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Abstract This paper concerns the reconstruction of a function f in the Hardy space of the

unit disc D by using a sample value f(a) and certain n-intensity measurements |〈f, Ea1···an
〉|,

where a1, · · · , an ∈ D, and Ea1···an
is the n-th term of the Gram-Schmidt orthogonalization

of the Szegö kernels ka1
, · · · , kan

, or their multiple forms. Three schemes are presented.

The first two schemes each directly obtain all the function values f(z). In the first one we

use Nevanlinna’s inner and outer function factorization which merely requires the 1-intensity

measurements equivalent to know the modulus |f(z)|. In the second scheme we do not use

deep complex analysis, but require some 2- and 3-intensity measurements. The third scheme,

as an application of AFD, gives sparse representation of f(z) converging quickly in the energy

sense, depending on consecutively selected maximal n-intensity measurements |〈f, Ea1···an
〉|.
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1 Introduction

Practical problems in physics, especially optics, and in engineering, have motivated re-

search into phase retrieval. With phase retrieval, one requires that an analytic function f be

reconstructed from some sampled amplitude values of the Fourier transform of f. Given the

fact that rational orthogonal systems, or, in other words, Takenaka-Malmquist (TM) systems

{Ba1···an
}∞n=1, a1, · · · , an, · · · ∈ D, are generalizations of the Fourier system, it is natural to ask

about the reconstruction of an analytic function f from n-intensity measurements |〈f, Ba1···an
〉|,

where a1, · · · , an ∈ D, and Ba1···an
is the n-th entry of the corresponding TM system, the latter

being, apart from certain unimodular constants, coincident with the Gram-Schmidt orthogo-

nalization Ea1···an
of the multiple Szegö kernels ka1

, · · · , kan
(see §3). The functions Ba1···an

are called measurement vectors, with the explicit expression

Ba1···an
(z) =

√

1 − |an|2

1 − anz

n−1
∏

k=1

z − al

1 − alz
= ean

(z)φa1···an−1
(z), (1.1)

where

Ba(z) = ea(z) =

√

1 − |a|2

1 − az
, a ∈ D (1.2)

is the normalized Szegö kernel at a, and

ka(z) =
1

1 − az
, a ∈ D (1.3)

is the Szegö or reproducing kernel of the Hardy space, and

φa1···an−1
(z) =

n−1
∏

k=1

z − al

1 − alz
(1.4)

is the canonical Blaschke product generated by a1, · · · , an−1. When all ak’s are identical to

zero, {Ba1···an
}∞n=1 reduces to a half of the Fourier system {zn−1}∞n=1. To make this convenient

in practice, although it is not strictly necessary, we establish the restriction that the ak’s are

all distinct. In [3], phase retrieval for functions in the Hardy space of the unit disc based on the

intensity measurements |〈f, Ba1···an
〉| were studied. In the present paper, we further develop

the analytic phase retrieval theme in relation to TM system, in which the question of whether

or not {Ba1···an
}∞n=1 forms a basis of the Hardy space is not important, and thus not an issue.

In general, if f is an analytic function in a connected open set Ω, then the condition

|f(z)| = 1 for z ∈ Ω implies that f(z) ≡ c in Ω for a unimodular constant c. This is easily

concluded from taking the derivative ∂
∂z

:

0 =
∂

∂z
[f(z)f(z)] =

∂f(z)

∂z
f(z), or

∂f(z)

∂z
= 0.

As a consequence, if both f and g are analytic in Ω and |f(z)| = |g(z)|, then f(z) = cg(z), where

c is a constant satisfying |c| = 1. This observation shows that if we know the function value

f(a) for some a ∈ Ω and the amplitudes |f(z)| for all z ∈ Ω, then the analytic function f(z)

is uniquely determined. Without a sampled non-zero function value one can only determine an

analytic function up to a unimodular multiplicative constant.

In the present paper we work in the unit disc context. For C+, the upper half complex

plane, the theory and the algorithms are similar. Among the several equivalent definitions of
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the Hardy space H2(D), in this paper we adopt the one that is expressed in terms of the Fourier

coefficients:

H2(D) =

{

f : D → C | f(z) =

∞
∑

k=0

ckzk,

∞
∑

k=0

|ck|
2 < ∞

}

.

Since

〈f, ez〉 =
√

1 − |z|2f(z), (1.5)

the 1-intensity measurements are equivalent to the |f(z)| measurements. Given the above

observation on unique determination, the basic question is to compute the function values f(z)

based on a sample value f(a) 6= 0 and the 1-intensity measurements |〈f, ez〉|. The solution of the

phase retrieval problem in such a format can be achieved by using the Nevanlinna factorization

Theorem involving inner and outer functions. This, as Scheme I, will be presented in Section

2.

Scheme II of analytic phase retrieval, as the main part of the study, is presented in Section

3. The proposed algorithm does not involve deep analytical knowledge but only employs ele-

mentary computation based on the Gram-Schmidt orthogonalizations of certain Szegö kernels.

Starting from a sample value f(a) 6= 0, a ∈ D, the crucial technical problem is to decide f(z)

at each z ∈ D over two solutions of the triangle equation cosα = A so that the determined

f(z) values are coherent and define an analytic function. In the computation, the intensity

measurements |〈f, Baz〉| are involved. To determine f(z) we need to employ another complex

number b ∈ D, this being different from a and z. Correspondingly, the numerical values of the

intensity measurements |〈f, Bab〉| and |〈f, Bazb〉| are involved. This algorithm is named the

Forward-Backward Algorithm (FB Algorithm).

The Scheme III, as given in Section 4, is based on the selections of a1, a2, · · · , where a1 = a,

and is under the maximal selection principle; that is, when a1, · · · , an−1 are fixed, select

an = argmax{|〈f, Ba1···an−1b〉| | b ∈ D}, n > 1.

In Scheme III we determine each function value f(an), n = 2, 3, · · · , or, equivalently, 〈f, Ba1···an
〉,

by using the Forward-Backward Algorithm. In such a way the adaptive Fourier decomposition

can be used, and we have a sparse representation of f(z), or a series fast converging to f(z) in

energy:

f(z) =

∞
∑

n=1

〈f, Ba1···an
〉Ba1···an

(z).

2 Scheme I: Phase Retrieval Based on 1-Intensity Measurements and

Nevanlinna’s Factorization Theorem

The scheme is based on the following theorem:

Theorem 2.1 ([2]) Let f(z) ∈ H2(D), f 6≡ 0. Then it holds that

f(z) = CBf (z)Of (z)Sf (z), |C| = 1, (2.1)

where C is a unimodular constant, Bf (z) is a Blaschke product made of the zeros of f, Of (z)

is an outer function of f, and Sf (z) is a singular inner function of f. Except for the choice of

the constant C, |C| = 1, the factorization (2.1) is unique.
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The outer, Blaschke and singular inner factors of a function f ∈ H2(D) are given, respec-

tively, by

Of (z) = C exp

(

1

2π

∫ 2π

0

eit + z

eit − z
log

∣

∣f
(

eit
)
∣

∣ dt

)

, |C| = 1, (2.2)

where f
(

eit
)

is the non-tangential boundary limit of f(z),

Bf (z) = zm
∏

|αk|6=0

−ᾱk

|αk|

z − αk

1 − ᾱkz
, m = 1, 2, · · · (2.3)

and

Sf (z) = C exp

(

−

∫ 2π

0

eit + z

eit − z
dµ(t)

)

, |C| = 1, (2.4)

where dµ is a finite Borel measure singular to the Lebesgue measure. We note that if f is

analytically extendable to an open neighbourhood of the closed unit disc, then f is continuously

extendable to the boundary ∂D, and there will only be a trial singular inner function Sf = C,

and inside D the function Bf will only have finitely many zero points.

Let z ∈ D be given, and let |z| < 1. Define a Hardy space function fr(z
′) = f(rz′), |z| <

r < 1, |z′| < 1. We require that on ∂Dr the function f does not have zeros. The function fr is

analytically extended to D 1
r

containing D. We have f(z) = fr(z/r) = fr(z
′), z′ = z/r. We assert

the phase of fr(z
′). Since we know |[fr(z

′)]∂D|, we can first compute Ofr
. Then, by solving the

optimization problem

inf{|fr(z
′)| | z′ ∈ D},

we get all the zeros of fr, constituting a finite subset of D, denoted by Zr. We can thus construct

the Blaschke product Bfr
. Since the singular inner function is trivial, we have, for |z| < r,

f(z) = fr(z/r) = COfr
(z/r)Bfr

(z/r),

where C is an unimodular constant. A sample value f(a) 6= 0 helps us to assert the involved

unimodular constant as C = C0 :

C0 =
f(a)

Ofr
(a/r)Bfr

(a/r)
.

Then the function values f(z) for all |z| < r are given by the formula

f(z) = C0 exp

(

1

2π

∫ 2π

0

eit + z
r

eit − z
r

log
∣

∣f
(

reit
)
∣

∣ dt

)

∏

αk∈Zr

−ᾱk

|αk|

z
r
− αk

1 − ᾱk
z
r

, (2.5)

where, for αk = 0, we conventionally let −ᾱk

|αk|
= 1.

3 Scheme II: the Forward-Backward Algorithm Based on Some k-

Intensity Measurements, k = 1, 2, 3

As in the last section, we assume that a ∈ D and f(a)(6= 0) are known. We assert for

any z ∈ D the function value of f(z). We use the orthogonal projection operators Pa1···an
and

Qa1···an
= I − Pa1···an

, where

Pa1···an
(f) =

n
∑

k=1

〈f, Ea1···ak
〉Ea1···ak

,
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where (Ea1
, Ea1a2

, · · · , Ea1···ak
) is the Gram-Schmidt orthogonalization of (ka1

, · · · , kak
), 1 ≤

k ≤ n. We now prove the following result:

Lemma 3.1 Let a1, · · · , am be distinct complex numbers in D. Then

(i)

Ea1···am
(z) =

Qa1···am−1
(kam

)(z)

‖Qa1···am−1
(kam

)‖
=

kam
(z) −

m−1
∑

l=1

〈kam
, Ea1···al

〉Ea1···al
(z)

‖kam
−

m−1
∑

l=1

〈kam
, Ea1···al

〉Ea1···al
‖

= eicφa1···am−1
(z)eam

(z)

= eicBa1···am
(z), (3.1)

where

eic =
φa1···am−1

(am)

|φa1···am−1
(am)|

,

where eam
, φa1···am−1

and Ba1···am
are as defined in (1.2), (1.4) and (1.3);

(ii)

〈f, Ba1···am−1am
〉 =

Qa1···am−1
(f)(am)

φa1···am−1
(am)

√

1 − |am|2; (3.2)

(iii)

Qa1···am−1
(f)(z)

φa1···am−1
(z)

=

(

Qam−1

φam−1

◦ · · · ◦
Qa1

φa1

)

(f)(z). (3.3)

The lemma may be extended to the cases where a1, · · · , am may have multiplicities. In the

extended cases the concept of a multiple reproducing kernel is involved ([1]).

Proof First, we show (i). In (3.1), the first equality is from the definition of Qa1···am−1
,

as the complementary projection of Pa1···am−1
. For the second equality are refer to [5]. The last

equality is by the definition of Ba1···am
. Now we show (ii). Since Qa1···am−1

is a projection, we

have Q2
a1···am−1

= Qa1···am−1
, and Qa1···am−1

is self-adjoint. Using the result (i), we have

〈f, Ba1···am−1am
〉 = 〈f, e−ic

Q2
a1···am−1

(eam
)

‖Qa1···am−1
(eam

)‖
〉

= 〈Qa1···am−1
(f), e−ic Qa1···am−1

(eam
)

‖Qa1···am−1
(eam

)‖
〉

= 〈Qa1···am−1
(f), eam

φa1···am−1
〉

=
Qa1···am−1

(f)(am)

φa1···am−1
(am)

√

1 − |am|2,

where we used the unimodular property of Blaschke products on the unit circle. Next we show

(iii). Denote by gk the k-th reduced remainder, as used in [6]; that is,

gk(z) − 〈gk, eak
〉eak

(z)

φak
(z)

= gk+1(z), k ≥ 1, g1 = f,

which is to say that
(

Qak

φak

)

(gk) = gk+1.
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Iterating this process, we obtain
(

Qam−1

φam−1

◦ · · · ◦
Qa1

φa1

)

(f)(z) = gm(z) =

(

Qam−1···a1

φam−1···a1

)

(f)(z),

as desired. The proof is complete. �

Next we develop the algorithm. In the process, the 2-intensity measurement |〈f, Baz〉| is

used. From the above lemma, it holds, for z 6= a, that

〈f, Baz〉 =
Qaf(z)

φa(z)

√

1 − |z|2

=
f(z)− 〈f, Ba〉Ba(z)

φa(z)

√

1 − |z|2. (3.4)

Through this relation, f(z) and 〈f, Baz〉 are mutually determined. If 〈f, Baz〉 = 0, then f(z)

is trivially determined. The above equation can only be solved through taking the complex

modulus to both sides of the equation. The equation in the complex modulus is reduced to the

form

A = |f(z) − v|, (3.5)

which gives rise to two solutions for the value of f(z), where A is a positive constant, v is a

known non-zero complex number, and the modulus |f(z)| is known. This is a standard method

for determination of the position of a triangle with one of its three end points being at the

origin, and the lengths of the three sides all being known, and the direction of one side, which is

v, being known. In the non-trivial cases, the two solution triangles are mirror symmetric with

respect to the direction of v, where the two corresponding values for f(z) are denoted as f{+}(z)

and f{−}(z). In particular, f{+}(z)+ f{−}(z) is a complex number of the same phase direction

as v. What is crucial is to determine, at each z, the right value of f(z) between f{+}(z) and

f{−}(z). In the sequel, we will call v the axis of the two solution triangles (3.5). Let 〈f, Baz〉{+}

correspond to f{+}(z), let 〈f, Baz〉{−} correspond to f{−}(z), which are precisely given by

〈f, Baz〉
{±} =

f{±}(z) − 〈f, Ba〉Ba(z)

φa(z)

√

1 − |z|2

,

(

Qaf(z)

φa(z)

){±}
√

1 − |z|2. (3.6)

Since f(z) is uniquely determined at each z, we denote the right value of f at z by f∗(z). This

notation tells that f∗(z) equals one and only one of f{+}(z) and f{−}(z), and the corresponding

value of 〈f, Baz〉 is denoted by 〈f, Baz〉∗, between 〈f, Baz〉{+} and 〈f, Baz〉{−}.

To determine f∗(z), we employ an auxiliary complex number b ∈ D such that b 6= z and

b 6= a, and the two involved intensity measurements |〈f, Bab〉| and |〈f, Bazb〉| are non-zero.

Replacing z by b in (3.4), we have

〈f, Bab〉 =
f(b) − 〈f, Ba〉Ba(b)

φa(b)

√

1 − |b|2. (3.7)

The related equation in the modulus, again, has two solutions for f(b), denoted as f [±](b),

which are associated with, respectively, 〈f, Bab〉
[±]. We note that the true value f∗(b) of f(b),

being identical either with f [+](b) or f [−](b), can also be computed from the relation

|〈f, Bazb〉| =

∣

∣

∣

∣

f(b) − 〈f, Ba〉Ba(b) − 〈f, Baz〉{±}Baz(b)

φaz(b)

∣

∣

∣

∣

√

1 − |b|2. (3.8)
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The equation (3.8) in the complex modulus has four solutions for f(b), separated into two

groups: one group corresponds to 〈f, Baz〉{+}, denoted by f{+}+(b) and f{+}−(b); the other

group corresponds to 〈f, Baz〉{−}, denoted by f{−}+(b) and f{−}−(b). The ground truth value

f∗(b) must be among f [+](b) and f [−](b), and also among f{+}+(b), f{+}−(b), f{−}+(b) and

f{−}−(b). Set

Sb , {f [+](b), f [−](b)} and Tb , {f{+}+(b), f{+}−(b), f{−}+(b), f{−}−(b)}.

The above analysis asserts that f∗(b) ∈ Sb∩Tb. If Sb∩Tb contains exactly one element, then this

element must be f∗(b). Such a value of f∗(b) is either identical with one of f{+}+(b) or f{+}−(b),

or identical with one of f{−}+(b) or f{−}−(b). This implies that f∗(b) is from 〈f, Baz〉
{+} or

〈f, Baz〉{−}, indicating that the true value f∗(z) is either equal to f{+}(z) or equal to f{−}(z).

With the tested examples this always happens to be the case where f{+}+(b), f{+}−(b), f{−}+(b)

and f{−}−(b) are four distinct numbers, and Sb ∩ Tb contains exactly one point. Theoretically,

we are unable to exclude the cases where Sb ∩ Tb contains two points. In this case we can sort

out the one that gives the right value f∗(z). A valid algorithm can be established based on the

following lemma:

Lemma 3.2 Let a, z ∈ D, a 6= z, 〈f, Ba〉 6= 0 and 〈f, Bz〉 6= 0. Then for all b in a sufficiently

small neighbourhood of z such that b 6= a, b 6= z, 〈f, Bab〉 6= 0, 〈f, Bazb〉 6= 0, and where b makes

the opening angle between f [±](b) different from that between f{±}(z), there hold

(1) f{+}+(b), f{+}−(b), f{−}+(b) and f{−}−(b) are four distinct numbers;

(2) Sb∩Tb contains one or two complex numbers. In both cases the right value of f(z) may

be determined.

Proof We first show (1). From the assertions (ii) and (iii) of Lemma 3.1, we have

〈f, Bazb〉 =
Qaz(b)

φaz(b)

√

1 − |b|2

=
Qz

φz

◦

(

Qaf

φa

)

(b)
√

1 − |b|2

=

[(

Qaf

φa

)

(b) −

(

Qaf

φa

)

(z)
1 − |z|2

1 − zb

]

√

1 − |b|2

φz(b)
.

In view of (3.8), to solve the equation for the value f(b), we take the complex modulus, and

thus introduce the uncertainty. We have, tentatively,

|〈f, Bazb〉| =

∣

∣

∣

∣

∣

[

(

Qaf

φa

){±}±

(b) −

(

Qaf

φa

){±}

(z)
1 − |z|2

1 − zb

]

√

1 − |b|2

φz(b)

∣

∣

∣

∣

∣

,

where, in the notation defined by (3.6),
(

Qaf

φa

){±}

(z) =
〈f, Baz〉{±}

√

1 − |z|2
correspond to f{±}(z), respectively. (3.9)

The uncertainty is precisely given by the following formula: for x representing + or −,

〈f, Bazb〉
{x}± =

[

(

Qaf

φa

){x}±

(b) −

(

Qaf

φa

){x}

(z)
1 − |z|2

1 − zb

]

√

1 − |b|2

φz(b)
, (3.10)

where
(

Qaf

φa

){x}±

(b) =
f{x}±(b) − 〈f, Ba〉Ba(b)

φa(b)
. (3.11)
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For each of the cases x = + and −, there are two distinct solutions f{x}±(b), given by (3.11).

Notice that for the fixed z, the difference between the two phases of the two complex numbers
(

Qaf
φa

){x}

(z)1−|z|2

1−zb
is the same as that between the two phases of

(

Qaf
φa

){x}

(z), for x = + and

x = −. The latter, however, is equal to a non-zero number depending only on z (for the fixed a

throughout). On the other hand, when x is fixed to be x = + or x = −, the difference between

the two phases of
(

Qaf
φa

){x}±

(b) and
(

Qaf
φa

){x}

(z)1−|z|2

1−zb
is an infinitesimal along with b → z.

This suggests that the four solutions for f(b) are distinct. The proof of (1) is complete.

Now we prove assertion (2). Since f∗(b) ∈ Sb ∩ Tb, we have that Sb ∩ Tb 6= ∅. If Sb ∩ Tb

contains only the point f∗(z), then f∗(b) = f{x}y(b) for a pair x and y, where each of x and

y is fixed and can be + or −. In such circumstance, if x = +, then f{+}(z) = f∗(z); and

if x = −, then f{−}(z) = f∗(z), and thus f(z) = f∗(z) is determined. In the sequel this

is regarded as the easy case. Next we assume that Sb ∩ Tb contains two different complex

numbers and accordingly derive a contradiction. In the case, Sb ∩ Tb = {f [+](b), f [−](b)}.

Let both f [+](b) and f [−](b) be from f{+}(z). Then on one hand, the relation (3.7) implies

that the solutions f [+](b) and f [−](b) are with the axis 〈f, Ba〉Ba(b). On the other hand, the

solutions f{+}+(b) and f{+}−(b), which are respectively coincident with f [+](b) and f [−](b),

through the relation (3.8), possess the axis 〈f, Ba〉Ba(b) − 〈f, Baz〉{±}Baz(b). The two axes,

therefore, are of the same direction of which one depends on only b and the other depends on

b and z. For the prescribed z, a generally chosen auxiliary b rules out this coincidence from

happening. The same reasoning also rules out the case where both f [+](b) and f [−](b) are from

f{−}(z). So, if Sb ∩Tb = {f [+](b), f [−](b)}, then it must be the case that f [+](b) = f{u}x(b) and

f [−](b) = f{−u}y(b), where each of x, y and u can be + or −, but fixed. In the case one can show

that the two triples of complex numbers, (0, f{u}(z) − 〈f, Ba〉Ba(z), f{u}x(b) − 〈f, Ba〉Ba(b), )

and (0, f{−u}(z)−〈f, Ba〉Ba(z), f{−u}y(b)−〈f, Ba〉Ba(b)), representing two congruent triangles,

are of opposite orientations. The two triples of points are respectively the images of a, z, b under

the mappings

φa(w)

(

Qa

φa

){u}x

(f)(w) and φa(w)

(

Qa

φa

){−u}y

(f)(w).

Holomorphic mappings, however, necessarily keep the local orientation. As a consequence, if b

is close enough to z and a, z, b are positively oriented, the holomorphic images of a, z, b should

also be positively oriented. Thus, only the triple with positive orientation corresponds to the

holomorphic mapping and gives rise to the right value f(z).

To conclude the proof we need to show that (0, f{u}(z)−〈f, Ba〉Ba(z), f{u}x(b)−〈f, Ba〉Ba(b), )

and (0, f{−u}(z) − 〈f, Ba〉Ba(z), f{−u}y(b) − 〈f, Ba〉Ba(b)) are of opposite orientations when b

is sufficiently close to z. There hold the relations

[

(

Qaf

φa

){u}x

(b) −

(

Qaf

φa

){u}

(z)
1 − |z|2

1 − zb

]

√

1 − |b|2

φz(b)
= 〈f, Bazb〉

{u}x (3.12)

and
[

(

Qaf

φa

){−u}y

(b) −

(

Qaf

φa

){−u}

(z)
1 − |z|2

1 − zb

]

√

1 − |b|2

φz(b)
= 〈f, Bazb〉

{−u}y. (3.13)
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These can be changed into
[

f{u}x(b) − 〈f, Ba〉Ba(b)

φa(b)
−

f{u}(z) − 〈f, Ba〉Ba(z)

φa(z)

1 − |z|2

1 − zb

]

= 〈f, Bazb〉
{u}x φz(b)

√

1 − |b|2
, (3.14)

and
[

f{−u}y(b) − 〈f, Ba〉Ba(b)

φa(b)
−

f{−u}(z) − 〈f, Ba〉Ba(z)

φa(z)

1 − |z|2

1 − zb

]

= 〈f, Bazb〉
{−u}y φz(b)

√

1 − |b|2
. (3.15)

Owing to the relations
(

Qaf

φa

){u}x or {−u}y

(b) =
〈f, Bab〉{±u}

√

1 − |b|2
,

(

Qaf

φa

){±u}

(z) =
〈f, Baz〉{±u}

√

1 − |z|2
,

|〈f, Bab〉
{u}| = |〈f, Bab〉

{−u}|, |〈f, Baz〉
{u}| = |〈f, Baz〉

{−u}|, |〈f, Bazb〉
{u}x| = |〈f, Bazb〉

{−u}y|,

we have that (3.14) and (3.15) are two solutions of the type of triangle problem described in

(3.5). The two solution triangles represent two congruent triangles with different axes each

having an end point adherent at the origin. We claim that the two triangles are of opposite

orientations. This is based on the following geometric knowledge: if two congruent triangles

have the same orientation, then the angles formed by the corresponding sides are all identical.

But what we have here,however, is not the case: since f [+](b) = f{u}x(b), f [−](b) = f{−u}y(b),

for the fixed a, the phase difference between

f [+](b) − 〈f, Ba〉Ba(b)

φa(b)
and

f [−](b) − 〈f, Ba〉Ba(b)

φa(b)

depends only on b, while the phase difference between the two complex numbers

f{u}(z) − 〈f, Ba〉Ba(z)

φa(z)

1 − |z|2

1 − zb
and

f{−u}(z) − 〈f, Ba〉Ba(z)

φa(z)

1 − |z|2

1 − zb

depends only on z. They therefore cannot be equal. This implies that the two congruent

triangles are of different orientations. When b is very close to z, the phases of φa(z) and φa(b)

are very close, and the phase of 1−|z|2

1−zb
is very close to zero. Therefore the orientation of

(0,
f{u}(z) − 〈f, Ba〉Ba(z)

φa(z)

1 − |z|2

1 − zb
,

f{u}x(b) − 〈f, Ba〉Ba(b)

φa(b)
)

is the same as that of

(0, f{u}(z) − 〈f, Ba〉Ba(z), f{u}x(b) − 〈f, Ba〉Ba(b)).

The latter triple is the image of the triple (a, z, b) under the mapping

φa(w)

(

Qa

φa

){u}x

(f)(w). (3.16)

Similarly, the orientation of

(0,
f{−u}(z) − 〈f, Ba〉Ba(z)

φa(z)

1 − |z|2

1 − zb
,

f{−u}y(b) − 〈f, Ba〉Ba(b)

φa(b)
)
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is the same as that of

(0, f{−u}(z) − 〈f, Ba〉Ba(z), f{−u}y(b) − 〈f, Ba〉Ba(b)).

The latter triple is the image of the triple (a, z, b) under the mapping

φa(w)

(

Qa

φa

){−u}y

(f)(w). (3.17)

From the above analysis, when b is close to z, only one of the functions (3.16) and (3.17) keeps

the local orientation, and can thus be a holomorphic function. We therefore can determine

f∗(z) accordingly. The proof of (2) is complete. �

Remark 3.3 In practice for any b 6= a, b 6= z, 〈f, Bab〉 6= 0, 〈f, Bazb〉 6= 0 we observe that

f{+}+(b), f{+}−(b), f{−}+(b) and f{−}−(b) are always four distinct numbers, and that S ∩ T

contain only one point, corresponding to the easy case. In summary, the forward-backward

algorithm involves that for any z ∈ D one selects b ∈ D, b 6= z, and b satisfies all the non-

orthogonality conditions set in Lemma (3.2), and that it is close to z, if necessary. This allows

one to use the points in the set S∩T to go backwards to determine the true value f(z) between

f{+}(z) and f{−}(z).

4 Scheme III: Phase Retrieval based on Sparse Representation: The

AFD Type Methods

We are able to give an approximation representation formula of the phase retrieval prob-

lem. We will employ the so called adaptive Fourier decomposition (AFD, or Core AFD) or

alternatively the n-best rational approximation method (Cyclic AFD). Based on a sequence of

intensity measurements the AFD type methods practically give rise to approximation formulas

to the solution function. We first illustrate the Core AFD method.

We still assume that we know a non-zero sample value f(a) at some point a ∈ D. The AFD

method involves a sequence of maximal selections of the parameters ak, k = 1, 2, · · · to define

the related Takenaka-Malmquist system. Let

a1 = argmax{|〈f, Bz〉| | z ∈ D}.

Based on the value f(a) Scheme II (i.e., the FB algorithm) can be used to assert the function

value f(a1). Then the simple relation (1.5) can be used to assert the value 〈f, Ba1
〉. Next, we

select

a2 = argmax{|〈f, Ba1z〉| | z ∈ D}.

Theoretically there will be no problem if we encounter a2 = a1. To simplify the discussion we

can select a2 6= a1, for instance, to satisfy

|〈f, Ba1a2
〉| ≥

1

2
max{|〈f, Ba1z〉| | z ∈ D}.

By using Scheme II the function value f(a2) is computable. In formula (3.7) replacing a by

a1 and z by a2, we obtain the value 〈f, Ba1a2
〉. After inductively obtaining a1, · · · , an, and the

related 〈f, Ba1···ak
〉, k = 1, · · · , n, we next find

an+1 = argmax{|〈f, Ba1···anz〉| | z ∈ D}.
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If it happens that an+1 coincides with some ak, k = 1, · · · , n, then we can select an+1 not equal

to any a1, · · · , an, such that

|〈f, Ba1···anan+1
〉| ≥

1

2
max{|〈f, Ba1···anz〉| | z ∈ D}.

We have

〈f, Ba1···anan+1
〉 =

Qa1···an
f(an+1)

φa1···an
(an+1)

√

1 − |an+1|2

=

f(an+1) −
n
∑

k=1

〈f, Ba1···ak
〉Ba1···ak

(an+1)

φa1···an
(an+1)

√

1 − |an+1|2. (4.1)

The FB algorithm established in Section 3 for Scheme II can be used to compute the function

value f(an+1) and thus the value of 〈f, Ba1···anan+1
〉 too. In such way we obtain all the values

〈f, Ba1···am
〉. Then the Weak AFD theory guarantees that

f∗(z) =

∞
∑

n=1

〈f, Ba1···an
〉Ba1···an

(z)

converges in fast speed. Usually, for numerical purposes one needs to compute the series up

to a term n. In both the infinite or finite approximation cases the error is estimated by the

L2-norm of f∗ − f over the boundary.

Cyclic AFD offers more accurate results. Let n be fixed. When we have found, consec-

utively, a1, · · · , an, and accordingly formed an n-term AFD series to approximate f(z), that

n-term series is usually not the optimal one over all the n-series of the same kind. To improve

it, we can, for instance, let {a2, · · · , an} be an (n − 1)-set, say {b1, · · · , bn−1}, and find a bn,

more optimal than a1. This process of improvement is based on the fact that the orthogonal

projection of f into the span of n vectors is irrelevant with the order of the vectors listed. In

[4] and [7] the detailed algorithms are studied. The result of n-Cyclic AFD is of the form

n
∑

k=1

clk̃ak
,

where

k̃ak
=

[

(

∂

∂a

)lk−1

ka

]

a=ak

,

where lk is the repeating number of ak in the k-tuple (a1, · · · , ak). The result of n-Cyclic AFD

coincides with the result of best approximation by rational functions of degree not exceeding n.

Examples of the AFD methods will be given in Section 5.

5 Experiments

We will test our methods by using two examples. One of them is taken from [3], and the

other is a Blaschke product with finite zeros. In both of the examples we employ the initial

value f(a) for a = 0.32 − 0.16i generated by a random process. With the Scheme I and II
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methods we measure the error by the discrete relative error rn, where

rn =

√

√

√

√

√

√

√

n
∑

k=1

|f∗(zk) − f(zk)|2

n
∑

k=1

|f(zk)|2
,

where f∗(zk) and f(zk) are, respectively, the recovered and ground truth values of the functions.

With the Scheme III method, we estimate the error by the L2 relative error ‖f∗−f‖
‖f‖ .

Example 5.1 Let

f(z) =
0.1867z6 − 0.00869z5

(1 − 0.7842z)(1− 0.2669z)
.

The initial value is f(0.32 − 0.16i) = 0.0013− 0.0009i.

By Scheme I the error r5 is r5 = 0.0279.

By Scheme II the error r10 is 8.1813× 10−9.

By Scheme III (AFD) with an iteration number 23, the relative error is 0.0009.

The re-constructions using the three schemes are illustrated in Figure 1.
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Figure 1 Three schemes for reconstruction

Table 1 The part of function values reconstructed by Scheme I

z 0.41-0.49i 0.60-0.22i 0.64-0.02i 0.64-0.07i 0.60-0.24i

f(z) 0.0164-0.0054i -0.0206+0.0147i 0.0281+0.0065i 0.0208+0.0212i -0.0246+0.0107i

Reconstructed f(z) 0.0166-0.0046i -0.0209+0.0141i 0.0280+0.0070i 0.0204+0.0216i -0.0249+0.0100i

Table 2 The part of function values reconstructed by Scheme II

Re(z) -0.44 0.42 -0.82 0.44 0.5 0.6 -0.6 0.72 -0.82 -0.92

Im(z) -0.82 -0.04 -0.44 -0.82 -0.44 -0.42 0.5 -0.44 0.36 0.14

Re(f(z)) 0.0644 0.0013 -0.0537 0.0446 0.0079 -0.0163 -0.0204 -0.0772 -0.0297 0.0410

Im(f(z)) -0.0348 -0.0009 0.032 -0.1348 0.0240 0.0491 0.0144 0.1188 -0.0396 -0.0427

Example 5.2 Let

f(z) =

4
∏

k=1

z − ak

1 − akz
,

where a1 = 0.51 + 0.22i, a2 = 0.83 + 0.1i, a3 = 0.39 + 0.13i, a4 = 0.25 + 0.64i. The initial value

is f(0.32 − 0.16i) = 0.0534 + 0.0377i.

By Scheme I the error r5 is 0.3576× 10−8.
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By Scheme II the error r8 is 1.0678× 10−7.

By Scheme III (AFD) with an iteration number 18 the relative error is 0.0004.

The re-constructions using the three schemes are illustrated in Figure 2.
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Figure 2 Three schemes for reconstruction

Table 3 The part of function values reconstructed by Scheme I

z -0.02i -0.35-0.28i -0.52+0.36i 0.75-0.26i 0.68-0.45i

f(z) 0.1151-0.0653i 0.3911+0.0057i 0.2091-0.5566i -0.1532+0.1197i 0.0693+0.3576i

Reconstructed f(z) 0.1151-0.0653i 0.3911+0.0057i 0.2091-0.5566i -0.1532+0.1197i 0.0693+0.3576i

Table 4 The part of function values reconstructed by Scheme II

Re(z) -0.44 0.42 -0.82 0.44 -0.6 -0.82 -0.92 0.72

Im(z) -0.82 -0.04 -0.44 -0.82 0.5 0.36 0.14 -0.44

Re(f(z)) 0.5990 0.0148 0.9156 0.2091 0.1715 0.4574 0.6818 -0.0007

Im(f(z)) 0.6407 0.0270 -0.0237 -0.5805 -0.7258 -0.7576 -0.6257 0.4140
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