) = 1. In fact, the lower bound is sharp and uniquely
attained by the function F(z) = %

The theory of reproducing kernel Hilbert spaces guarantees that the reproducing
kernel K (-, -) is unique.

Recall that a holomorphic mapping w = ®(z) from a domain €2 to a domain €25 is
said to be biholomorphic if it is one-to-one, onto, and its holomorphic inverse exists.

In fact, the kernel function with weight is biholomorphic invariant in the sense of

the following lemma.

Lemma 3 Suppose that w = ®(z) is a biholomorphic mapping of a domain 2| onto
a domain 2, p1(z) and py(w) are two positive continuous functions on domains 21
and Sy, respectively, p1(z) = 0 for z ¢ Q1 and pr(w) = 0forw ¢ 2, Kp,(z, ¢) and

K, (w, ¢) are reproducing kernels of two weighted Bergman spaces szn and A%Z,
respectively. If p1(z) = p2(®(2)) for all z € 4, then
Ky (2,8) = (DP)(2)Kp, (P(2), P(EN(DP)(E), (6)

where (D®)(2) is the determinant of the holomorphic Jacobian matrix of w = ©(2).

Proof Let F € Af)l , after a change of variables ¢ = ®(¢) in the integral,

(DP)(2) K, (P (2), PEN(DP)E)F(§)p1(8)dA(L)

Q

= (D®)(2)K 1, ((2), ) (DPY (D) F (P ())p2(5)(DrP™ () A(S),
2

where Dr® ! is the determinant of the real Jacobian matrix of ®~!. Based on the
relationship between the determinant of the real Jacobian matrix and that of the holo-
morphic Jacobian matrix, i.e., Dr®~! = | DO (see [7] Proposition 1.4.10), the
above formula simplifies to

-1
RCDICLACION {((ch)(cb”(;))) F(cb—l(g»} P2S)AA(S).
2

On the other hand, by hypothesis, the expression in braces is an element of A%Q. So
the last line equals

-1
(D)) (DO)@T'(@@))  F@ (@@ = F@).

By the uniqueness of the reproducing kernel of the weighted Bergman space A% s we
see that (6) holds. This completes the proof of Lemma 3. O
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3 Main Results

In order to obtain the explicit reproducing kernel of the weighted Bergman kernel
corresponding to a specific weights p in a concrete domain, we suppose that p(z) is a
positive continuous function on a tube domain

Q=Tg={z=x+iy:ye B}

over an open connected subset B of the real n-dimensional Euclidean space R". In
addition, we assume that p(x +iy) = p(iy) forallx € R",y € B and p(z) =0
for z ¢ Tp. In this case, the computation of weighted Bergman kernels on those
tube domains greatly benefits from the homogeneity of 7 in the real direction. An
important tool is the Laplace transform F = .Z(f) of a function f, that s,

F=(Zf)2) =/ feX i ds, 7
Rn

n
where z-t = x-t+iy-t = Y z-tx,and x -, y-t are the Euclidean scalar products for
k=1
x,y,t € R". The definition will be further justified together with the specific spaces
that the test function f belongs to. It is obvious that F is well defined only when f
decays sufficiently fast at co.
Let

1) = / Pl dy, ®)
B

then the set Uy = {r : I(t) < oo} is a convex set, and log I (¢) is a convex function on
U;r. The weighted L? space is the set of the measurable function defined on R” such
that

1
11y = (/R If(t)IPI(t)dt>p < co.

Notice that if f € L%, then f(r) = 0 almost everywhere for all r ¢ U;, so we can
assume that the support of f is contained in the closure of U;. We also see that A%

and L% are Hilbert spaces with the inner product
Wﬂm=f/1w+wmu+mmmmw
B JRn
for F, G € A2 and

(f.g) = /R ) f(Hg®)1(t)dt
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Reproducing Kernels of Some Weighted Bergman Spaces 9533

for f,g € L2, respectively.
The main result herein is established as follows.

Theorem 1 The weighted Bergman kernel K (z, w) of Af) is given by

Kz w) = / 27T [~ (g ©)

where 1(t) is defined as (8) and p(z) is a positive continuous function on the tube
domain Tp and satisfying p(x +iy) = p(iy) forallx e R",y € B.

To prove Theorem 1, we need the following lemma, which is also an important
result by itself.

Lemma4 The Laplace transform £ is an isometry from L% to A% preserving the
Hilbert space norms i.e.,

12 Fllaz = 1£1l.2-
Proof First, we prove that if F(z) € A%. There exists f € L% such that F(z) =
(Z f)(z2), which means that the Laplace transform .Z is surjective.
Let Bp € B be a bounded connected open set, so there exists a positive constant

Ry such that By € D(0, Ry). Assume that [.(z) = (1 + S(Z% + o+ Z,%))N, where N
is an integer and N > %. Then for ¢ < 2—}22 and z = x + iy with |y| < Ry,
0

@) = (1 + 6@+ + 220D 7|
2
= <<1 +e(x)? = |y|2)> +4e? (x - }’)2)
N
> (1 +e(x|*> - Iylz))N > (% +8|x|2) ,

l;l(z)] < +N Set F.(z) = F(z)lg_l(z), then based on Holder’s inequal-

(%+s|x\2>

5
f|Fg,y(x)|dxs</ |Fy(x)}2dx) (/
R~ R R

which implies that Fy y(x) = Fe(x +iy) € L'(R") and

=z

ie.,

ity,

TN
I (x—i—iy)‘ dx) < 00,

log/ |Fe(x +iy)|dx
Rn

is a convex function on By. Therefore, for any compact K € By, we have
sup{/ |Fg(x+iy)|dx:yeK} < 00. (10)
Rn
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Forany a, b,y € By, t € R", let

Ge(2) = Fe(2)e™™ ",
J(X' xp, 1) = Fo(x+i(a+t(b—a)), x=x"x),0<1<1;
Ne(y, 1) = Fey()e” 20,
In order to show that, for all a, b € By, N¢(a,t) = Ng(b, t) almost everywhere for
all t € R", we first assume that a = (a’, a,), b = (a’, b,) and the closed interval

[a,b] ={a+t(b—a):0 <t < 1}is contained in By. Then (10) implies that the
integral

e’} 1
/ / / W3 DI+ =3, D drd,
0 0 n—

is finite. This means

1
lim / / (J(x', R, )|+ |J(x', =R, T))dx'dt = 0.
0 Rn—1

R— o0

Therefore,

INS(a’t) - Ne(ba t)‘

/ (Ge(x +1ib) — Ge(x +ia))dx
RVI

1
d
= / / —G:(x+i(a+tb—a))drdx
R JO at

-ILL

[bn — an|

d iy
By (Ge(x +i(a@’, yn))

Y =an+r(bran)(b" —an)dvdx

1
//ia (Ge(x+i(a+1t(b—a))))drdx
R Jo  0xp

1
=G hﬂ/ / &' R, D)+ [J(x', =R, D)])dx'dt =0,
0 Rn—1

R—o0

where C1(1) = |by, — ap|e 27 tlal+b=al)  Remark that By is connected and by
an iteration argument, we can show that g ,(f) = Fg,y(t)e_z”y" is a function

independent of y € By. Hence g.(r) = g ,(¢) is independent of y € By and
ge()e?™ = F (1) € L'(R") forall y € Bo.

On the other hand, it is obvious that F y(x) — Fy(x) as ¢ — 0. Let Ny(t) =
I:“y(t)e_zj”"’, we can also prove that I*Vﬂy(t)e_zny" is independent of y € By and
gt) = Fy (1)e= 2" almost everywhere. Indeed, for a,b € By and any compact
subset K C R", let Ry = max{|¢| : t € K}. Then Plancherel’s theorem implies that

Ny = Nall 2y < INs — gell 2y + lgs — Nall 2k
= 2TROR(1Fy = Frall o) + 1 Fep = Foll e )

@ Springer



Reproducing Kernels of Some Weighted Bergman Spaces 9535

= RN (|| Fy = Feall 2@ + I1Fy = Fepll2@an) = 0

as & — 0. Hence F,(t)e 279" = Fj(1)e~ 25" almost everywhere on R”.
Next, we show that g(r)e*™" e L'(R"). In order to prove this affirmance,
decompose R" into the union of finite non-overlapping cones {I';}7>, with com-

mon vertex at the origin, i.e., R" = U,’(VZIF/( and let Bs; = D(yp,8) C Bp. Then
for any y € D(yp, %) and yr € (yo + I'y) satisfying 34—8 < |yx — Yol < 8, we have
Ok = ) -1 = B0e] — |yo — ylle] = (25 — DBlrl = g3l for ye — yo. 1 € T
Thus, it follows from Holder’s inequality and Plancherel’s theorem that

1 1
~ 8 ™ 2 8 2
[ lg()e™™ " |dt < / |ka(r>e*”7°"'|dzs<[ |Fyk(t>|2dr) (/ |e*2”7°"'|dr)
'k Ty Tk Tk

1

1
2 8 2
=(/ |Fyk(t)|2dt> ( |e‘2”70|’||dz) < 00,
' Ty

which shows that g(1)e?™" € L'(T';). Then g ()™ € L'(R"). Therefore, we can
see that the function G (z) = [, g(t)e>" )14t is well defined and holomorphic
on the tube domain Tp,.

Now we can prove that

lim g6 (t)efzni(x+iy)-tdt — f

g(t)ef2ni(x+iy)-tdt'
e—0 Rn Rr

For y € By,

dt

‘ / (86 (1) — g(0))e Mgy
Rn
n
- ; fr k
" 5 5 3 5 3
SZ( / |Fe,yk<x>—Fyk<x>|2dt) ( |e-2”7"‘|dr)
k=1 Tk Ci
5 1 3
—2m 3 2
< |:llllkai(n( 5 le=27 % \z||d;) LX} (/rk | Fe y, (x) — Fy, (x)] dz) -0

as ¢ — 0. It follows that liII(l) F:(z2) = G(z). Combining with lin}) F.(z) = F(2), we
E— e—

< / ‘(ﬁ&y([)e—zn’y-[ _ Fvy (t)e—ZJT}’-I) eZm'zt
R?

dt

(I'v},yk (x) — F),k (x)) e 2=yt

get G(z) = F(z) for z € Tp,. Therefore, there exists a measurable function g(¢) such
that g(1)e?™" € LY (R") for all y € By, then

F(2) =/ g(t)e 2T gy
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9536 G-T.Deng et al.

holds for z € Tp,. Hence g(t) = Fy (t)e=¥¥" for all y € By. Since B is connected,
we can choose a sequence of bounded domains { By} such that By C By C B, C ...
and B = U2, Bs,. Then ﬁYk (e ot = I:"y(t)e_z’”'t for y € By and yx € By,
where k > 0. These imply that g(t) = F(t)e"2™" holds for all y € B. In other
words, F(z) = fR" g(t)e_2”iz"dt holds for all z € Tp. By letting f(¢) = g(—1t), we
see that f € L% and F(z) = (L f)(t) for any given F(z) € A2, which means that
the Laplace transform .Z is surjective.

Now we prove that (7) is well-defined, injective, and preserves norm, i.e.,
II‘,iprIA/z) = ||f||L%. Let F(x +iy) = Fy(x) = (Zf)(x + iy) for every fixed
y € B. Based on Plancherel’s theorem, there holds

[ imwpar= [ 1rape e,
R” R”

Multiplying by p(iy) and performing integral over B on both sides of the above
equation, we have

IF I, = fB ( /R IF(x +iy>|2dx) p(iy)dy

= / ( / Ie‘z”y"f(t)lzdt>p(iy)dy
B n

= / |fOP It = |13
R7 1

It then follows that f(#) = O almost everywhere for all t ¢ Uj, where U; = {t :
I(t) < oc}. Therefore, f(t) is supported in U;. This completes the proof of Lemma
4. o

Let us now prove Theorem 1.

Proof For F(z) € A%(TB), there exists f € L% such that F(z) = (Zf)(z) =
fR" f()e¥ = ds. And for the kernel K (z) = K(z,z20) € A%, there also exists
fzo € L% such that K;((2) = (£ f2)(2) = [gu fo()e*™¥1dt for z9,z € Tp. On
the other hand, Lemma 1 claims that . is an isometry from L% to A% preserving
the Hilbert space norm. Using the polarization identity of || F'|| A= WAl L2 it then
follows that the inner product is also preserved. Hence we have

F(z0) = (F. Kug)p = (f+ fou)t = /R ORI

Hence
[ et = [ ro@nm
Rn R)‘l

holds for every f € L%, which implies that e2mizot = Sz ()1 (t) almost everywhere
onU; = {t e R" : I(t) < oo}. Then, f;,(t) = e 27201 [~1(t). Here, I(¢)~" takes 0

@ Springer



Reproducing Kernels of Some Weighted Bergman Spaces 9537

when /(¢) = oo by the definition of /(¢). Hence,

K. (z) = K(z, 20) =/ foo (D)X dr =/ 2@ 1= gy,
R7 R7

]

Note that the Bergman kernel is uniquely characterized by the following three prop-
erties.

(i) K(z,z0) = K(z0,2) forall z, zg € Tp;
(i1) K (z, zo) reproduces every element in A% in the following sense

F(z):// K(z,u+iv)F(u+iv)p@v)dudv
B RH
for every F € A2;

(iii) Ky, € Alz) for all zg € Tp, where K;,(z) = K(z, 20).

We shall show that (9) admits these properties. We first prove the symmetric property,

n

K (20, 2) :/ eZ”i(ZO_Z)"I_l(t)dt :f 6_2”’.(20_2)"I_1(t)dt
Rn
= [ e i = K ez,

which means (i) holds for the Bergman kernel in the form of (9). We then show K (z, zo)
reproduces every element in A%. Indeed, for F(z), K;,(z) € A2,

F(z)= | f®e*i='ds
Uy

o 2miZot ,
KZ()(Z) = /u <T> eZﬂlt'Zdt.

Then the polarization identity implies that

and

(F, Kzo)Ag=/f K (z0,2) F(2)dA,(2)
B JRR"

o~ 2miZot
< @) [p2
e—2mizot

= " f(t)—l(t) I1(t)dt

@ Springer



9538 G-T.Deng et al.

f(t)eZTIiZ()'l‘dt
U

= F(zp0).

Hence, the second property is proved.

Finally, we prove that K, (z) € A%. For fixed zo = u 4+ iv € Tp, there exists
8 > O such that v + Ps C B, where Ps = [—4,8]" C R". Let e = min{p(iy) : y €
v+ Ps} > 0, then

no .
, h(4m st
I(t)e4ﬂv-t — / e—47t(y—v)~tlo(y)dy > 8/ e—4nn-tdn = 1_[ sin ( T k)'
B Ps Pl 27ty

Therefore, again by the polarization identity,

(Kz Kzo) a2 = /T Kz (2)PdAp(@) = (Kzp. Kzo) a2
B
—2mzot

e—ZNiZ()'t e—ZRiZo-t
_< Ity I >L / 1)

—1
—4mv-t 1 h(47m st
=/e dt < /—nm(nk) dt < oo.
no I(t) n & 28ty

I(t)dt

Therefore, K;,(z) € A% forz € Tp.

4 Computation of Some Weighted Bergman Kernels

The weighted Bergman kernel has never been computed explicitly. However, the theory
would be a bit hollow if we do not compute at least one weighted Bergman kernel.
In this section, we calculate some weighted Bergman kernels as examples. The first
example is the weighted Bergman kernel for tube over the following cone.

Example 1 Suppose that B = {y = (', y4) : y» > |y'|*} and @ € R. Denote by A2

the space of analytic functions on tube domain Q2 = {z = x +iy : x € R", y € B}
such that

1

2
IFll 4z = </§2|F<x+iy>|2<yn—|y/|2>“dxdy> < o0, (11)

Then the reproducing kernel for the Hilbert space Ag is

Ko(z,20) = C1.o((z' — Z0)* = 2i(z0 — Z0.0)) "%, (12)
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where 2’ = (z1, ..., 2n-1), 25 = (20,1, - - -+ Z0,n—1) and

22D (n 4o 1)
Clo= .

o I'(a+ n" (13)

Here, W{(z' — Z))* — 2i(zn — Zo)} = 20 +va) + & —u') - (& —u') — (V) +
V) - (Y +v) > 0, then |arg((z' — 26)2 — 2i(zn — Zon))| < %, in which z =
(@ zn) = & x0) + 00, yn)s 20 = (Z6a 20.) = ', up) +i(v',v,) € Tp and

P=d=g+B5+. .+

Proof We first compute 7(t),

o0
1(t) = / e (y, — |y 1)y = / / O — Y/ [Pty gy dy, .
B 0 ‘,V/|2<yn
(14)

/

Performing variable substitution on (14) with a, = y, — |y'|?, @’ = y/, then y, =

an + |a’|?. We then obtain

oo
_ /12 _ /o4
I([) :/ / aze 4r(ap+ld’| )tne 4wa tda’dan
0 Rn—1

50 n—1
zf aflze—4nantn H/e—4na,%t,,—4naktkdak da,.
0 k=1 R

It is obvious that /(t) = oo when t,, < 0, For¢, > 0,

00 n—1
_ _ 24
1(1) :/ aze 4mayty <1_[/ e draity 47mktkdak> day,
0 f=1"R
o0 nl —4mt (az—aktk+ V(e 2)
_ n\ 4 2 2
:/ 4% e ant 1—[/6 k4 () (5 day | da,
0 k=1"R

[e%e} n—1 n \2 w2
_ —4mt (a 7i> —k
0 k=1"R

Lets = ax — - and 471,52 = n?, then

2ty
[ee] n—1 m‘lg 5
I(t) :/ age%”“"t” 67/674’”"‘ ds | day,
0 k=1 R
2
wt
— k
/OO o —4mayt, = e nzd d
= a,e tmn e dn|day
n
0 k=1 2wty Jr
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00 "2 /— \n—1
_ o ,—4mwant, ”‘,In‘ T d
= a,e e 7 a,
0 VT
2 1on [« —dnan
=e m 2Jt) " afe”inlnda,, .
0

Putting b = —4ma,t,, we have

7o' i2 1—n * 1 a b
() =¢ n V) ————b%ePdb
0

(4 ty)ot!

B 21—)11*(0[_,[_ 1) ”‘;/‘2 %(]7@70[71
= WC no 1y .

Now we can compute the formula of weighted Bergman kernel. According to the
representation form of reproducing kernel,

Lan—1 2
Ko (2. 20) :/ 2GR0 =1 () gy = (4 ) +1on / ezm.(z_zo),,_%t%(nfl)+a+1dt
ol - Tat+ D) Jau 4 :
_ a+1oyn—1
Setw =z —Z7pand Cy = %,then

o T2 LDt
Ko(z,20) = Cq / T T g2 dt

n

o i (VAN 1/ g NP |
— Ca/ / l627rt(wnt,,+w H—= th( ) dt/dl‘n
0 R"=

o0 1 72
i 5(n—1)4a+1 jw' - — Tl
=Co(/ e2mw,,tntnz / emet o dt’ dt,
0 Rn—1

00 | n—1 22
; 5 (n—1D)~+a+1 1—[ i Tk
= CO(/ 627”wntntn2 / eznlwktk fn dtk dtna
0 k=1 R

in which

2
; e 2 : 2,22
/ e2mwktk—7dtk _ g—%(tk—Zzwkt,,tk—i-(twktn) +wkt”)dlk
R R

_ ﬂw%t,%

g ; 2
= e n / e_a(tk_lwkt") dtk‘
R

Lets =ty — iwgt, and > = tlsz, then
n

2 2.2 22 1 2.2
. Tt Twit, Twit 2 Twty 1
diwets — ok _ W% _x 2 _ % Iy ) _ T L
/e M dny = e e m'ds=e =) eTdnp=e " ty.
R R R \ 7T
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Therefore,

0 1 n—1 w22 |
j Ln—Dta+1 Tt L
Ka(z,zo)=Ca/ ePrivnin g2 l_[<e ot | din
0
k=1

0 : aynly,22
; Ln—Dta+1 _TZi=1 "k L1

=Cy / @2 iWnln 12 e m 2 dt,

0

00
— Ca/ entn(2iwn7w"w’)t’?+adtn'
0

In order to compute K,(z, z0), it suffices to show that R2iw, — w’ - w’) < 0,
where w = z — Zg for z,zo € Tg. In fact, since R(iw,) = —Sw,, KW' -w') =
Rw")? — (Jw")2, for wy, = 24 — Zo.ns

n—1

Riw, —w' - w) = 23w, — Y ((mwk)2 - (ka)2)
k=1
n—1 n—1
= =20 +Y0.) + DOk + 200> = Dk — x0.0)
k=1 k=1
n—1
< =20 + Yo + D% + Yo + 29300
k=1
n—1
< =20y + You) +2D>_OF + 350
k=1

n—1 n—1
=2 (<_yn + Zy,%) + <_y0,n + Zyg,k>> <0.
k=1 k=1

Now, we can continue to calculate K, (z, zo). Leta = wt,(w' - w' — 2iwy),

o
— Lo/ 07
Ko (z,20) = Cot/ e Tip (W' w 21wn)trylz+adtn
0

% 1
=Cy fo r(w w2y e a""da
B Col(n+a+1)

C(r(w - w = 2iwy))ntet]
= Co1(w' - w' — 2iw,) "%

= Co1(2 — Z)* = 2i(zn — Z0)) "1,

which shows that (12) holds. m]
Example 2 Denote by 2, the Siegel domain in C”, defined as

Q ={z=x+iy:y > |7
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where z = (7', zn), Zn = Xn + iy,. Let @ € R and denote by Ag(Qn) the space of
analytic functions F(z) in the Siegel domain €2,, satisfying

1

2
IF 120, = ( / PG+ i) (n — |z’|2>“dxdy) < oo, (15)

n

Then the reproducing kernel for the Hilbert space Ag (2,) is
Ka.0, (2, w) = Co.a(i(iy —za) =22 - @) "7, (16)
where C o = 2_2_“C1,a and C|  is defined by (13).

Proof Define atransform ® : Q,, — Tgas¢ = (¢/,¢,) = P(2) = (2%z’, n—iz 7).
Then we observe that the Siegel domain €2,, is biholomorphically equivalent to the tube
domain T over B = {v € R" : v, > [v/|?} via ®. The inverse of ®isz = d~1(¢) =
(2’%4“/ Jon + %{’ - ¢"), and the determinants of the holomorphic Jacobian matrices of
¢ = ®(2) and z = ®7(¢) are (DD)(z) = 227 and (DD~ 1)(¢) = 272D,
respectively. For ¢ = u +ive Tpand z = x +iy € Q,,

n—1
=P == > F + D)
k=1

N+ 208 — 2P
S R

1 1
v S =) = P

n—1

k= 2 oo 1 2.2
=, + EI;(MI‘ —v;) — EI;(uk + i)

UL

By Lemma 3, the reproducing kernel K, of the Hibert space Ag (2,) is

Ko.0,(z, w) = 2" Ko (@(2), D(w) = C1o2 2 (i (y — 2) — 22/ - @) "7,
(17)

where Cy , is defined by (13). O

Example 3 For a € R, denote by B, the unit ball {z : |z] < 1} and Ag(Bn) the space
of analytic functions F'(z) on B, satisfying

1

IF (/ PPl 2 ) <00 (18)
2 = _— .
Ag (By) B, |1 +Zn|2a y
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Then the reproducing kernel for the Hilbert space Ag (Bp) is
Ko,z w) = C30(1 4+ 0)*(1 +2,)* (1 — - 2) "7, 19)

with C3 4 = 2!73¢7C, , = 27%="=1C| ,, where C} 4 is defined by (13).

Proof Note that the Siegel domain €2, is an unbounded realization of By, i.e., 2, is
biholomorphically equivalent to B,,. The corresponding biholomorphic automorphism
(so-called Cayley transform) n = ®(z) : B, — 2, can be written in explicit form,

27 4id —Zn)>
= 7)) = y fOrZ (S B .
7 ( ) (Zn+1 1+Zn "
And its inverse form is
=o' = [—L— ) frpe @,
I_Znn 1—177;1

The determinants of the holomorphic Jacobian matrices of 7 = ®(z) and z = &~ ()
are

jont2 1 i
———— —and (DO () = ———
TETAEIA o 2(1 — byntl

(DP)(z) =
, respectively. Forn = u +iy € Q, and z = x + iy € B, we have

1— |z 1= 121> — |z, |?
1+ z,]? 14 z,]?

/

n.
- fI N

i 2
1+Z’7"
l_inn

i 2
1+

1+
‘ l—i?’],,

B Ltk i il VA

4

L+ — i —[n

1
=+ (v —m).

By Lemma 3, the reproducing kernel K, g, of the Hibert space Ag (By) is

_i2n+2 i2n+2
K, W) = ———— Ky 0, (P(2), P(w) —
o, B, (z, w) 1+ Zn)n+l Ot,Qn( (z) (w)) 1+ wn)n-i-l
= C30(1+ W) (1 +2,)*(1 =0 - )" 7! (20)
with C3 4 = 2!73¢7C, , = 27%="=1C| ,, where C} 4 is defined by (13). O
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Example 4 Suppose that A, is the Lorentz cone (or a forward light cone) defined by
{y = (', y0) : yu > |Y'I}. The quadratic function A(y) = y2 — |y'|? is call the
Lorentz form. Let ¢ € R and denote by Ag (T4, ) the space of analytic functions F(z)
in the tube domain T, over the forward cone A, such that

1
Az a,) = ([A /Rn |F(x + iy)lz(A(y))”’dxdy)2 < oo. 21

Then the reproducing kernel for the Hilbert space Ag (Ty,) is
Kon, (2, w) = Ca g P(z =), (22)
where Cy 4 is defined by

o, _¥T@+5+ Dl Qe+l @+5+ D
T T T @+ DI Qo+ @+ n + 1)

(23)

and P(z) = z% T z% satisfying P(z) C C\ (—oc, 0] for z € Ty,,.

n—1

Proof Fort = (t',t,) € R" and Let a = 47t = (d’, a,), then based on the form of
kernel in Theorem 1, we have

oo
1(1) =/e_4”y"(A(y))°‘dy =/ / e I (A(y)*dy'dyy.
B 0 [y 1<yn

We now choose an orthogonal matrix A such that Ae; = %, ATA = I and

{Aeq, ..., Ae,—1} is also an orthogonal basis in R"~1 where [ is the identity matrix
and AT is the transposed matrix of A. Hence a’ -y = Aej|d’| - y' = |a’|y;. Write

y =" yn) = (1,y", yn), then

0 i )
o= [ [ [ e o vy,
=yn Y 1Y'I<y/yi—=¥i

oo Yn
= 2e~m¥n cosh(|a'|y1) (v — yi — 1y 1H)*dy" dyidy,.
/0 /0 /Iy”<\/y3—y12 not !

where cosh(s) = %(es + ¢7%). Letting sinh(s) = %(es —eMHandy = d(x) =
(x,, sinh xy, x”, x; cosh x1), together with 0 < sinhx; < coshxj, we have 0 < y| <
vn. Performing variables substitution to the above formula, then

o0 o0
I(t) = / f / 2 cosh(|a’|x, sinh xj)e ™ €Ohx1 (x2 || 1) (Dd) (x)dx"dxidx,,
0 0 |x"|<xp
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in which (D ®)(x) is the determinant of the Jacobian matrix of ®(x) and (D®)(x) =
x,. Putt’ = %, then

[o] o]
() = / f / 2 cosh(|a’|x, sinh xj)e @ Coshxt (g7 2y 2atn=l gy g, i,
0o Jo ["]<1

o0 o0
=2C, / / cosh(|a’|x, sinh xy)e~n¥n Cosh ¥y 2ebn=l gy, g
0 0

where C, = flt”l<1 (1 — |t"1)*dt”. Now we compute the value of C, as

1 1
Co = / P / (1= p*)*doy—2(E)dp = Su— [ p" 73 (1 — p?)*dp,
0 [E1=1 0

n—1

where S,,_ = l%”é 5 is the surface area of the n — 2 dimensional sphere. Letting
s = p?,

Sps [ us | n% n—2

Ca:—/ s 2 (1—s)%"2ds = — B( ,Ot+1>
2 Jo r¢sh 2
7" TT(% - Dl +1)
G NCET

Therefore,

o0 o0
1) =2¢, f / cosh([a [x, sinh x; e~ rncoshan 2atn=l g o
0 0

00 poo .
=C, / / e—xn(an coshxj—|a |smhx1)x3a+n—ldxldxn_
0 —00

Lets = —x, (a, coshx; — |a’| sinh x;), then

oo 1 % s 2atn—1
I1(t)=C el s ™ ds | dx
® “ /_Oo (ay, cosh x| — |a’| sinh xp)2e+n (/0 > !

o0 1
= Col' Qu + n)/
—00

, 2a+n dxi.
ay cosh x| —|a’| sinh x| 2 r12yo+2
AL i LA (aj —la’|9)* "2

/a%_‘a/‘z
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2 2
i P WY (R R R —a - _
Since ( \/W) ( \/W) 1, put cosh 7y = and sinh 7y
la'|?
\/W’ then
1) = CoyT'Qa + n) o 1 dx
(a2 — |a/|2)“+% _oo (cosh 7y cosh x| — sinh g sinh x;)2* 1" !
CoT'Qa + n) o 1 4
= m X
(@2 — la'P)*+3 Jooo (coshiry — 1)+
CoT'Qa + n) o 1

= dt
(a’% _ |a/|2)u+% oo (cosh t)2a+n

Write J(t) = [°0 ——1,—dt and let (cosh1)? = s,

—00 (cosh t)2a+n

](I)ZZ/ PENE] 1dS=/ ﬁdé‘.
—00 25%T2 T2 (s — 1)2 —o0 s@tztl(1 — 1)z
N

Set%:k, then
g Lo n 1 INCESNEY
J(1) =/ k*t2tl (1 — k)" 2k~ 2dk = B (a + -, _) _ 2
0 22 T(o+ 24

As a result,

n—1
7T T4 — Dl (a+ DI Qe +n)(d) an
1(t) = A
(1) F("El)r‘(a—l— n;—l) (A(a)) 2
e — 1
_ (5 I)F(ocnj l)F(Zaj?)F(z)(A(t))_a_g
(47)2 T (5T (o + 254)

= Can (A1) ™72,

rrnTilF(%fl)r‘(ot+l)l"(2a+n)r(%)

(dm)2tn T (T (a+ 25
form of the reproducing kernel Ky A, (z, w), I(¢) should be finite, i.e., t,f > |2
Therefore,

where ax’n = . In order to obtain the representation

e2mitz 1 . "
K(z):/ dt = = f 2T (A1) T 2 dt.
T0) Con Jr
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Let K1(z) = ax,nK (z), then performing variables substitution as that in the compu-
tation of 7(¢),

Ki(iy) = / eV (A () 2 dr
Rn

o
/ / n
— / / e—Znyntn—Zm‘ -y (A(l))a+7dt/dtn
0 |t <ty
oo [ 2 21yt 42 2 2 att
=/ / / e Tt =2V (2 g 12— |24 d dty.
0 —ty 1" |<\J12—13
Letting t = ®(u) = (u, sinhuy, u”, u, coshuy), then (D®)(u) = u,. Therefore,
e ¢] o / . n
Ki(iy) = / / / e—2n)‘;,un coshuy—27 |y’ |u, sinhu (u% _ |u”|2)°‘+§undu”du1dun.
0 —oo J|u"|<uy
" u”
Puts” = %, then
Up

0o poo
S _ N si n _
K1(iy) — / / / e*ZUy,,un coshu1—2m|y’|uy, sinh ug (1 _ |s//‘2)a+2 urll+2ot+n+n 2ds”du1dun,
0 —o0 J|s"|<1

in which

1
/ (1= Is"P)*Fias” = / pr! f (1= p")** 2 doy2(@)dp
|s”|<1 0 1z]=1
l n
= SDHf p" (1 = p)*t2dp
0

1
23 a1l 1 SD,I, n—2 n
= SD,,,Z/0 sz (1—g)"t2 is Ids = > 23( 5 ,a+§+1)

by letting s = ,02. Here, Sp, , is the surface area of the n — 2 dimensional unit ball

S
and B (% a+ 5+ 1) is the beta function. Let ko, = Dg’z B (% a+5+ 1).

For u; € R, sinhu; = — sinh(—1u), we then have

00 oo
5 — 5 1 —
Ki(iy) = koz,n/ / e—(2ny,,u,, coshuy—2m|y’|uy smhul)uﬁa—ﬂn lduldu,,.
0 —00

Let 27 y,u, coshu — 2|y’ |u, sinhu; = s, then

00 1 o
KiGy) =k SR )d
165) /_oo (27 vy coshuy — 27 [y| sinh )2 421 </o ©° A

kT Qot +2n) [ 1 p
u
Qm)2t2 | (y,coshuy — |y/|sinhuy)2et2n !
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kounl Qo +2n) [ 1
T (2 )2et 2a+2n duy.
- (Yn coshul—ly’lsinhm) (y2 _ |y/|2)oz+n
N e "
Put —22— — cosh g and —2— — sinh , then
N yE=1y'1? 0 yr=1y? 0
. kon T Qo 4 2n) o 1
KI(IY) = 2 ’2 B 2 A R 2a+2, dul
Qm)2etan(yz — |y'|2)e*" J_ (coshtgcoshu; — sinh zq sinh up)?* 2"
koo n T (20 + 21) foo | .,
_ uj.
Q)220 (y2 — |y12)9F | oo (cosh(uy — 19))2*+2"

Setu; —tg = t, (cosh#)?> = s and % = s’, we have

) konT Qo + 2n) /OO 1
K = : dt
l(ly) (27‘[)20‘+2" (yrzl _ |y/|2)a+n o (COSh t)2a+2”
2k TQa+2n) /00 1 s
(27.[)2a+2n(yl% _ |y/|2)<x+n 0 Dgatn /_s — 1\/5
kanl' Qo + 2n) /OO 1 4
= S
Q)22 (yz — Y11 Jo o catnt1 []_ 1
ka,nF(2a+2n) ! natn+1 IN—A N2
- 2m)2et2n(y2 — |y'|2)etn /0 (T =) R ) s
kanT' Qo + 2n) 1
T @B =y Ry Flerms)
Therefore,
4T+ 2+ DI Qa4+ 2 e+ 2 + 1
K(iy) = 2T+ 3+ DI Wt 359 (agy-=r,

7T (e + DI Qo +n)T (e +n + 3)

On the other hand, if we let P(z) = z{ + -+ +z>_; — z2, then P(z) € C\ (—00, 0]
for z € Ty,,. Indeed,

PR =442, =2

= (01 +iy)P 4 A Gt Fiyn—1)? — 22
O =y + -+ (2 = yEi) — (62— ¥ 201y + -+ X1 Va1 — XnYn)

n—1 n—1 n—1
(zxz —x,z) N (y _ zyz) Y (zm -xnyn) |
k=1 k=1 k=1
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It follows from Y_#—| xyx = X, Yy that ZZ;} in_k = Xy, then x2 = (34Z] i_k)z'
Holder’s inequality implies that

n—1 n—1 y2 n—1
2 E : 2 § : k § 2
X, < X - < X -
k=1 k=1 Yn k=1

Hence, P(z) € C\ (—00,0] for z € Tg. Therefore, (P(z))"“"" is well defined
for z € Ty, and P(iy) = —y} —y; — - —y>_, +y2 = A(y) fory € A, and
P(iy)* = p(iy) is a weight function on 7. Then

4T (@ + 2+ DT Qo +2m) (@ + 2+ 1)

K (iy) =
) = T+ DrGa+nl@+n+ D)

P(iy)~*".

Forz = x 4+1iy € Tp,, K(x + iy) admits the Taylor expansion formula

n’

o0 o0 .
) K(kl+"'+kn)(ly) k X
Keokin=D ) =t
k1=0  ky=0 ’ n

then

4°T(@+ 2+ DI Qo+ 2@+ 2 + 1)
7T+ DI Qe +m)(a+n+ 3)

K(z) = Pz~ "

As aresult, for z, w € Ty,
Ko p, (2, w) = K(z —w) = C40P(z —w) """
where Cy 4 is defined by (23). This proves (22). O
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