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SPARSE APPROXIMATION TO THE DIRAC-δ DISTRIBUTION

WEI QU, TAO QIAN*, AND GUAN-TIE DENG

Abstract. The Dirac-δ distribution may be realized through sequences of convlutions,
the latter being also regarded as approximation to the identity. The present study
proposes the so called pre-orthogonal adaptive Fourier decomposition (POAFD) method
to realize fast approximation to the identity. The type of sparse representation method
has potential applications in signal and image analysis, as well as in system identification.
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1. Introduction

The most common examples of approximation to the identity include those of the convo-
lution integral type by using the Poisson kernel, the heat kernel, and some more general
convolution kernels satisfying certain normalization conditions ([28]). In the series form
we have Poisson summation etc. From these classical examples one can observe that a
signal may be well approximated by a finite linear combination of the convolution kernel
of the context. In this study we develop an approximation theory of such type. The
approximation can be associated with an axiomatic or text-book formulation, that we call
H-HK formulation ([15, 29, 30]), of Hilbert space with a linear operator defined through
an inner product kernel. We give a quick revision on this formulation. Let H be a general
Hilbert space with inner product 〈·, ·〉H. Let E, the set of parameters, be a set of numbers,
or a set of vectors, whose components are real or complex numbers. E is assumed to be an
open set with respect to the usual topology of Rn or Cn. Let every p ∈ E be associated
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with an element hp ∈ H that gives rise to a linear operator L : H → CE, the latter being
the set of all functions from E to C.

L(f)(p) = 〈f, hp〉H.(1.1)

We also write F (p) = Lf(p) and denote by R(L) the function set of the images F ∈ CE

of f ∈ H under the mapping L. Let N(L) be the null space of L defined as

N(L) = {f ∈ H | L(f) = 0}.
It is easy to show that N(L) is a closed set in H. There thus exists the orthogonal
complement of N(L) in H denoted N(L)⊥, and

H = N(L)⊕N(L)⊥.

Accordingly, each f ∈ H can be uniquely written as

f = f− + f+,

where f− ∈ N(L), f+ ∈ N(L)⊥. In the set-mapping notation, there holds L(N(L)⊥) =
R(L). Denote the orthogonal projection operator from H to N(L)⊥ by P : P (f) = f+.
We introduce a new Hilbert space structure, HK , on the function set R(L), as follows:
The induced norm of F = L(f) in the range set R(L) is defined as

‖F‖HK
, ‖Pf‖H.

The norm definition induces an inner product in R(L) denoted 〈·, ·〉HK
. The new Hilbert

spaceHK , coinciding withR(L) in the set-theoretic sense, is isometric withN(L)⊥ through
the mapping L. In such notation the function K(p, q) defined

K(q, p) = 〈hq, hp〉H
is, in fact, the reproducing kernel of HK , and hence, the latter is a reproducing kernel
Hilbert space. For a proof of this, see [15] or [29]. While the H-HK formulation makes
it convenient to study linear operator theory in Hilbert spaces in general this paper will
concentrate in the particular case where the class of functions {hp}p∈E is a dense subspace
of H. In the case the null space N(L) is trivial, containing only the zero function. In fact,

〈f, hp〉 = 0 ∀p ∈ E

if and only if
L(f)(p) = 0 ∀p ∈ E,

and thus N(L) = {0} and N(L)⊥ = H = span{hp}p∈E. In the case it would be very
beneficial and instructive that although H is not a RKHS but HK is, the latter being
isometric with the former under the mapping L. The density of {hp}p∈E in H amounts
that H is a Hilbert space with a dictionary {hp/‖hp‖}p∈E. In such sense any separable
Hilbert space, therefore has a dictionary, is equivalent with a RKHS. The latter enjoys
useful properties that offer more technical methods in dealing with separable Hilbert
spaces. The best example of H-HK structure is H = L2(∂D), the L2 space on the unit
circle, and E = D, hp(e

it) = 1
1−peit

, p ∈ D. In the case N(L)⊥ = H2
+(∂D) = R(L), N(L) =

H2
−(∂D), being respectively the boundary Hardy spaces inside and outside the unit circle.

It is as if the H-HK formulation is specially made for this and the other classical Hardy
spaces situation, but actually not, for the structure is possessed by all linear operator in
Hilbert spaces induced by a kernel with a parameter, and in particular includes all linear
differential and integral operators. Paper [15] initiates the sparse solutions methodology
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to basic problems of operators defined through inner product kernels within the H-HK

formulation.
The goal of this article is to introduce a particular sparse representation method in gen-
eral Hilbert spaces possessing a dictionary with the so called boundary vanishing condition

(BVC). The sparse representation is called pre-orthogonal adaptive Fourier decomposi-
tion, or POAFD in brief (see §2). POAFD is a generalization of the so called adaptive
Fourier decomposition, or AFD, originally developed for the classical complex Hardy H2

spaces. The AFD for one complex variable right fits into the delicate frame work of the
Beurling-Lax Theorem involving Blaschke products ([24]). Some engineering applications
of AFD may be found, for instance, in [11, 12, 13, 8, 33]. Some generalizations of AFD
to higher dimensions are successful [23, 1, 2, 19]. Because of lack of Blaschke product or
Takenaka-Malmquist system in context, generalizations of AFD to domains other than
the classical types, or to multi-dimensions or analytic function spaces other than the
Hardy type, however, are difficult or impossible. POAFD, with general applicability, re-
duces to AFD in the classical Hardy space case, being of the ultimate optimality among
various types of greedy algorithms (see [31] and [6]): The POAFD maximal selection is
the greediest among all the one-step-optimal selections. POAFD is, in particular, sup-
ported by repeating selection of the parameters, involving, when necessary, Gram-Schmidt
orthogonalization of directional derivatives of the dictionary elements.
If in anH-HK formulation the function set {hp/‖hp‖H}p∈E is a dictionary of the underlying
space H, then there exist two equivalent approaches to construct the POAFD type sparse
representation in H. One is a directly application of POAFD in H just by using the
dictionary properties. The other is to perform the sparse representation in HK , which
has the advantage as a RKHS, in which we have the convenience to normalize the kernels
and to prove BVC. After getting a sparse series expansion in HK we convert back the
obtained expansion to H through the isometric mapping L−1. The purpose of this study is
to develop a general sparse representation methodology for the Dirac-δ distribution with
the understanding and help from the point of view of H-HK formulation. In particular,
the RKHS approach brings in delicate analysis and helps in getting better understanding
to the subject.
In §2 we give a detailed description of the POAFD method. In §3 we develop the convolu-
tion type sparse representation of the identity in the underlying space Rd using POAFD,
including the Poisson and heat kernels and the general convolution kernel satisfying non-
degenerate and the usual decaying rate at the infinity. In §4 we develop, as a bounded E
case, the spherical Poisson sparse approximation to the identity. Having given detailed
description of the POAFD method in general Hilbert spaces with a dictionary satisfying
BVC in §2, what we do in §3 and §4, as the main body of the paper, are verifications
of its applicability to the most common and yet important models, i.e., the Poisson and
the heat kernels, convolution kernels in general, as well as the spherical Poisson kernel
case. The verifications are proceeded under the frame work of the H-HK formulation. §5
contains two illustrative examples on, respectively, the spherical Poisson POAFD on the
sphere and heat kernel POAFD in Rd.

2. POAFD in Hilbert Space with a Dictionary

The basic idea and the related concepts, including POAFD maximal selection principle,
boundary vanishing condition and multiple kernels, first appeared in [19]. The formulation
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of the method, including terminology in use, has been revised and improved, and unified
through a sequence of related studies. At the beginning POAFD is designed for sparse
representation of images defined on rectangles, being topologically identical with the 2-
torus. Later this method is extended to spaces of analytic functions other than Hardy
spaces ([9, 10, 20, 21, 5]). We now introduce some related concepts in Hilbert spaces with
a dictionary.
In the H-HK formulation HK is a RKHS with the kernel function K(q, p) = Kq(p) =
〈hq, hp〉H. Since 〈F,Kq〉 = 0 for all q ∈ E implies F = 0, we know that the function set
{Kq}q∈E is dense in HK .

Definition 2.1. A subset E of a general Hilbert space H is said to be a dictionary if

‖E‖ = 1 for E ∈ E , and span{E : E ∈ E} = H.

With the notation of the last section the normalized reproducing kernels Eq = Kq/‖Kq‖, q ∈
E, constitute a dictionary ofHK .On theH space side in any case the functions hp/‖hp‖, p ∈
E, constitute a dictionary of N(L)⊥; and, if {hp}p∈E is dense in H, then the functions
hp/‖hp‖, q ∈ E, constitute a dictionary of H.
The POAFD method is available for all Hilbert spaces that has a dictionary, regardless
whether the dictionary is from a reproducing kernel or not. In below we sometimes borrow
the notation Kq, q ∈ E, not assuming their reproducing property but only assuming
density of {Kq}q∈E. The normalized form Eq = Kq/‖Kq‖ is used only when involving the
so called boundary vanishing condition (BVC, see below).
Before we introduce the maximal selection principle of POAFD we need to introduce two
concepts: boundary vanishing condition (BVC) and multiple reproducing kernel. With
BVC we need to make some convention when E is an unbounded set in its underlying
space, say Rd+1. This will be the case when we discuss the Poisson and the heat kernels
in the following sections, in which E is the upper-half space of Rd+1. In the case we add
one more point, ∞, to the whole space Rd+1. We make ∞ to be a new boundary point of
E by modifying the topology of Rd+1 through introducing an open neighborhood system
of ∞ : A set O is said to be an open neighborhood of ∞ if and only if the complement of
O, Oc is a compact set of Rd+1. That is, we use the compactification of Rd+1 with respect
to the added point ∞. We denote by ∂∗E the set ∂E∪{∞}, which is the set of boundary
points of E in the new topological space Rd+1 ∪ {∞}, where ∂E is the set of all finite
boundary points of E. As a consequence, an open neighbourhood of ∂∗E is the union of
an open neighbourhood of the set ∂E and an open neighborhood of ∞. Since under the
one-point-compactification topology the space Rd+1 ∪ {∞} is compact, its closed subset
E ∪ ∂∗E is also compact.
If E is a bounded open set in Rd+1, such as when we discuss spherical Poisson kernel
approximation, then we do not have to do anything with the original topology. In such
case we are with the convention ∂∗E = ∂E. Boundary vanishing condition (BVC) in both
the bounded and unbounded E cases are stated as

Definition 2.2. Let H be a Hilbert space with a dictionary E = {Eq}q∈E. If for any f ∈ H
and any qk → ∂∗E, in the one-point-compactification topology if necessary, there holds

lim
k→∞

|〈f, Eqk〉| = 0,

then we say that H together with E satisfy BVC.
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If H is a Hilbert space with a dictionary Eq, q ∈ E, satisfying BVC, then a compact
argument will lead to the conclusion for any f ∈ H that there exists a selection of q̃ ∈ E
such that

q̃ = arg sup{|〈f, Eq〉|2 : q ∈ E}.
We note that the Hilbert space H in the definition can be, with regards to the H-HK

model, two cases: H = H or H = HK . With the case H = H we refer to the dictio-
nary {hp/‖hp‖}p∈E, while in the second case H = HK we refer to the collection of the
normalized reproducing kernels Eq = Kq/‖Kq‖, q ∈ E.
Many RKHSs, including the classical Hardy spaces, Bergman and weighted Bergman
spaces, satisfy BVC. On the other hand, there exist RKHSs whose normalized reproducing
kernels constituting a dictionary that does not satisfy BVC ([QD1]).
Next we define multiple kernels. Let (q1, · · · , qn) be an n-tuple of parameters in E. The
set E may be a region in the complex plane, or one in Rd, or even in Cd. In the Rd case
let

K̃qn(p) =

[

(

∂

∂q~θ

)j(n)−1

Kq

]

q=qn

(p),(2.2)

where j(n) is the number of repeating times of the parameter qn in the n-tuple (q1, · · · , qn),
in the case ∂

∂q~θ
= ~θ·∇, being the directional derivative in the direction ~θ = (cos θ1, · · · , cos θd).

If E ⊂ Cd, the concept is similarly defined. For the case E ⊂ C the directional derivative is
simply replaced by eiθ ∂

∂z
.With such notation, if there is no repeating, that is qk 6= qn for all

k < n, then j(n) = 1, and K̃qn = Kqn . The kernel K̃qn(p) is called the multiple kernel asso-
ciated with the n-tuple (q1, · · · , qn). Associated with an infinite sequence (q1, · · · , qn, · · · ),
there is, in such way, an infinite sequence of multiple kernels K̃qn, n = 1, · · · . In this paper
we tacitly assume that all the involved directional derivatives of the dictionary elements
of any order belong to the underlying Hilbert space H. The derivatives of one or higher
orders occur during the optimization process through maximal selections of the parameter
([17], or its close English version [5], also [23, 19, 20]). We also call a finite or infinite
sequence of multiple kernels as a consecutive multiple kernel sequence, for if K̃qn involves
the j(n)−1 order derivative, then all the proceeding k-derivative kernels for k < j(n)−1,

at the same point qn, should also have appeared before K̃qn in the sequence. Together
with BVC, the multiple kernels enable realization of the maximal selection principle in
the following pre-orthogonal optimal process. Suppose we already have an (n − 1)-tuple
(q1, · · · , qn−1), allowing repetitions, and accordingly have an associated (n − 1)-tuple of

consecutive multiple kernels {K̃q1, · · · , K̃qn−1}. By performing the Gram-Schmidt (G-S)
orthonormalization process we have an (n− 1)-orthonormal tuple {B1, · · · , Bn−1} that is

equivalent, in the linear span sense, with {K̃q1, · · · , K̃qn−1}. The decisive role of BVC and
multiple kernels is as follows: For any g ∈ H, one can find a qn ∈ E such that

qn = arg sup{|〈g, Bq
n〉| : q ∈ E},(2.3)

where Bq
n is such that {B1, · · · , Bn−1, B

q
n} is the G-S orthonormalization of {K̃q1, · · · , K̃qn−1, K̃q},

and Bq
n is precisely given by

Bq
n =

K̃q −
∑n−1

k=1〈K̃q, Bk〉Bk
√

‖K̃q‖2 −
∑n−1

k=1 |〈K̃q, Bk〉|2
.(2.4)
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In the POAFD algorithm we will use this for g = gn, being the n-th standard remainder

gn = f −
n−1
∑

k=1

〈f, Bk〉Bk.

In such way we consecutively extract out the maximal energy portion from the standard
remainders. At the step-by-step optimal selection category POAFD is, indeed, the greed-
iest optimization strategy, that is guaranteed by BVC and the concept multiple kernels.
The evolution of the idea and the exposition of POAFD can be found in the literature
[24, 23, 19, 17, 20, 5].

Remark 2.3. If H does not have a dictionary satisfying BVC then even with multiple
kernels one cannot perform POAFD. However, from the definition of supreme, for any
ρ ∈ (0, 1) and any mutually distinguished q1, · · · , qn−1, there exists qn different from the
preceding qk, k = 1, · · · , n− 1, such that

|〈g, Bqn
n 〉| ≥ ρ sup{〈g, Bq

n〉| : q ∈ E, q 6= q1, · · · , qn−1}.(2.5)

The algorithm for consecutively finding qn, n = 1, · · · , n, · · · , to satisfy (2.5) is called
Weak Pre-orthogonal adaptive Fourier decomposition (Weak-POAFD). Practically we of-
ten adopt the Weak-POAFD maximal principle, as, in the weak manner, we can at ev-
ery step select a parameter different from what have been chosen in the previous steps.
Theoretically, however, we are more interested in the case where existence of the exact
maximizers qn to (2.3) can be guaranteed. In the classical Hardy space case POAFD is
equivalent with AFD using TM systems. Indeed, it can be proved that TM systems are
not only orthonormal by themselves, but also are G-S orthonormalizations of the multiple
Szegö kernels of the context.

By using POAFD one can prove that the n-th standard remainder of a POAFD is domi-
nated by the magnitude M/

√
n if the expanded function f belongs to the space

HM = {f | f ∈ H, ∃ qk, dk such that f =
∞
∑

k=1

dkEqk with
∞
∑

k=1

|dk| ≤M}

(see [19, 20]).
We remark that the above convergence rate estimation is promising as there is no smooth-
ness condition imposed to the expanded function. With concrete examples usually much
more rapid convergence are observed. As having in mind, the POAFD method is to
be promoted with the H-HK formulation in numerical solutions of integral and differ-
ential equations (see [15]). In the present paper we only explore its impact with spars
representation of the Dirac-δ distribution ([28]).

3. Sparse Approximation of the Convolution Type

3.1. Sparse Poisson Kernel Approximation. It is well known that Poisson integrals
approximate the boundary data function. In this section we will develop sparse approxi-
mation by linear combinations of parameterized Poisson kernels.
The Poisson kernel context fits well with the H-HK formulation. We let H = L2(Rd). Set

E = {p ∈ Rd+1
+ | p = t+ x, t > 0, x = (x1, · · ·xd)}.
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For p = t+ x, let

hp(y) = Pt+x(y) , cd
t

|p− y|d+1
= cd

t

(t2 + |x− y|2) d+1
2

, d ≥ 1,

where cd = Γ[(d+1)/2]

π(d+1)/2 . We note that hp(y) is the evaluation at the point x − y of the L1-

t-dilation of the function φ(x) = cd
1

(1+|x|2)(d+1)/2 , where cd is the normalization constant

under which the integral of φ over Rd is identical with 1. In below when we discuss
the Poisson kernel on the unit sphere and the heat kernel in Rd we use cd for the same
normalization purpose, whose values then vary from context to context.
The operator L and its images Lf, f ∈ L2(Rd), are given by

u(t+ x) = Lf(t+ x) = 〈f, ht+x〉L2(Rd).

In the H-HK formulation the range R(L) consists of the Poisson integrals of the boundary
data f ∈ L2(Rd). Now we show that {hp}p∈E is dense. It suffices to show that if f ∈
L2(Rd) and 〈f, hp〉 = 0 for all p, then f = 0. It is a result of harmonic analysis that, in
both the L2(Rd)-norm and pointwise sense,

lim
t→0+

u(t+ x) = lim
t→0+

〈f, hp〉 = f(x) = 0, a.e.

In the H-HK formulation we have N(L) = {0} and N(L)⊥ = L2(Rd). On the other hand
R(L) = HK is, under the mapping L, isometric with N(L)⊥ = L2(Rd). In particular,
L(hq) = Kq. Density of Kq in HK implies density of hp in H = L2(Rd).
Harmonic analysis knowledge has given a characterization of the space HK . In fact, HK

coincides, together with its norm, with the harmonic Hardy space on the upper-half space
Rd+1

+ :

h2(Rd+1
+ ) = {u : Rd+1

+ → R : △
R

d+1
+
u = 0, ‖u‖2

h2(Rd+1
+ )

= sup
t>0

∫

Rd

|u(t+ x)|2dx <∞}.

By denoting f(x) = u(0 + x), we have

‖u‖2HK

H-HK= ‖f‖2L2(Rd)

NBL
= ‖u(0 + ·)‖2L2(Rd)

h2-Theory
= sup

t>0

∫

Rd

|u(t+ x)|2dx.

The reproducing kernel of the space HK is computed as, for p = t + x, q = t1 + x1,

K(q, p) = 〈Pt1+x1
, Pt+x〉L2(Rd)

=

∫

Rd

Pt1+x1
(ξ)Pt+x(ξ)dξ

= c2d

∫

Rd

t1

(t21 + |x1 − ξ|2) d+1
2

t

(t2 + |x− ξ|2) d+1
2

dξ

= P(t1+t)+x1
(x)(3.6)

This last equality relation is due to the uniqueness of the solution of the Dirichelet prob-
lem:

△u = 0; and u(0 + x) = Pt1+x1
(x).

Indeed, on one hand, the first three expressions of the above equality chain all mean
that the left-hand-side is the Poisson integral of the boundary data Pt1+x1

(·), and thus is
harmonic in t + x. On the other hand, the function P(t1+t)+x1

(x), being harmonic in the
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variable t + x, has the boundary limit function Pt1+x1
(·). Therefore, these two harmonic

functions have to be the same.
The above deduction also concludes the relation

〈Pt1+x1
, Pt+x〉L2(Rd) = P(t1+t)+(x1−x)(0),

regarded as the semigroup property of the Poisson kernel. The reproducing property of
Kq is an immediate consequence of the H-HK formulation: For u ∈ HK , q = t1 + x1,

〈u,Kq〉HK
= 〈u(0 + ·), Pt1+x1

(·)〉L2(Rd) = u(t1 + x1).

For a general Kq, q = t + x, t > 0, its norm is computed, from the semi-group property
(3.6),

‖Kq‖2HK
= 〈Kq, Kq〉HK

= K(q, q) = P2t(0) =
cd

(2t)d
.

The norm-one normalization of Kq is thus

Eq =
Kq

‖Kq‖
=

(

(2t)d

cd

)1/2

Kq.

Next we verify that BVC holds in this Poisson context, i.e.,

lim
q→∂E

|〈u,Eq〉HK
| = 0,(3.7)

where u is any function in HK = h2(Rd+1
+ ).We first have, by using the reproducing kernel

property, for q = t + x,

〈u,Eq〉HK
= c′dt

d/2u(t+ x).(3.8)

Due to density of the parameterized Poisson kernels in HK , the verification of BVC is
reduced to verifying (3.7) for each parameterized reproducing kernel u(p) = Kt1+x1

. From
(3.8) we have

〈Kt1+x1
, Eq〉HK

= cdt
d/2P(t1+t)+x1

(x) = c′dt
d/2 t+ t1

[(t+ t1)2 + |x− x1|2](d+1)/2
.(3.9)

The limiting process q → ∂∗Rd+1
+ , based on the one-point-compactification topology,

amounts to, alternatively, t → 0 or t2 + x2 → ∞. For any fixed x1 and t1 > 0, regardless
the positions of x, we have

td/2
t+ t1

[(t + t1)2 + |x− x1|2](d+1)/2
≤ td/2

1

(t+ t1)d
→ 0,

as t→ 0 (d ≥ 1). So, uniformly in x, as t→ 0, the quantity in (3.9) tends to zero.

Let, for the fixed t1 and x1, R =
√

t2 + |x|2 > 4|x1| + 2t1 + 1. We divide the argument
into the two cases: (1) 0 < t < R/2; and (2) t ≥ R/2. In case (1), |x| > R/2 and hence
(|x− x1|)2 ≥ (|x|/4)2. Hence, by ignoring the constant,

(t)d/2
t+ t1

[(t+ t1)2 + |x− x1|2](d+1)/2
≤ (R/2)d/2

R/2 + R/2

[(t+ t1)2 + |x/4|)2](d+1)/2
≤ cd
Rd/2

→ 0,

as R → ∞ (d ≥ 1).
In case (2), t ≥ R/2 implies

td/2
t+ t1

[(t+ t1)2 + |x− x1|2](d+1)/2
≤ td/2

1

(t + t1)n
≤ c′′′d
Rd/2

→ 0,
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as R → ∞ (d ≥ 1). Thus, uniformly in t, when x tends to infinity the quantity in (3.9)
tends to zero.
BVC is thus proved. The maximizer of (2.3) is attainable in E. Hence POAFD can be
proceeded.

3.2. Sparse Heat (Gaussian) Kernel Approximation. It is known that the integral
transformation

Lf(t+ x) =
1

(4πt)d/2

∫

Rd

f(y)e−
|x−y|

4t dy, n ≥ 1,(3.10)

gives rise to the unique solution u(t+x) of the initial value problem for the heat equation

∂u

∂t
= △u, u(0 + x) = f(x), f ∈ L2(Rd),

where △ is the Laplacian for x1, · · · , xd. This well fits into the H-HK formulation with
H = L2(Rd), q = t+ x ∈ E = Rd+1

+ , and

hq(y) =
1

(4πt)d/2
e−

|x−y|

4t .(3.11)

The classical heat kernel analysis asserts that {hp}p∈Rd+1
+

is dense in L2(Rd). The space

N(L) is hence the trivial subspace consisting of only the zero function, while the space
N(L)⊥ coincides with L2(Rd). In the H-HK formulation the space HK is as the range set
R(L) equipped with the induced norm from their L2-boundary data. Associated with the
heat kernel, the space HK may be characterized, like the defining conditions for h2(Rd+1

+ )
in the Poisson kernel case, by using a quantization condition plus a condition such as a
solution of an linear differential equation. Here we do not explore the details for they
are not used for the main purpose of the study. The space L2(Rd) coincides with the
non-tangential boundary limits (NBL) of the Gauss-Weierstrass integral u = Lf :

lim
t→0

u(t+ x) = f(x), f ∈ L2(Rd),

in both the L2(Rd)- and the a.e. pointwise sense. For this reason we denote f(x) =
u(0 + x), and, as in the Poisson integral case, have the relations

‖u‖2HK

H-HK= ‖f‖2L2(Rd)

NBL
= ‖u(0 + ·)‖2L2(Rd).

For the heat kernel case the space HK has a similar characterization as for the Poisson
kernel case using the harmonic h2 space. For our approximation purpose we only deduce
the reproducing kernel. With q = t + x and p = s+ y :

K(q, p) = 〈hq, hp〉L2(Rd)

=
1

(4π)d(ts)d/2

∫

Rd

e
−|x−ξ|2

4t e
−|y−ξ|2

4s dξ.(3.12)

We claim that the last integral representing K(q, p) is equal to

1

(4π)d(ts)d/2

∫

Rd

e
−|x−ξ|2

4t e
−|y−ξ|2

4s dξ =
1

(4π(t+ s))d/2
e

−|x−y|2

4(t+s) ,(3.13)

and therefore, according to (3.11),

K(q, p) = h(t+s)+x(y) = h(t+s)+y(x) = h(t+s)+(x−y)(0).(3.14)
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The proof of the identity (3.13) uses the same idea as that in the Poisson kernel case, but
involves the heat initial value problem

∂u

∂t
= △u, lim

s→0+
u(s+ y) = h(t+0)+x(y).

The relation

〈ht+x, hs+y〉L2(Rd) = P(t+s)+(x−y)(0),

is regarded as the semigroup property of the heat kernel.
To proceed with heat kernel sparse representation using POAFD we first verify BVC. The
norm of the kernel Kq is computed through

‖Kq‖2HK
= 〈Kq, Kq〉HK

= h2t+0(0) =
1

(8πt)d/2
.

Hence, the normalized reproducing kernel Kq for q = t+ x, p = s+ y becomes

Eq(p) = (8πt)d/4h(t+s)+x(y) =
(8πt)d/4

(4π(t+ s))d/2
e−

|x−y|2

4(t+s) .(3.15)

We are to show BVC, i.e.,

lim
R

d+1
+ ∋q→∂∗R

d+1
+

|〈u,Eq〉HK
| = 0,(3.16)

where u is any function in HK . Due to the density of the heat kernel in L2(Rd) ([28]) the
verification of BVC is reduced to only for an arbitrary but fixed reproducing kernel. As
in the Poisson kernel case we use the one-point-compactification topology. We need to
show, for any but fixed p = s+ y, under the process q = t+ x→ ∂∗Rd+1

+ we have

lim
q→∂∗R

d+1
+

|〈Kp, Eq〉HK
| = 0.

From the previous computation we have

〈Kp, Eq〉HK
= Eq(p) = (8πt)d/4h(t+s)+x(y).(3.17)

Write, for a constant C, the right hand side of (3.15) as

C

(

t

t + s

)d/4 (
1

t+ s

)d/4

e
− |x−y|2

4(t+s) .(3.18)

From (3.18) for the fixed p = s + y there exists a constant C, depending only on the
dimension d, such that for all x uniformly,

(8πt)d/4h(t+s)+x(y) ≤ C

(

t

s + t

)d/4
1

sd/4
→ 0, as t→ 0.

Next we analyze the process R =
√

t2 + |x|2 → ∞. Let R ≥ R0 = 4|y|+2s+1.We divide
the argument into two cases: (1) 0 < t < R/2; and (2) t ≥ R/2. In case (1), |x| > R/2,
and hence (|x− y|)2 ≥ (R/4)2. In the case we have t+ s < R. Thus, from (3.18),

(8πt)d/4h(t+s)+x(y) ≤ C
1

sd/4
e−

(R/4)2

R → 0, as R → ∞.
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In case (2) we have t ≥ R/2. Through a brutal estimation based on (3.18) we have

(8πt)d/4h(t+s)+x(y) ≤ C

(

1

t+ s

)d/4

≤ C
1

Rd/4
→ 0, as R → ∞.

Thus BVC is proved and POAFD can be performed.

3.3. Sparse Approximation for the General Convolution Case. Let φ ∈ L1(Rd)∩
L2(Rd) with

∫

Rd

φ(x)dx = 1.

We further assume the following conventional condition:

ψ(x) = sup
|y|≥|x|

|φ(y)| ≤ C

(1 + |x|2) d+δ
2

, δ > 0.(3.19)

Under these conditions we have the approximation to identity property in the L2-sense
([28]): For φt(x) =

1
td
φ(x

t
),

lim
t→0

f ∗ φt = f, in L2, and pointwise as well lim
t→0

f ∗ φt(x) = f(x), a.e.(3.20)

Let H = Rd,E = Rd+1
+ . Write, as before, q = t + x, p = s + y, t, s > 0, and x, y ∈ Rd. In

this general context hp(y) has the form

hp(y) =
1

td
φ(
x− y

t
).

In the H-HK formulation the HK space is

HK = {u : Rd+1
+ → R : u(p) = 〈f, hp〉L2(Rd)}.

In harmonic analysis characterizations of the space HK may involve a quantization condi-
tion such as L2-boundedness of the non-tangential maximal function together with some
none quantization but characterising property of the convolution kernel φ itself. The
details, however, are not needed in sparse representation study of this paper. The repro-
ducing kernel is computed

Kq(p) = K(q, p) = 〈hq, hp〉L2(Rd)

=
1

(ts)d

∫

L2(Rd)

φ(
x− ξ

t
)φ(

y − ξ

s
)dξ.(3.21)

For u = Lf the reproducing kernel property is automatic:

〈u, hp〉HK
= 〈f(·), hp(·)〉L2(Rd) = u(p).

The Poisson and heat kernels are particular cases of the above convolution form formu-
lation, except that the heat kernel uses the replacement

√
t for t. In the Poisson and the

heat kernel cases the dilations φt(x) and φ√
t(x), respectively, satisfy certain partial differ-

ential equations, and the convolutions against the boundary data give rise to the unique
solution of the corresponding boundary value problem. In such cases one can prove cer-
tain semi-group property and have the formula Kq(p) = ht+s+x(y). In the general cases
the kernel Kq given by the integral (3.21) does not have semi-group property, not have
a closed form either. In such case by using the integral formula (3.21) and the decaying
property (3.19) one is able to prove BVC for δ ≥ 1.
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In fact, as before, a density argument reduces the verification for a parameterized repro-
ducing kernel. In such case one can enlarge the last integral in (3.21) to get a Poisson
kernel domination, and then get the limit as for the Poisson kernel case. Precisely, for a
fixed p = s+ y and q = t + x→ ∂Rd+1

+ , we may show

|〈Kp, Eq〉HK
| ≤ Ctd/2P(s+t)+y(x) → 0.

For the cases 0 < δ < 1 we do not know the answer.
We finally note that POAFD can be applied to either of the two contexts: the H context
or the HK context. On the HK context we have reproducing kernel properties to use,
that is very convenient especially when the kernel has an explicit formula.

4. Poisson Kernel Sparse Approximation on Spheres

Next we set H = L2(Sd−1), the Hilbert space of the square integrable functions on the
(d − 1)-dimensional unit sphere centered at the origin, and E = Bd, the d-dimensional
open unit ball centered at the origin, where d ≥ 2. For a point q ∈ Bd, the function hq in
the context is the Poisson kernel of the ball: with q = rt, r = |q|, t, s ∈ Sd−1,

hq(s) = Pq(s) = cd
1− r2

|q − s|d .(4.22)

The operator L and its images Lf, f ∈ L2(Sd−1), are given by

u(q) = Lf(q) = 〈f, hq〉L2(Sd−1),

where the inner product of L2(Sd−1) is

〈f, g〉L2(Sd−1) =

∫

Sd−1

f(s)g(s)dσ(s),

where dσ(s) is the normalized Lebesgue measure on the sphere. The range R(L) is the
harmonic Hardy space on the unit ball Bd :

h2(Bd) = {u : Bd → R : △u = 0, sup
0≤r<1

∫

Sd−1

|u(rs)|2dσ(s) <∞}.

Due to the density of {hq}q∈Bd in L2(Sd−1) the space N(L) is trivial consisting of only the
zero function, while the space N(L)⊥ is identical with L2(Sd−1). The space HK = h2(Bd),
being the range set R(L) equipped with the norm induced from their non-tangential
boundary limits: For u = Lf,

‖u‖HK
, ‖f‖L2(Sd−1).

It is well known knowledge that

lim
r→1

u(rt) = f(t)

in both the L2- and in the a.e. pointwise sense. For this reason we write f(t) = u(t)
under the correspondence u = Lf. We also have the relations

‖u‖2HK

H-HK= ‖f‖2L2(Sd−1)

NBL
= ‖u(·)‖2L2(Sd−1)

h2-Theory
= sup

0≤r<1

∫

Sd−1

|u(rt)|2dσ(t).
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The reproducing kernel of the space HK is computed as, for q = rt, p = ρs, t, s ∈ Sd−1,

K(q, p) = 〈hq, hp〉L2(Sd−1)

=

∫

Sd−1

hq(t
′)hp(t

′)dσ(t′)

=

∫

Sd−1

1− r2

|q − t′|d
1− ρ2

|p− t′|ddσ(t
′)

= Pρrt(s)(4.23)

= Prρs(t).

The last equality is due to the relation |rρt−s|2 = |rρs−t|2. Now we prove the second last
equality of the above equality chain. On one hand, the last integral is harmonic in p, and
when ρ→ 1, the integral tends to Pq(s) = Prs(t). On the other hand, Pρrt(s) = Prρs(t) is
also a harmonic function in p, verified through the polar coordinate form of the Laplacian:

△p =
∂2

∂ρ2
+
d− 1

ρ

∂

∂ρ
+

1

ρ2
△Sd−1 ,

where △Sd−1 is the Beltrami-spherical Laplacian on the sphere. In fact,

△p(Prρs(t)) = r2
(

∂2

∂(rρ)2
+
d− 1

(rρ)

∂

∂(rρ)
+

1

(rρ)2
△Sd−1

)

P(rρ)s(t) = 0.

This harmonic function for ρ → 1 has the same boundary limit function Prs(t). Due to
the uniqueness of the solution of the harmonic boundary value problem the second last
equality holds.
The above is verification of the semi-group property of the Poisson kernel on the sphere.
It provides computational conveniences. With the H-HK formulation the reproducing
property of Kq is automatic: For u ∈ HK = h2(Sd−1), q = rt,

〈u,Kq〉HK
= 〈u(·), Prt(·)〉L2(Sd−1) = u(rt) = u(q).

To perform POAFD in HK = h2(Bd) we need to prove the corresponding BVC. For a
general Kw, w = ρs, s ∈ Sd−1, 0 < ρ < 1, its norm is computed

‖Kw‖2HK
= 〈Kw, Kw〉HK

= K(w,w) = Pρ2s(s) =
cd(1 + ρ2)

(1− ρ2)d−1
.

The normalization of Kq is, as denoted,

Ew =
Kw

‖Kw‖
=

(1− ρ2)(d−1)/2

√

cd(1 + ρ2)
Kw.

We are to verify the BVC, that is, for u being any function in HK ,

lim
Bd∋w→Sd−1

|〈u,Ew〉HK
| = 0.(4.24)

We first recall that for w = ρs, s ∈ Sd−1,

〈u,Ew〉HK
=

(1− ρ2)(d−1)/2

√

cd(1 + ρ2)
u(w).(4.25)

Due to density of parameterized spherical Poisson kernels, verification of the BVC for a
general function u ∈ HK reduces to verifying the BVC for any but fixed parameterized
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spherical Poisson kernel Kq, q = rt, t ∈ Sd−1. Thanks to the reproducing kernel expression
(4.25) we have,

Ew(q) = 〈Kq, Ew〉HK
=

(1− ρ2)(d−1)/2

√

cd(1 + ρ2)
Prρt(s).(4.26)

When ρ → 1−, the quantities Prρt(s) are bounded uniformly in t, s, and the bounds
depend on the fixed r < 1. Since the factor in front tends to zero for d ≥ 2, the whole
quantity tends to zero uniformly in t, s. BVC is thus proved and POAFD performable.

Remark 4.1. The POAFD approximation obtained above amounts that for any positive
integer n and for function u ∈ HM

K there exists an N -combination of parameterized
Poisson kernels that satisfies

‖u−
N
∑

k=1

ckPqk‖h2(Bd) ≤
M√
N
.

Or, in terms of the boundary data in L2(Sd−1) it is

‖f(·)−
N
∑

k=1

ckPqk(·)‖L2(Sd−1) ≤
M√
N
.

5. Experiments

Two experiments on sparse spherical Poisson kernel and heat kernel approximations are
included. Below, the dot lines represent original functions, and the solid lines represent
the approximation functions.

Example 5.1. (Sparse Spherical Poisson Approximation) Let f(q) be, as a toy ex-
ample, the linear combination of three normalized spherical Poisson kernels on the 2-
sphere (d=3 with the formula (4.26)) Ep1, Ep2 and Ep3, reads f(q) =

∑3
j=1 cjEpj (q),

where (c1, c2, c3) = (0.8463, 1.4105, 0.0470), pj = (ρj ; sj), (ρ1, ρ2, ρ3) = (0.4, 0.6, 0.8), sj =

(sinφj cos θj , sinφj sin θj , cosφj), φj ∈ [0, π], θj ∈ [0, 2π),
(φ1, φ2, φ3) = π/5, π/2,= 4π/5), (θ1, θ2, θ3) = (π/5, 4π/5, 7π/5). Precisely,

f(q) =

3
∑

j=1

cj
1− ρ2j
√

1 + ρ2j

1− (rρj)
2

|rρjsj − t|3 ,(5.27)

where q = (r; t), t = (sin φ cos θ, sinφ sin θ, cosφ), φ ∈ [0, π], θ ∈ [0, 2π). Being only
based on the boundary data extracted from (5.27), by doing POAFD with iterations
2,4,6,8 we obtain four POAFD expansions, with relative errors, respectively, 0.4310,
0.0237, 0.0022 and 0.3×10−5. The consecutive 8 parameters qj = (hj;wj) with wj =

(sinαj cos βj, sinα sin βj , cosαj), αj ∈ [0, π], βj ∈ [0, 2π), j = 1, · · · , 8, are
(h1, h2, h3, h4, h5, h6, h7, h8) = (0.4041, 0.5714, 0.6999, 0.4518, 0.5533, 0.8207, 0.4738, 0.4042),
(α1, α2, α3, α4, α5, α6, α7, α8) = (0.4518, 0.7200, 1.6200, 0.6200, 1.5200, 1.6201, 1.4201, 1.6202),
and (β1, β2, β3, β4, β5, β6, β7, β8) = (2.4200, 0.3200, 2.5200, 0.5200, 2.5201, 4.4200, 2.5202, 0.6200).
For showing the approximation efficiency of the recovering functions, we set r = 1, θ =
3.02, and the graphs are functions of φ varying in between 0 and π.
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Figure 1. Sparse Poisson kernel approximation on the unit Sphere

Example 5.2. (Sparse Heat Kernel Approximation) Let the signal to be expanded be
given as

f(q) =

4
∑

j=1

cj

√

8πtj

4π(t+ tj)
e
−

|x−y
j
|2

4(t+tj) ,

where q = (t, x), t > 0, x = (x1, x2) ∈ R2, pj = (sj, yj), j = 1, 2, 3, 4, (s1, s2, s3, s4) =

(3, 1, 5, 7), y1 = (−1, 1), y2 = (1,−5), y3 = (2, 6), y4 = (−5, 2), (c1, c2, c3, c4) = (0.05, 0.5, 0.01, 1).
The POAFD iteration numbers are 3,5,7 while the relative errors are 0.0190, 0.0087,
0.0002, respectively. By doing the POAFD the corresponding recovery parameters are
q1 = (10.0000;−4.1000, 1.0000), q2 = (1.0000; 1.200,−5.3000), q3 = (7.6000;−5.1000, 2.5000), q4 =
(4.4000;−1.6000, 1.5000), q5 = (5.5000; 2.5000, 7.5000), q6 = (3.8000;−1.0000, 1.4000), q7 =
(5.0000; 2.0000, 6.5000). The graphs of the recovering functions are for t = 0, x2 = −10.
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Figure 2. Heat kernel approximation on the upper half space
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