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1 Introduction

The study of approximation of one complex and real variable has a long history (see for
instance [29, 30, 33]). In particular, J. L. Walsh discussed problems of approximating holo-
morphic functions by rational functions in one complex variable. In the one complex or real
variable contexts the studies are mainly based on orthogonal function systems. In the unit
disc and in the upper-half complex plane cases rational orthogonal systems, or Takenaka-
Malmquist (TM) systems, are unavoidable. The trigonometric system, for instance, is a
particular case of a TM system: when all the system parameters take the zero value then the
TM system reduces to the trigonometric system. Studies in the one variable cases are closely
related to the topics interpolation and sampling, as well as uniqueness sets, etc. There are
comparably much less results in multivariate approximations. Studies on several variables,
as in the one variable cases, involve the complex analytic (or Cauchy type) structures of
the underlying spaces. There are basically two different complex structures of which one
is several complex variables and the other is Clifford algebra, the latter being mainly for
several real variables. The two settings have different natures. As an example, multiple
trigonometric series deals with approximation by multi-polynomials to functions defined on
the n-torus that correspond to holomorphic functions of several complex variables inside the
polydisc Dn. In the several complex variables setting approximations on boundaries of open
sets of Cn have been studied. In the Clifford setting approximations to functions defined on
manifolds as boundaries of open sets in Euclidean spaces have been studied. A model of the
Clifford context is the conjugate harmonic systems in the sense of Stein-Weiss ([24]). The
multiple variables cases induce hard and open problems such as Bochner-Riesz summation
and non-restrictive rectangle summability, etc. The main obstacle with a practical and com-
prehensive theory of multivariate approximation would be the lack of TM-systems as rational
orthogonal systems in one-complex variable. The present paper aims to develop a rational
approximation theory and methodology in the several complex variables setting with the un-
derlying spaces as the Hardy spaces on tubes. The latter also gives rise to approximation on
Rn. The study will be in the spirit of the AFD (adaptive Fourier decomposition) as given in
[19]. With a simple and elegant manner, 1D-AFD, or Core-AFD, offers an effective rational
approximation method in one complex variable. Due to its particular algebraic formulation
the Gram-Schmidt (G-S) orthogonalization is combined in the process. By using the max-
imal selection principle rapid convergence is achieved. In higher dimensions there does not
exist an algebraic formulation like Core-AFD of one-dimension, and thus the G-S process
cannot be incorporated algebraically and has be down separately. The effect of the algebraic
approach of Core-AFD can, in fact, be achieved through a pre-orthogonal procedure. The
latter, being called Pre-orthogonal AFD, or POAFD in brief (see [16] and further in [17]), is
considered as new formulation applicable to a large class of Hilbert spaces. It is, particularly,
applicable, with equal force as AFD of the Hardy space of the unit disc, to a large class of
reproducing kernel Hilbert spaces (see [13]), including our several complex variables context.
Below we will give an expository overview of Core-AFD, and show the passage leading AFD
to POAFD. Before going into details we recall that by adopting the interpolation formulation
of Blaschke products in higher dimensions AFD theory has been successfully generalized to
approximate matrix-valued functions of multivariate complex variables ([1, 2]). The task of
the present paper is to establish POAFD method for Hardy spaces on tubes through verifying
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the corresponding boundary vanishing conditions. This establishment raises the concept and
introduces methodology of rational approximation in Hardy spaces on tubes generalizing the
long existing classical theory in the disc and upper half complex plane. The Blaschke product
approach, however, seems to be more delicate and restrictive. The POAFD method may be
adopted to a wider class of spaces ([22]).

Recall that D denotes the unit disc in the complex plane. Let H2(D) denote the classical
Hardy H2-space in the unit disc. Among several equivalent definitions of H2(D) we adopt the
one in terms of the coefficients of the Taylor expansion of a complex holomorphic function
in the disc, that is,

H2(D) = {f : D→ C | f is holomorphic in D, f(z) =
∞∑
k=0

ckz
k,
∞∑
k=0

|ck|2 <∞}.

We will be using the following dense subset of H2(D):

{ea(z); a ∈ D}, where ea(z) =

√
1− |a|2

1− az
.

We note that the reproducing kernel ka of H2(D) is

ka(z) =
1

1− az
,

and ea is the normalized reproducing kernel. For any function f1 = f ∈ H2(D) and a1 ∈ D
one has the algebraic identity

f(z) = 〈f1, ea1〉ea1(z) +
f1(z)− 〈f1, ea1〉ea1(z)

z−a1

1−a1z

z − a1

1− a1z
.

Setting

f2(z) =
f1(z)− 〈f1, ea1〉ea1(z)

z−a1

1−a1z

,

the above identity can be re-written

f(z) = 〈f1, ea1〉ea1(z) + f2(z)
z − a1

1− a1z
(1.1)

with the energy relation

‖f‖2 = ‖〈f1, ea1〉ea1‖2 + ‖f2‖2 = (1− |a1|2)|f1(a1)|2 + ‖f2‖2,

where besides the usual orthogonal projection property we also used the complex unit mod-
ular property of the Möbius transform. The process of getting f2 from f1 with the parameter
a1 is called a sifting process. The nice thing is that in the open set D one can find

a1 = arg max{(1− |a|2)|f1(a)|2 : a ∈ D}
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([19]). The availability of selection of a1 in (1.1) with the above maximal property is called
the maximal selection principle. By fixing such a1 the energy ‖f2‖2 is minimized. Repeating
the same procedure to f2, and so on. Up to the n-th step one gets

f(z) =
m∑
k=1

〈fk, eak〉Bk(z) + fm+1

m∏
k=1

z − ak
1− akz

(1.2)

where for k = 1, · · · ,m,

ak = arg max{(1− |a|2)|fk(a)|2 : a ∈ D}, (1.3)

fk(z) =
fk−1(z)− 〈fk−1, eak−1

〉eak−1
(z)

z−ak−1

1−ak−1z

, (1.4)

and

Bk(z) = B{a1,··· ,ak}(z) =

√
1− |ak|2

1− akz

k−1∏
l=1

z − al
1− alz

, (1.5)

the latter being the so called rational orthonormal, or Takenaka-Malmquist, system which
is generated by the algebraic sifting process and automatically orthonormal. Due to the
maximal selections of the parameters it has fast convergence. The following theorem gives
what we call adaptive Fourier decomposition (AFD or Core-AFD).

Theorem 1.1 ([19]) For any given function f in the Hardy H2 space, by making a maximal
selection at each step we have

f(z) =
∞∑
k=1

〈fk, eak〉Bk(z).

We remark that due to the maximal selection principle in the sifting process AFD converges
at fast pace. It is an equivalent type of fast convergence that we will develop in this paper
for multivariate functions. A technically alternative adaptive expansion, also of the Fourier
type, called unwinding Blaschke expansion, has been developed in a series of recent papers
by Coifman et al. ([5, 6, 4]), and, independently, by Qian et al. ([15]). The unwinding
method does not seem to have a close counterpart in higher dimensions, for it is strongly
dependent on factorization. The second remark on 1D-AFD is that each term of a TM sys-
tem, when prefixing a1 = 0, has a positive boundary phase derivative function, defined as
the instantaneous frequency function of the term. This aspect, in fact, was the motivation
of the mono-component function theory, as well as AFD ([19]). Unwinding Blaschke expan-
sions also have positive frequencies. In this paper we do not pursue the unwinding method
but concentrate in POAFD as a generalization of AFD characterized by the pre-orthogonal
maximal selection principle (1.9).

AFD was originally established in the Hardy spaces of the unit disc and the upper half
plane. For multivariate cases the step (1.4), involving the generalized backward shift oper-
ation to get the induced remainder fk+1, is unavailable, and thus the maximal selection in
step (1.3) cannot be performed. Suggested by the relations

〈fk, eak〉 = 〈gk, Bk〉 = 〈f,Bk〉, (1.6)
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where

gk(z) = fk(z)
k−1∏
l=1

z − al
1− alz

is the k-th standard remainder, one can perform what is now called pre-orthogonal AFD,
abbreviated as POAFD, the latter is reduced to AFD in the classical setting and thus is
seen to have equal force as AFD in general reproducing kernel Hilbert spaces satisfying
some boundary vanishing condition (BVC). To illustrate the method we do the following
preparations.

Let {a1, · · · , am, · · · } be a finite or infinite sequence. For a fixed m we define the mul-
tiple of am in {a1, · · · , am}, denoted by l(am), as the repeating time of the value of am in
{a1, · · · , am} (i.e. the cardinality of the set {j : aj = am, j ≤ m}). We accordingly define the
multiple reproducing kernels

k̃am ,

[(
∂

∂a

)l(am)−1

ka

]
a=am

,

(
∂

∂a

)l(am)−1

kam (1.7)

with the property

f (l)(a) = 〈f,
(
∂

∂a

)l
ka〉, l = 1, 2, · · · (1.8)

Let f ∈ H2(D) and {ak}mk=1 be m existing points in D. To formulate POAFD we replace
(1.4) and (1.3) with the selection of am+1 in D to satisfy

am+1 := arg max
a∈D
|〈f,Ba

m+1〉|, (1.9)

where Ba
m+1 is defined by the requirement that {B1, · · · , Bm, B

a
m+1} is the result of the G-

S orthogonalization process applied to {B1, · · · , Bm, k̃am}. In such way one does not need
to formulate the reduced remainders that are crucial in 1D-AFD but unavailable in the
higher dimensions. The replacements of the reduced remainders resulted from the sifting
process are the newly designed pre-orthogonal algorithm and use of multiple reproducing
kernels. In each concrete reproducing kernel Hilbert space context one has to show that the
boundary vanishing condition (BVC) holds that implies existence of an am+1 in (1.9) (the pre-
orthogonal maximal selection principle). The contribution of the present paper is realization
of POAFD in various Hardy spaces on tubes, consisting of settings of the question in the
formulation of reproducing kernel Hilbert spaces, specifying and verification of the boundary
vanishing conditions, applications of the approximation to functions of several real variables,
and generalizations of the theory to regular cones.

We next recall the necessary notations and terminologies for the Hardy spaces on tubes
([24]). Let B be an open subset in Rn. We say that TB is a tube over B, if each z ∈ TB ⊂ Cn

is of the form z = x + iy, x ∈ Rn, y ∈ B ⊂ Rn. We will be, in particular, working on the
case where B is an open cone. Open cones are nonempty open subsets Γ ∈ Rn satisfying (1)
0 6∈ Γ, and (2) whenever x, y ∈ Γ and a, b > 0 then ax+ by ∈ Γ. A closed cone is the closure
of an open cone. It is clear that if Γ is an open cone then Γ∗ = {x ∈ Rn : x · t ≥ 0, t ∈ Γ} is a
close set. If, in addition, Γ∗ has a non-void interior, then Γ is said to be a regular cone, and
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Γ∗ is called the cone dual to Γ. For instance, for n = 1, the upper half-plane in the complex
plane can be regarded as the tube T(0,∞) = {z = x+iy, x ∈ R, y ∈ (0,∞)}. Denote by H2(TΓ)
the Hardy space on TΓ. We say F ∈ H2(TΓ), if F is holomorphic on TΓ and satisfies

‖F‖2 = sup
y∈Γ

∫
Rn
|F (x+ iy)|2dx <∞.

H2(TΓ) is a Hilbert space equipped with the inner product

〈F,G〉 =

∫
Rn
F (ξ)G(ξ)dξ,

where F (ξ) = limη∈Γ,η→0 F (ξ + iη) is the limit function in the L2-norm, as well as in the
a.e. pointwise sense, and so is G(ξ). Existence of such non-tangential boundary limits is a
fundamental result of the Hardy spaces on tubes (see [24]). The space H2(TΓ) is a reproducing
kernel Hilbert space with the reproducing kernel

K(w, z) =

∫
Γ∗
e2πiω·te2πiz·tdt, w, z ∈ TΓ.

In this paper we are mainly concerned with the following special tube TΓ1 , where

Γ1 = {y ∈ Rn : y1 > 0, y2 > 0, ..., yn > 0}.

The theory and algorithm given in [16] are restricted to the bi-disc H2(D2). This paper treats
in several unbounded domains. As given in Section 3, our main result is

Main Result For F ∈ H2(TΓ1), there holds

lim
m→∞

||F −
m∑
k=1

〈F,Bk〉Bk|| = 0, (1.10)

where, as formulated in (1.9), each element of the sequence {z(k)}∞k=1, z
(k) ∈ Rn, is selected

according to the maximal selection principle specified in (3.15), {Bk} is obtained by apply-
ing the Gram-Schmidt orthogonalization process to the corresponding multiple Cauchy-Szegö
kernels.

The well-definedness of {Bk} will be proved in Section 3. As a matter of fact, discussions of
the system {Bk} constitute a main part of the paper.

The optimal selections of z(k) towards the pre-orthogonal maximal principle (3.15) are
guaranteed by BVC. In this paper we will prove the validity of BVC in H2(TΓ1), and show that

the convergent rate of POAFD is O(m−
1
2 ) for H2(TΓ1 ,M), a particular subclass of functions

in H2(TΓ1). As an application of the main result, rational approximation of functions in
L2(Rn) can be obtained through dividing the L2 space to 2n Hardy spaces on tubes, and
then use the theory for the Hardy spaces (also see [16]).

As a by-product, in Appendix A we will give another kind of rational approximation in
H2(TΓ1) by using BVC in H2(TΓ1). Also, we will study POAFD in Hardy spaces on tubes,
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H2(TΓ), where Γ are some regular cones. Since treatments in the H2(TΓ) case are more com-
plicated than those in the H2(TΓ1) case, we put all details of the H2(TΓ) case in Appendix
B. In fact, through verifying BVC in H2(TΓ) (see Theorem B.4 in Appendix B), we have

If Γ is a regular cone such that (B.6) holds, then for F ∈ H2(TΓ) there holds

lim
m→∞

||F −
m∑
k=1

〈F,Bk〉Bk|| = 0,

where each element of {z(k)}∞k=1, z
(k) ∈ Rn, is selected according to the pre-orthogonal maxi-

mal principle (B.17), and {Bk} is obtained by applying the Gram-Schmidt orthogonalization
process to the corresponding Cauchy-Szegö kernels.
We note that the theory is dependent on the condition (B.6). For regular cones in R2 (that
is, n = 2), and for polygonal cones and circular cones in Rn for any n ≥ 2, we can prove the
validity of (B.6).

The writing plan is as follows. In Section 2 some related and basic results for H2(TΓ1)
are given. In Section 3 we devote to establishing POAFD in H2(TΓ1). In Section 4 we prove
the validity of BVC in H2(TΓ1). In Section 5 we investigate the convergent rate of POAFD
and rational approximation of functions in L2(Rn). In Appendix A we give another kind
of rational approximation in H2(TΓ1). In Appendix B we explore POAFD in H2(TΓ) for Γ
being in some particular subclasses of regular cones.

2 Preliminaries

In this section, we will review fundamental properties of H2(TΓ). For more information, see
e.g. [24, 10, 7].

As given previously,

Γ1 = {y ∈ Rn : y1 > 0, y2 > 0, ..., yn > 0},

whose dual cone is Γ∗1 = Γ1.
For H2(TΓ), we have

Theorem 2.1 (Paley-Wiener Theorem [24, page 101]) Suppose Γ is a regular cone.
Then F ∈ H2(TΓ) if and only if

F (z) =

∫
Γ∗
e2πiz·tf(t)dt

where f is a measurable function on Rn satisfying∫
Γ∗
|f(t)|2dt <∞.

Furthermore,

||F || =
(∫

Γ∗
|f(t)|2dt

) 1
2

.
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H2(TΓ) is a reproducing kernel Hilbert space whose reproducing kernel is the Cauchy-Szegö
kernel

K(w, z) =

∫
Γ∗
e2πiω·te2πiz·tdt, w, z ∈ TΓ.

The corresponding Poisson-Szegö kernel is given by

Py(x) =
K(z, 0)K(0, z)

K(z, z)
.

and Py(x) ∈ Lp, for 1 ≤ p ≤ ∞.
We will use the notation KΓ(w, z) if we want to emphasize the specific Γ in the context.
In particular, if Γ = Γ1 then the Cauchy-Szegö kernel and the Poisson-Szegö kernel can be
exactly computed by the following formulas

KΓ1(w, z) =

∫
Γ1

e2πiω·te2πiz·tdt =
n∏
k=1

−1

2πi(ωk − zk)

and

Py(x) =
KΓ1(z, 0)KΓ1(0, z)

KΓ1(z, z)
=

n∏
k=1

yk
π(x2

k + y2
k)
.

For general Γ the integral formulas corresponding to the Cauchy-Szegö and the Poisson-Szegö
kernels are, respectively, given as in

Theorem 2.2 ([24, page 103]) If F ∈ H2(TΓ) then

F (z) =

∫
Rn
F (ξ)K(ξ, z)dξ =

∫
Rn
F (ξ)K(z, ξ)dξ

for all z = x + iy ∈ TΓ, where F (ξ) = limη→0,η∈Γ F (ξ + iη) is the limit function in the
L2-norm.

Theorem 2.3 ([24, page 106]) If F ∈ H2(TΓ), then

F (z) =

∫
Rn
F (ξ)Py(x− ξ)dξ

for all z = x + iy ∈ TΓ, where F (ξ) = limη→0,η∈Γ F (ξ + iη) is the limit function in the
L2-norm.

Theorem 2.4 ([24, page 119]) Suppose Γ is a regular cone in Rn, and F ∈ Hp(TΓ), 1 ≤
p <∞, then

lim
y∈Γ,y→0

∫
Rn
|F (x+ iy)− F (x)|pdx = 0,

and

F (x+ iy) =

∫
Rn
F (ξ)Py(x− ξ)dξ,

where F (ξ) is the limit function, whose existence is in the norm sense, as well as in the
subsequence-pointwise convergence sense ([24, Chapter III,Theorem 5.5]).
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3 POAFD in H2(TΓ1)

Suppose that {z(k)}∞k=1 is a sequence of distinct points in TΓ1 . Under such assumption,

{KΓ1(·, z(k))}∞k=1 are linearly independent. Let {Bk}mk=1 be the Gram-Schmidt (G-S) orthog-

onalization of {KΓ1(·, z(k))}mk=1. For a function in H2(TΓ1), One can define the m-th partial
sum

Sm(F ) =
m∑
k=1

〈F,Bk〉Bk. (3.11)

Since span{B1, ...,Bm} = span{KΓ1(·, z(1)), ..., KΓ1(·, z(m))}, and F − Sm(F ) is in the orthog-
onal complement of the span, we have

F (z(k)) = 〈F,KΓ1(·, z(k))〉 = 〈Sm(F ), KΓ1(·, z(k))〉. (3.12)

In the following discussion, we remove the restriction that all elements of {z(k)}∞k=1 are
distinct from each other, i.e., there may exist k 6= l such that z(k) = z(l). In such case, the
original definition of Sm(F ) is meaningless in such situation. Therefore, we need to define

the generalized Sm(F ) that is denoted by S̃m(F ). The generalization is intrinsically related
to the POAFD methodology.

Set φz(k) = φk = KΓ1(·, z(k)). By the G-S orthogonalization process, we have

γ1 = γ{z(1)} = φ1,

γk = γ{z(1),...,z(k)} = φk −
k−1∑
l=1

〈φk,
γl
||γl||
〉 γl
||γl||

, k ≥ 2

Bk = B{z(1),...,z(k)} =
γk
||γk||

.

(3.13)

To define S̃m(F ), it suffices to define {Bk}mk=1 for the case that there may happen z(k) =
z(l), k 6= l. Such kind of discussion on {Bk}mk=1 should be regarded as multiple poles Takenaka-
Malmquist (TM) system, and is automatically motivated by 1D AFD or pre-orthogonal
maximal selection principle in POAFD methods. In fact, it has been, respectively, made in
the one complex variable [21], quaternionic analysis [20] and several complex variables [16]
settings. The general discussion on such property of {Bk}mk=1 is included in [16], and recently,
a detailed proof is given in [22] and [18].

The present context that we deal with is with the several complex variables setting. For
simplicity, we interpret this for z = (z1, z2) ∈ C2. Unlike the one complex variable case, the
generalization of TM systems in higher dimensions is more subtle since the dimension of the
linear space spanned by the h-th order (h ≥ 1) partial derivatives is more than 2. In this
paper we provide a strategy that is in the spirit of the one dimensional case. Let lk be the
cardinality of the set {j : z(j) = z(k), j ≤ k}. Suppose that ~d = (d1, d2) ∈ P2 = {ξ = (ξ1, ξ2) ∈
C2 : |ξ1|2 + |ξ2|2 = 1}, and ~d is fixed in the following discussion. As in the one dimensional
case, we define

φ̃
~d
z(k) =

1

(lk − 1)!
(~d · 5)(lk−1)φz|z=z(k) ,
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where ~d · 5 = d1
∂
∂z1

+ d2
∂
∂z2
. Note that

∑
|α|=lk−1

∂αφz |z=z(k)

α!
~dα = 1

(lk−1)!
(~d · 5)lk−1φz|z=z(k) ,

where α = (α1, α2), |α| =
∑2

j=1 αj, α! =
∏2

j=1 αj! and ∂αφz = ∂α1∂α2φz = ∂|α|φz
∂z
α1
1 ∂z

α2
2
. Next

we assume that {Bk}mk=1 is the G-S orthogonalization of {φ̃~d
z(k)}mk=1. Set w = z(m) + r~d with

~d ∈ P2. Since φz = KΓ1(·, z) is anti-analytic in z, by the Taylor expansion with respect to

the directional derivatives in the direction ~d, we have that

φw = T (m)(φz(m)+r~d) +R(m)(φz(m)+r~d)

=
∑

|α|≤lm−1

∂αφz|z=z(m)

α!
(r~d)α +

∑
|α|≥lm

∂αφz|z=z(m)

α!
(r~d)α,

and consequently,

T (m)(φz(m)+r~d) =
m∑
j=1

〈T (m)(φz(m)+r~d),Bj〉Bj.

Then we have

lim
r→0
B{z(1),...,z(m),w}

= lim
r→0

φw −
∑m

j=1〈φw,Bj〉Bj
||φw −

∑m
j=1〈φw,Bj〉Bj||

= lim
r→0

φw − T (m)(φz(m)+r~d)−
∑m

j=1〈φw − T (m)(φz(m)+r~d),Bj〉Bj
||φw − T (m)(φz(m)+r~d)−

∑m
j=1〈φw − T (m)(φz(m)+r~d),Bj〉Bj||

= lim
r→0

φw−T (m)(φ
z(m)+r~d

)

rlm
−
∑m

j=1〈
φw−T (m)(φ

z(m)+r~d
)

rlm
,Bj〉Bj

||
φw−T (m)(φ

z(m)+r~d
)

rlm
−
∑m

j=1〈
φw−T (m)(φ

z(m)+r~d
)

rlm
,Bj〉Bj||

=

∑
|α|=lm

∂αφz |z=z(m)

α!
~dα −

∑m
j=1〈

∑
|α|=lm

∂αφz |z=z(m)

α!
~dα,Bj〉Bj

||
∑
|α|=lm

∂αφz |z=z(m)

α!
~dα −

∑m
j=1〈

∑
|α|=lm

∂αφz |z=z(m)

α!
~dα,Bj〉Bj||

,

which means that the lm-th directional derivative with the direction ~d of φz is involved in
the G-S orthogonalization process when r tends to 0.

Being similar with [16], we introduce Ak, k = 1, 2, ..., the function set consisting of all
possible directional derivatives of the functions in Ak−1, where A0 = {KΓ1(·, z) : z ∈ TΓ1}.
Denote by A the set

A = ∪∞k=0Ak.
Note that we do not make the elements in Ak normalized. Given a sequence of points
{z(k)}mk=1 in TΓ1 , we can find a sequence of elements {Φz(k)}mk=1 in A such that {Bk}mk=1 is the

orthonormalization of {Φz(k)}mk=1 in the above sense. We actually make Φz(k) = φ̃
~d
z(k) with a

fixed direction ~d. Define

S̃m(F ) =
m∑
k=1

〈F,Bk〉Bk. (3.14)

10



With the same reason as for (3.12) we have

〈S̃m(F ),Φz(k)〉 = 〈F,Φz(k)〉, k = 1, 2, ...,m.

Note that Sm(F ) = S̃m(F ) if all z(k)s’ are distinct from each other. For Cn, n > 2, we can

similarly define A and S̃m(F ). Hereafter, we do not distinguish between Sm(F ) and S̃m(F ),
and then we adopt the notation Sm(F ) for both cases.

Remark The treatment given in the above is in the spirit of the one dimensional case, which
is, however, a special one in the higher dimensional case. On the other hand, due to the
Cauchy-Riemann equations between the partial derivatives, there is a limited number of h-
order partial or directional derivatives involved for each fixed h. It can be easily computed
that there exist

(
h+n−1
n−1

)
linearly independent h-th partial derivatives. If we want to use as

less as high order partial derivatives, then after at most
∑k

h=1

(
h+n−1
n−1

)
=
(
k+n
n

)
interactive

steps one (k + 1)-th partial derivative yet has to be involved.

The main procedure of constructing Sm(F ) using an optimal {z(j)}mj=1 leading to fast
convergence to F (m→∞) in the H2-norm is as follows. Every time when we already have
m points in TΓ1 , we select z(m+1) ∈ TΓ1 to satisfy

z(m+1) := arg max
z∈TΓ1

|〈F,Bzm+1〉|, (3.15)

where {B1, ...,Bm,Bzm+1} is the orthogonalization of {B1, ...,Bm,Φz}. Existence of such z(m+1)

is proved in Section 4. It is, in fact, a consequence of BVC in H2(TΓ1). At this moment, we
assume that such z(m+1) exists. The convergence of Sm(F ) in the H2-norm sense is given by
the following result.

Theorem 3.1 For F ∈ H2(TΓ1), we have

||F − Sm(F )|| → 0, as m→∞, (3.16)

where each element of {z(k)}∞k=1 is selected according to the maximal selection principle (3.15).

Proof: By (3.14) and the Riesz-Fischer theorem, we know that there exists S∞(F ) ∈ H2(TΓ1)
satisfying

S∞(F ) = lim
m→∞

Sm(F ) in the H2-norm. (3.17)

If (3.16) does not hold, then

g = F − S∞(F ) 6≡ 0. (3.18)

By the Identity theorem in several complex variables analysis, we must have b 6∈ {z(k)}∞k=1

such that

|g(b)| = δ0 > 0. (3.19)

11



On one hand,

δ0 = |g(b)| = |F (b)− S∞(F )(b)|
≤ |F (b)− Sm(F )(b)|+ |S∞(F )(b)− Sm(F )(b)|.

(3.20)

By (3.17), there exists N1 > 0 such that when m > N1, the second term of (3.20)

|S∞(F )(b)− Sm(F )(b)| = |〈S∞(F )(·)− Sm(F )(·), KΓ1(·, b)〉|
≤ ||S∞(F )− Sm(F )||||KΓ1(·, b)||

<
δ0

2
,

where the second inequality follows from the Cauchy-Schwartz inequality. Hence, we have

|F (b)− Sm(F )| > δ0

2
.

On the other hand, by (3.12) we have

F (b) = Sbm+1(F )(b),

where Sbm+1(F ) is defined as (3.14), which corresponds to (z(1), ..., z(m), b). By (3.15), we have

||F ||2 − ||Sbm+1(F )||2 = ||F − Sbm+1(F )||2

≥ ||F − Sm+1(F )||2 = ||F ||2 − ||Sm+1(F )||2.

Therefore, there exists N2 > 0 such that when m > N2,

|F (b)− Sm(F )(b)| = |Sbm+1(F )(b)− Sm(F )(b)|
≤ ||Sbm+1(F )− Sm(F )||||KΓ1(·, b)||

= ||KΓ1(·, b)||(
√
||Sbm+1(F )||2 − ||Sm(F )||2)

≤ ||KΓ1(·, b)||(
√
||Sm+1(F )||2 − ||Sm(F )||2)

= ||KΓ1(·, b)||||Sm+1(F )− Sm(F )||

<
δ0

2
.

(3.21)

This proves the theorem. 2

Immediately, we have the following corollary.

Corollary 3.2 If all the conditions in Theorem 3.1 are fulfilled, then, for any compact subset
A in TΓ1,

Sm(F )(z) =
m∑
k=1

〈F,Bk〉Bk(z), z ∈ A,

uniformly converges to F (z) as m→∞.

The proof of the corollary follows from the Cauchy-Schwartz inequality and the fact that the
L2-norm of the Cauchy-Szegö kernel is uniformly bounded in any compact subset A.

12



4 The Maximal Selection Principle of POAFD

Denote by ∂TΓ1 the boundary of TΓ1 . Since {z(1), ..., z(m)} are previously fixed in the proce-
dure of selecting z(m+1) in (3.15), the existence of z(m+1) is given by the following lemmas.
For z 6= z(k), k = 1, ...,m, we recall that

Szm+1(F ) =
m∑
k=1

〈F,Bk〉+ 〈F,Bzm+1〉Bzm+1,

where {Bk}mk=1 is the orthogonalization of {Φz(k)}mk=1, and {B1, ...,Bm,Bzm+1} is the orthogo-
nalization of {B1, ...,Bm, φz}. Note that φz = KΓ1(·, z) and {Φz(k)} ⊂ A, where A contains
all higher order directional derivatives of KΓ1(w, z) with respect to z.

First, we show that

Lemma 4.1 Suppose that F ∈ H2(TΓ1) and z(j) ∈ TΓ1 , j = 1, ...,m, are fixed. If

lim
z→β

|F (z)|
||φz||

= 0,

lim
z→β

|Φz(j)(z)|
||φz||

= 0, j = 1, 2, ...,m,

(4.22)

where β ∈ ∂TΓ1, then

lim
z→β
||F − Szm+1(F )|| = ||F − Sm(F )||, (4.23)

and if

lim
|z|→∞

|F (z)|
||φz||

= 0,

lim
|z|→∞

|Φz(j)(z)|
||φz||

= 0, j = 1, 2, ...,m,

(4.24)

then

lim
|z|→∞

||F − Szm+1(F )|| = ||F − Sm(F )||. (4.25)

Proof: We adopt the notation given in (3.13). Based on (3.14), we have

‖F − Szm+1(F )‖2 = ‖F − Sm(F )‖2 − |〈F,Bzm+1〉|2.

To get (4.23), we need to show |〈F,Bzm+1〉| → 0 as z → β. In fact, by the Gram-Schmidt
orthogonalization process,

|〈F,Bzm+1〉| =
|〈F, φz −

∑m
k=1〈φz,Bk〉Bk〉|

‖φz −
∑m

k=1〈φz,Bk〉Bk‖

=
|〈F, φz

‖φz‖ −
∑m

k=1〈
φz
‖φz‖ ,Bk〉Bk〉|√

1−
∑m

k=1 |〈
φz
‖φz‖ ,Bk〉|

2
.

(4.26)
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Note that each Bk is a linear combination of {Φz(j)}kj=1 as given in Section 3. Then, by (4.22)
we can have (4.23). We can also conclude (4.25) in a similar way. The proof is complete.
2

Note the conditions (4.22) and (4.24) essentially follow from

lim
z→β∈∂TΓ1

|F (z)|
||φz||

= 0

lim
|z|→∞

|F (z)|
||φz||

= 0,

(4.27)

which is called the boundary vanishing condition (BVC).
In fact, we will prove a strong version of BVC in H2(TΓ1). Define

φα,z =
∂|α|KΓ1(·, z)

∂z1
α1∂z2

α2 · · · ∂znαn
=

(
−1

2πi

)n n∏
j=1

αj!

(wj − zj)αj+1
, (4.28)

where all elements of n-tuple α = (α1, ..., αn) are non-negative integers and |α| =
∑n

j=1 αj ≥
0. In particular, φ0,z = φz = KΓ1(·, z).

Lemma 4.2 For 1 < p <∞, z = x+ iy ∈ TΓ1 and α = (α1, ..., αn),∫
Rn

∣∣∣∣∣
n∏
j=1

1

(ξj − zj)αj+1

∣∣∣∣∣
p

dξ1 · · · dξn = π
n
2

n∏
j=1

Γ(−1
2

+
p(αj+1)

2
)

Γ(
p(αj+1)

2
)

(
1

yj

)p(αj+1)−1

.

Proof: ∫
Rn

∣∣∣∣∣
n∏
j=1

1

(ξj − zj)αj+1

∣∣∣∣∣
p

dξ1 · · · dξn =
n∏
j=1

∫ ∞
−∞

∣∣∣∣ 1

(|ξj − xj|2 + |yj|2)

∣∣∣∣
p(αj+1)

2

dξj

=
n∏
j=1

(
1

yj

)p(αj+1)−1 ∫ ∞
−∞

∣∣∣∣ 1

t2j + 1

∣∣∣∣
p(αj+1)

2

dtj

= π
n
2

n∏
j=1

Γ(−1
2

+
p(αj+1)

2
)

Γ(
p(αj+1)

2
)

(
1

yj

)p(αj+1)−1

,

where the third equality is due to changing variables by setting tj =
ξj−xj
yj

, and Γ(·) is the

Gamma function. 2

Consequently, we have

||φα,z||2 =

(
1

2π

)n( n∏
j=1

(αj!)
2

)
(π)

n
2

n∏
j=1

Γ(αj + 1
2
)

Γ(αj + 1)

(
1

yj

)2αj+1

=
n∏
j=1

(2αj)!

(2yj)2αj+1
.

(4.29)
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BVC in H2(TΓ1) is a consequence of the following lemmas. In fact, by Lemma 4.1 and
Lemmas 4.3 - 4.5, through a compact argument we conclude that z(m+1) in (3.15) can be
achieved in a compact subset of TΓ1 . In addition, Lemmas 4.3-4.5 can be regarded as the
Riemann-Lebesgue Lemma for the Cauchy-Szegö kernel.

Lemma 4.3 For F ∈ H2(TΓ1), and α = (α1, ..., αn),

lim
y∈Γ1,y→β

|〈F, φα,z〉|
||φα,z||

= 0, z = x+ iy ∈ TΓ1 , (4.30)

holds uniformly for x ∈ Rn, where β ∈ ∂Γ1.

Proof: Since

〈F, φα,z〉 =

∫
Rn
F (ξ)φα,z(ξ)dξ,

and F (ξ) is the limit of F (ξ + iη) in the L2-norm, we can find G(ξ) ∈ L2(Rn) ∩ Lp(Rn), 2 <
p <∞, such that for any ε > 0, ||F −G||L2(Rn) <

ε
2
. We also have

|〈F, φα,z〉|
||φα,z||

≤ |〈F −G, φα,z〉|
||φα,z||

+
|〈G, φα,z〉|
||φα,z||

≤ ||F −G|| ||φα,z||
||φα,z||

+
|〈G, φα,z〉|
||φα,z||

≤ ε

2
+
|〈G, φα,z〉|
||φα,z||

.

(4.31)

It suffices to prove that, for y ∈ Γ1, y → β,∫
Rn |G(ξ)φα,z(ξ)|dξ

||φα,z||
<
ε

2
. (4.32)

Indeed, by applying Hölder’s inequality to
∫
Rn |G(ξ)φα,z(ξ)|dξ, (4.32) follows from

lim
y∈Γ1,y→β

(
∫
Rn |φα,z|

qdξ)
1
q

(
∫
Rn |φα,z|2dξ)

1
2

= lim
y∈Γ1,y→β

π
n
2q
∏n

j=1

(
Γ(− 1

2
+
q(αj+1)

2
)

Γ(
q(αj+1)

2
)

) 1
q (

1
yj

)(αj+1)− 1
q

π
n
4

∏n
j=1

(
Γ(αj+

1
2

)

Γ(αj+1)

) 1
2
(

1
yj

)αj+ 1
2

= C lim
y∈Γ1,y→β

n∏
j=1

y
1
2
− 1
p

j

= 0,

where C is a constant, and q satisfies 1
p

+ 1
q

= 1. The last equality follows from p > 2 and
the fact that there exists some yj → 0 when y → β. 2

Lemma 4.4 For F ∈ H2(TΓ1), and α = (α1, ..., αn),

lim
y∈Γ1,|y|→∞

|〈F, φα,z〉|
||φα,z||

= 0, z = x+ iy ∈ TΓ1 , (4.33)

holds uniformly for x ∈ Rn.
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Proof: By Theorem 2.3, for any ε > 0, we can find y′ ∈ Γ1 such that∫
Rn
|F (ξ)− F (ξ + iy′)|2dξ < ε.

|〈F, φα,z〉|
||φα,z||

≤ |〈F (·)− F (·+ iy′), φα,z〉|
||φα,z||

+
|〈F (·+ iy′), φα,z〉|

||φα,z||

≤ ||F (·)− F (·+ iy′)|| ||φα,z||
||φα,z||

+
|〈F, φα,z+iy′〉|
||φα,z||

≤ ε+
|〈F, φα,z+iy′〉|
||φα,z||

.

(4.34)

Note that we can find G ∈ L2(Rn) ∩ Lp(Rn), 1 < p < 2, such that, for any ε > 0, ||F −
G||L2(Rn) < ε. By applying the argument in Lemma 4.3, we can easily show that, for y ∈ Γ1

and |y| large enough,
|〈F, φα,z+iy′〉|
||φα,z||

< Cε,

where C is a constant. 2

Lemma 4.5 For F ∈ H2(TΓ1), and α = (α1, ..., αn),

lim
|x|→∞

|〈F, φα,z〉|
||φα,z||

= 0, z = x+ iy ∈ TΓ1 , (4.35)

holds uniformly for y ∈ Γ1.

Proof: By Lemmas 4.3 and 4.4, it suffices to prove that

lim
|x|→∞

|〈F, φα,z〉|
||φα,z||

= 0 (4.36)

holds uniformly for y ∈ A0, where A0 is a compact subset in Γ1.
Since span{KΓ1(·, z), z ∈ TΓ1} = H2(TΓ1), we have {w(j)}Nj=1 in TΓ1 such that

‖F −GN‖ <
ε

2
,

where GN =
∑N

j=1 cjKΓ1(·, w(j)) ∈ H2(TΓ1). Hence, we have

|〈F, φα,z〉|
||φα,z||

≤ |〈F −GN , φα,z〉|
||φα,z||

+
|〈GN , φα,z〉|
||φα,z||

<
ε

2
+
|〈GN , φα,z〉|
||φα,z||

.

It suffices to show that, for a fixed w = ξ + iη ∈ TΓ1 , when |x| is large enough,

|〈KΓ1(·, w), φα,z〉|
||φα,z||

=
n∏
j=1

(2yj)
αj+

1
2αj!

|zj − wj|αj+1
√

(2αj)!

=
n∏
j=1

(2yj)
αj+

1
2αj!

|(xj − ξj)2 + (yj + ηj)2|
αj+1

2

√
(2αj)!

<
ε

2
.

16



The last inequality is based on the fact that there exists xj satisfying that |xj| → ∞ as
|x| → ∞. 2

Note that we can alternatively prove Lemma 4.3 and Lemma 4.4 by using the density
argument as used in proving Lemma 4.5. Since the tube TΓ1 is very special, in Appendix A,
we will prove one more boundary vanishing property of φα,z. Combining it with Lemmas 4.3
- 4.5, we can give another rational approximation in H2(TΓ1) that is analogous to the one in
[31].

5 Further Results

In this section we consider the convergent rate aspect of POAFD in H2(TΓ1), and give rational
approximation of functions in L2(Rn) by POAFD in H2(TΓ1).

5.1 Rate of convergence

As in [9], we first introduce the function class

H2(TΓ1 ,M) =

{
F ∈ H2(TΓ1) : F =

∞∑
j=1

cj
φw(j)

||φw(j)||
, w(j) ∈ TΓ1 ,

∞∑
j=1

|cj| ≤M

}
,

where φz = KΓ1(·, z). We give the convergent rate of the AFD-type approximation of func-
tions in H2(TΓ1 ,M). The result is stated as follows.

Theorem 5.1 For F ∈ H2(TΓ1 ,M), and Sm(F ) corresponding to the sequence {z(k)}mk=1,
where each element of {z(k)}mk=1 is selected according to the maximal selection principle (3.15),
we have

‖F − Sm(F )‖ ≤ M√
m+ 1

.

To prove Theorem 5.1, we need the following result.

Lemma 5.2 ([9]) Let {dk}∞k=1 be a sequence of nonnegative numbers satisfying

d1 ≤ A, dk+1 ≤ dk

(
1− dk

A

)
.

Then there holds

dk ≤
A

k
.

Proof of Theorem 5.1:

For F ∈ H2(TΓ1 ,M), we have F =
∑∞

k=1 ck
φ
w(k)

‖φ
w(k)‖

and

||F || ≤
∞∑
j=1

|ck| ≤M.
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By (3.14), we have

‖Sm(F )‖2 =
m∑
k=1

|〈F,Bk〉|2,

and

‖Fm+1‖2 = ‖Fm‖2 − |〈F,Bm〉|2 = ‖Fm‖2 − |〈Fm,Bm〉|2, (5.37)

where Fm+1 = F − Sm(F ) with F1 = F . By (3.13),

|〈Fm,Bm〉| =
|〈Fm, γm〉|
‖γm‖

=
|〈Fm,Φz(m) −

∑m−1
k=1 〈Φz(m) ,Bk〉Bk〉|

‖Φz(m) −
∑m−1

k=1 〈Φz(m) ,Bk〉Bk‖

=
|〈Fm,

Φ
z(m)

‖Φ
z(m)‖
〉|

‖ Φ
z(m)

‖Φ
z(m)‖

−
∑m−1

k=1 〈
Φ
z(m)

‖Φ
z(m)‖

,Bk〉Bk‖

≥
|〈Fm,

φ
z(m)

‖φ
z(m)‖
〉|

‖ φ
z(m)

‖φ
z(m)‖

−
∑m−1

k=1 〈
φ
z(m)

‖φ
z(m)‖

,Bk〉Bk‖

≥ |〈Fm,
φz(m)

‖φz(m)‖
〉|,

(5.38)

where the last inequality is based on

‖ φz(m)

‖φz(m)‖
−

m−1∑
k=1

〈 φz(m)

‖φz(m)‖
,Bk〉Bk‖2 = 1−

m−1∑
k=1

|〈 φz(m)

‖φz(m)‖
,Bk〉|2 ≤ 1.

Combining (3.15), (5.37) and (5.38), we have

|〈Fm,Bm〉| = sup
z∈TΓ1

|〈Fm,B{z(1),z(2),...,z(m−1),z}〉|

≥ sup
z∈TΓ1

|〈Fm,
φz
‖φz‖

〉|

≥ sup
z∈{w(k)}∞k=1

|〈Fm,
φz
‖φz‖

〉|.

(5.39)

Notice that

‖Fm‖2 = |〈Fm, F 〉| = |〈Fm,
∞∑
k=1

ck
φw(k)

‖φw(k)‖
〉| ≤M sup

z∈{w(k)}∞k=1

|〈Fm,
φz
‖φz‖

〉|.
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Hence,

‖Fm+1‖2 = ‖Fm‖2 − |〈Fm,Bm〉|2

≤ ‖Fm‖2 − sup
z∈{w(k)}∞k=1

|〈Fm,
φz
‖φz‖

〉|2

≤ ‖Fm‖2 − ‖Fm‖
4

M2

= ‖Fm‖2

(
1− ‖Fm‖

2

M

)
.

By Lemma 5.2, we conclude the desired result. 2

5.2 Rational approximation of functions in L2(Rn)

It is known that, for f ∈ L2(R), one can have f = f+ + f−, where f+ and f− are non-
tangential boundary limits of functions contained in H2(C+) and H2(C−), respectively. Then,
rational approximation of functions in L2(R) can be easily obtained by rational approxima-
tions of functions in H2(C+) and H2(C−). Here we give rational approximation of functions
in L2(Rn) in a similar manner. Define σj = (σj(1), σj(2), ..., σj(n)), 1 ≤ j ≤ 2n, whose
elements are + and −, and

Γσj = {y ∈ Rn; yk > 0 if σj(k) = + and yk < 0 if σj(k) = −, j = 1, 2, ..., n}.

Observe that Rn = ∪2n

j=1Γσj . For F ∈ L2(Rn), the following result is known.

Theorem 5.3 ([24, 12]) For F ∈ L2(Rn), if

Fσj(z) =

∫
Rn
F (ξ)KΓσj

(ξ, z)dξ =
(−1)mj

(2πi)n

∫
Rn
F (ξ)

n∏
k=1

1

ξk − zk
dξ1 · · · dξn, (5.40)

where z ∈ TΓσj
and mj denotes the number of minus signs in σj, then Fσj(z) is holomorphic

on TΓσj
, and for Fσj(x+ iy) as a function of x,

‖Fσj(·+ iy)‖L2(Rn) ≤ C‖F‖L2(Rn), (5.41)

where C is a constant that is independent of F and y.
Furthermore,

F (x) =
2n∑
j=1

Fσj(x), x ∈ Rn, in the L2-sense, (5.42)

where Fσj(x) = limy∈Γσj ,y→0 Fσj(x+ iy) is the limit function in the L2-norm.

Remark It is noted that Theorem 5.3 is a summary of partial results given in [24, 12]. In
fact, the conclusion given in Theorem 5.3 holds also for F ∈ Lp(Rn), 1 < p < ∞ (see [12]).
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For more information, we also refer to, e.g. [26, 27, 28]. Based on the definition of Hardy
spaces, the inequality (5.41) implies that Fσj ∈ H2(TΓσj

). The formula (5.40) is called the

Hardy projection of F . Hence the formula (5.42) means that F can be decomposed into
a sum of boundary limit functions of functions in the Hardy spaces on tubes over octants.
Moreover, for F ∈ Lp(Rn), 1 < p <∞, Fσj(x) can be characterized as the Fourier transform
of a function supported on Γσj in the distribution sense (see [12]). This can be regard as a
generalization of the Paley-Wiener theorem (see Theorem 2.1). Recently, the analogues of
the Paley-Wiener theorem for Hp(TΓ),1 ≤ p ≤ ∞ (for 2 < p ≤ ∞ in the distribution sense)
are given in [7], where Γ is a regular cone.

Due to Theorem 5.3 and the above discussion, we can reduce the relevant study to Fσj(1 ≤
j ≤ 2n) when considering the problem of rational approximation of F ∈ L2(Rn). Therefore,
for each Fσj we can obtain an approximation of Fσj given by POAFD. Moreover, for a real-
valued function F we only need to deal with the related 2n−1 Hardy spaces. For instance,
we interpret this in C2. If {z(k) = (z

(k)
1 , z

(k)
2 )}∞k=1 is a sequence making S+,+

m (F ) → F+,+ as

m → ∞ in H2(TΓ+,+), then we have that {(z(k)
1 , z

(k)
2 )}∞k=1 is a sequence making S−,−m (F ) →

F−,− as m→∞ in H2(TΓ−,−). The same argument holds for the cases F+,− and F−,+.
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A A Non-Orthogonal Expansion with Simpler Algo-

rithm

By using Lemmas 4.3 - 4.5 and the following lemma (Lemma A.1), we can give another kind
of rational approximation to functions in H2(TΓ1). Such rational approximation is analogous
to the one given in [31]. Specifically, we apply the idea of greedy algorithm to H2(TΓ1) with
the dictionary

D =

{
ψα,z(w) =

φα,z(w)

||φα,z||
; |α| =

n∑
j=1

αj ≥ 0, z, w ∈ TΓ1

}
. (A.1)

Recall that φα,z(w) is defined as

φα,z =
∂|α|KΓ1(·, z)

∂z1
α1∂z2

α2 · · · ∂znαn
=

(
−1

2πi

)n n∏
j=1

αj!

(wj − zj)αj+1
,

where all elements of n-tuple α = (α1, ..., αn) are non-negative integers and |α| =
∑n

j=1 αj ≥
0.
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We briefly give an introduction to greedy algorithm with the dictionary D. Let F ∈
H2(TΓ1). Then, by greedy algorithm, one can have

F =
m∑
l=1

〈RlF, ψα(l),z(l)〉ψα(l),z(l) +Rm+1F, (A.2)

where RlF is defined by

R0F = F,RlF = Rl−1F − 〈Rl−1F, ψα(l),z(l)〉ψ|α(l)|,z(l) , l ≥ 1,

and ψα(l),z(l) satisfies

|〈RlF, ψα(l),z(l)〉| = sup
ψα,z∈D

|〈RlF, ψα,z〉|. (A.3)

In the following discussion, we focus on the existence of ψα(l),z(l) in (A.3) for each l ≥ 1.
To this end, we show the following result by using the technique in [31, Lemma 4.8].

Lemma A.1 For F ∈ H2(TΓ1),

lim
|α|→∞

|〈F, φα,z〉|
||φα,z||

= 0 (A.4)

holds uniformly for z ∈ TΓ1.

Proof: As shown in Lemma 4.5, for any ε > 0, there exists
GN =

∑N
j=1 cjKΓ1(·, w(j)) such that

||F −GN || <
ε

2
.

Therefore, we only need to prove that for any fixed w = ξ + iη ∈ TΓ1

lim
|α|→∞

|〈KΓ1(·, w), φα,z〉|
||φα,z||

= 0.

In fact, we have

|〈KΓ1(·, w), φα,z〉|
||φα,z||

=
n∏
j=1

(2yj)
αj+

1
2αj!

|zj − wj|αj+1
√

(2αj)!

≤
n∏
j=1

(2yj)
αj+

1
2αj!

(yj + ηj)αj+1
√

(2αj)!

≤
n∏
j=1

((αj + 1
2
)ηj)

αj+
1
2 22αj+1αj!

((αj + 1)ηj)αj+12αj+1
√

(2αj)!

=
n∏
j=1

(αj + 1
2
)αj+

1
2 2αjαj!

(αj + 1)αj+1√ηj
√

(2αj)!

≤
n∏
j=1

Cjη
− 1

2
j α

− 1
4

j ,

(A.5)
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where Cj is a constant that is independent of αj. The second inequality is based on the fact

that
(2yj)

αj+ 1
2

(yj+ηj)
αj+1 attains its maximum value at yj = 2(αj + 1

2
)ηj for 1 ≤ j ≤ n, and the last

inequality follows from the Stirling’s formula

Γ(h+ 1) ∼ hh+ 1
2 e−h
√

2π, h ∈ R, h→∞.

The proof is complete. 2

Combining Lemma A.1 and Lemmas 4.3 - 4.5, we conclude the existence of the optimal
ψα(l),z(l) , l ≥ 1. Note that

||F ||2 =
m∑
l=1

|〈RlF, ψα(l),z(l)〉|2 + ||Rm+1F ||2,

although {ψα(l),z(l) , l = 1, 2...,m} is may not be an orthogonal system. Based on Theorem 1
in [14] and the fact that spanD = H2(TΓ1), we have

lim
m→∞

||RmF || = 0. (A.6)

In a general reproducing kernel Hilbert space an ordinary greedy algorithm (GA) scheme is
usually not as effective as what is called orthogonal greedy algorithm (OGA) by the construc-
tion, and the latter not as effective as POAFD. But with the extended dictionary in (A.1)
incorporating all possible partial derivatives of the reproducing kernels OGA is comparable
with POAFD with respect to only the reproducing kernels.

For further discussion on such approximation and greedy algorithm, see e.g. [31, 9, 14, 25].

B Results on Regular Domains

In this part we will investigate POAFD in H2(TΓ), where Γ is a regular cone. Based on the
discussions in Section 4, we know that Lemmas 4.3 - 4.5 play important roles in studying
POAFD in the octant case. The techniques used in Theorem 3.1 and Lemma 4.1 still work
for the proposed approximation in H2(TΓ). Therefore, for a regular cone, we only need to
consider the analogous results of Lemmas 4.3 - 4.5. As mentioned in Section 4, BVC is
sufficient for us to obtain POAFD. In this part, under the assumption (B.6), we will prove
certain properties of boundary behavior of functions in Hp(TΓ), 1 < p < ∞, which can be
regarded as special cases of the analogous results of Lemmas 4.3 - 4.5. When p = 2, such
properties give BVC in H2(TΓ1).

We need the following results as preparation.

Lemma B.1 Suppose that Γ is a regular cone in Rn. For z = x + iy ∈ TΓ and 1 < p ≤ ∞,
we have

‖Py(x− ·)‖Lp(Rn) ≤
1

2
n
p

K(z, z)1− 1
p . (B.1)
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Proof: For 2 < p <∞ and z = x+ iy ∈ TΓ, we have∫
Rn
|K(ξ, z)|pdξ = sup

ξ∈Rn
|K(ξ, z)|p−2

∫
Rn
|K(ξ, z)|2dξ

≤ 1

2n
K(z, z)p−2K(z, z) =

1

2n
K(z, z)p−1.

(B.2)

Hence, for 1 < p <∞,∫
Rn
|Py(x− ξ)|pdξ ≤

∫
Rn

|K(ξ, z)|2p

K(z, z)p
dξ ≤ 1

2n
K(z, z)2p−1−p =

1

2n
K(z, z)p−1. (B.3)

Obviously, when p =∞, we have ‖Py(x− ·)‖L∞(Rn) ≤ K(z, z). 2

Unlike the octant case, estimation of K(z, z) at points of ∂Γ and at infinity is not easily
accessible. The next lemma gives useful estimates of K(z, z) on ∂Γ.

Lemma B.2 ([11, Lemma 2],[10, Proposition I.3.2]) Let Γ be a regular cone in Rn, n ≥
3, and β ∈ ∂Γ. Then

lim
y∈Γ,y→β

∫
Γ∗
e−4y·tdt =∞. (B.4)

Remark It is obvious that (B.4) is true when n = 1. For the self containing purpose we
illustrate the proof. For n = 2, as shown in [8] it suffices to verify (B.4) holds for a special
class of regular cones in R2 :

Γκ = {y ∈ R2; |y1| < κy2}, 0 < κ <∞. (B.5)

The dual cone of Γκ is

Γκ,∗ = {t ∈ R2; |t1| <
1

κ
t2}.

By a direct computation, we have

KΓκ(z, z) =

∫
Γκ,∗

e−4πy·tdt =
κ

8π2(κ2y2
2 − y2

1)

(see e.g. [8] for general n). Obviously, for β ∈ ∂Γκ, limy∈Γκ,y→βKΓκ(z, z) = ∞. In the
following discussion, we write elements in Γ as column vectors. If Γ is a regular cone in R2,
then, for y ∈ Γ, there exists a matrix P ∈ SO(2,R) = {Q ∈ GL(2,R);QQT = QTQ =
I, |Q| = 1} and Γκ such that

(y1, y2)T = P (ξ1, ξ2)T , ξ = (ξ1, ξ2)T ∈ Γκ.

Then we have

K(z, z) =

∫
Γ∗
e−4πy·tdt = |P |

∫
Γκ,∗

e−4π(Pξ)·(Pt′)dt′ =

∫
Γκ,∗

e−4πξ·t′dt′.

Since P is nonsingular, ξ → ∂Γκ as y → ∂Γ. Hence, limy∈Γ,y→βK(z, z) =∞.

25



What we are concerned is whether there holds

lim
ỹ∈Γ̃,|ỹ|→∞

K(x+ iỹ, x+ iỹ) = 0, (B.6)

where Γ̃ = y′ + Γ, y′ ∈ Γ. In this paper we do not prove that (B.6) holds for general cones.
Nevertheless, we can show that (B.6) holds for two classes of cones: the polygonal cones and
the circular cones. If a polygonal cone is the interior of the convex hull of a finite number
of n linearly independent rays meeting at the origin, we call it n-sided polygonal cone. A
polygonal cone, however, is always a finite union of n-sided polygonal cones. Hence the
general polygonal cone case is reduced to the n-sided polygonal cone case. For the circular

cone case, we only need to consider the circular cone of the form Γκ = {y ∈ Rn;
√∑n−1

j=1 |yj|2 <
κyn}, κ > 0, as we can reduce a general circular cone to this form by using some rotation.
In fact, these two classes of cones are two different generalizations of Γκ in Rn, n ≥ 3. For
simplicity, we consider Γκ in R2. We will use two different ways to show that (B.6) holds for
Γκ. One can then easily conclude that (B.6) holds for the polygonal and the circular cones,
in general.

We first show the way that can be utilized in proving that (B.6) holds for the circular
cones. As shown previously, for y ∈ Γκ,

KΓκ(x+ i(y + y′), x+ i(y + y′)) =
κ

8π2(κ2(y2 + y′2)2 − (y1 + y′1)2)

≤ κ

8π2δ0[κ(y2 + y′2) + |y1 + y′1|]
,

where δ0 = dist(Γ̃κ,Γκ,c) > 0, and Γκ,c is the complement of Γκ. This implies (B.6).
Next we show the way that can be utilized in proving that (B.6) holds for the polygonal

cones. Note that there exist a linear transformation Q that maps the first octant onto Γκ,
i.e., ỹ = Qξ̃, ỹ ∈ Γκ, ξ̃ ∈ Γ1 (see e.g. [24, 23]). Hence we have

KΓκ(x+ iỹ, x+ iỹ) =

∫
Γκ,∗

e−4πỹ·tdt =
1

|Q|

∫
Γ1

e−4πξ̃·t′dt′ =
1

|Q|
KΓ1(iξ̃, iξ̃).

Since |ξ̃| → ∞ as |ỹ| → ∞, we conclude the desired result again. Since the interior of the dual
cone of a polygonal cone Γ is polygonal, there exist n-sided polygonal cones Γ(k), k = 1, ..., N,
such that

KΓ(w, z) =
N∑
k=1

∫
Γ∗

(k)

e−4π(w−z)·tdt =
N∑
k=1

KΓ(k)
(w, z),

where Γ∗ = ∪Nk=1Γ∗(k), and for each Γ(k) there exists a linear transformation mapping the first

octant onto Γ(k). Therefore, we can easily get that (B.6) holds for the polygonal cones.
For general regular cones, we have the following result, which is closely related to (B.6),

but we note that the lemma is not sufficient to prove (B.6).

Lemma B.3 Suppose that Γ0 is a regular cone whose closure is contained in Γ∪ {0}, where
Γ is a regular cone. Then

lim
y∈Γ0,|y|→∞

K(iy, iy) = 0.
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Proof: We first show that

lim
y∈Γ0,|y|→∞

e−4πy·t = 0.

We claim that if η ∈ Γ0 and t ∈ Γ∗, then there exists a δ > 0 such that δ|η||t| ≤ η · t.
Denote by Σ the set {ξ ∈ Rn; |ξ| = 1}. Define a function H(η, t) = η ·t, η ∈ Γ0∩Σ, t ∈ Γ∗∩Σ.
From the definition of Γ∗ and Γ0 we have 0 < η · t. Since Γ0∩Σ and Γ∗∩Σ are both compact,
the existence of δ > 0 follows from the fact that 0 < η ·t = H(η, t) and H(η, t) is a continuous
function. Consequently, we have

lim
y∈Γ0,|y|→∞

e−4πy·t ≤ lim
y∈Γ0,|y|→∞

e−4πδ|y||t| = 0, t ∈ Γ∗

and
e−4πδ|y||t| ≤ e−4πδ|t|, |y| ≥ 1,

where
∫

Γ∗
e−4πδ|t|dt < ∞. Therefore, by the Lebesgue dominated convergence theorem we

have
lim

y∈Γ0,|y|→∞
K(iy, iy) = 0.

2

Remark On one hand, the argument used in Lemma B.3 can not be applied to Γ̃ = y′ + Γ
with some fixed y′ ∈ Γ since the key point of such argument is that the union of all dilations
of Γ0 ∩ Σ is Γ0 while this is not the fact of Γ̃ ∩ Σ. On the other hand, Lemma B.3 shows
that (B.6) holds in most situations. The unsolved situation can be almost concluded as

that ỹ ∈ ∂Γ̃, |ỹ| → ∞. The assumption (B.6) should hold for more cones other than those
discussed in this paper. For instance, one can easily check that (B.6) holds for the symmetric
cone in R3 given by {y = (y1, y2, y3) ∈ R3; y1 > 0, y1y2 − y2

3 > 0} (see [3]).

Under the assumption that (B.6) holds, the main result of this part is stated as follows.

Theorem B.4 Suppose that Γ is a regular cone such that (B.6) holds. For F ∈ Hp(TΓ), 1 <
p <∞, and z = x+ iy ∈ TΓ, we have the following results.

lim
y∈Γ,y→β

|F (z)|
K(z, z)

1
p

= 0 (B.7)

holds uniformly for x ∈ Rn, where β ∈ ∂Γ.

lim
y∈Γ,|y|→∞

|F (z)|
K(z, z)

1
p

= 0 (B.8)

holds uniformly for x ∈ Rn.

lim
|x|→∞

|F (z)|
K(z, z)

1
p

= 0 (B.9)

holds uniformly for y ∈ Γ.
In particular, for regular cones in R2 (that is, n = 2), and for polygonal cones and circular
cones in general Rn, we can prove the validity of (B.6) but do not need to specially assume
it.
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Proof: By Theorem 2.4, we have

F (z) =

∫
Rn
F (ξ)Py(x− ξ)dξ,

where F (ξ) ∈ Lp(Rn).
Therefore, for any ε > 0, we can find G ∈ Lr(Rn) ∩ Lp(Rn), p < r <∞, such that

‖F −G‖Lp(Rn) < ε.

Hence, for q satisfying 1
p

+ 1
q

= 1 and h satisfying 1
r

+ 1
h

= 1,

|F (z)|
K(z, z)

1
p

≤
∫
Rn |F (ξ)−G(ξ)|Py(x− ξ)dξ

K(z, z)
1
p

+

∫
Rn |G(ξ)|Py(x− ξ)dξ

K(z, z)
1
p

≤ ‖F −G‖Lp(Rn)

‖Py(x− ·)‖Lq(Rn)

K(z, z)
1
p

+ ‖G‖Lr(Rn)

‖Py(x− ·)‖Lh(Rn)

K(z, z)
1
p

< ε

1

2
n
q
K(z, z)1− 1

q

K(z, z)
1
p

+ ‖G‖Lr(Rn)

1

2
n
h
K(z, z)1− 1

h

K(z, z)
1
p

=
ε

2
n
q

+
‖G‖Lr(Rn)

2
n
h

K(z, z)
1
r
− 1
p ,

(B.10)

where the first inequality is given by the triangle inequality, and the second inequality follows
from the Hölder inequality.

By Lemma B.2 and the fact that 1
r
− 1

p
< 0, we have K(z, z)

1
r
− 1
p → 0 as y → β. Therefore,

we complete the proof of (B.7).
By Theorem 2.4, we know that

F (z) =

∫
Rn
F (ξ)Py(x− ξ)dξ.

Then, for any given ε > 0, we can find y′ ∈ Γ such that∫
Rn
|F (ξ + iy′)− F (ξ)|pdξ < ε.

So

|F (z)|
K(z, z)

1
p

=
|
∫
Rn (F (ξ)− F (ξ + iy′))Py(x− ξ)dξ|+ |

∫
Rn F (ξ + iy′)Py(x− ξ)dξ|

K(z, z)
1
p

<
ε

2
n
q

+
|
∫
Rn F (ξ)Py+y′(x− ξ)dξ|

K(z, z)
1
p

.

Similar to (B.10), we have

|
∫
Rn F (ξ)Py+y′(x− ξ)dξ|

K(z, z)
1
p

≤ ε

2
n
q

K(z + iy′, z + iy′)1− 1
q

K(z, z)
1
p

+
||G||Lr(Rn)

2
n
h

K(z + iy′, z + iy′)1− 1
h

K(z, z)
1
p

,

(B.11)
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where G ∈ Lr(Rn) ∩ Lp(Rn), 1 < r < p, 1
p

+ 1
q

= 1 and 1
r

+ 1
h

= 1.

Notice that K(z + iy′, z + iy′) < K(z, z). Hence, the first term in (B.11) is strictly less
than ε

2
n
q

. For the second term in (B.11), by K(z + iy′, z + iy′) < K(z, z), limy∈Γ,|y|→∞K(z +

iy′, z + iy′) = 0 and 1
r
− 1

p
> 0, we can easily conclude that, for |y| large enough,

K(z + iy′, z + iy′)1− 1
h

K(z, z)
1
p

< ε.

By the above discussions, the proof of (B.8) is completed.
To prove (B.9), because of (B.7) and (B.8), we only need to show that

lim
|x|→∞

|F (z)|
K(z, z)

1
p

= 0 (B.12)

holds uniformly for y ∈ A0, where A0 is a compact subset in Γ. Notice that

K(z, z) =

∫
Γ∗
e−4πy·tdt = K(iy,−iy),

and y ∈ A0. It suffices to show

lim
|x|→∞

|F (z)| = 0. (B.13)

Since A0 is compact, there exists a constant ρ > 0 such that d(A0,Γ
c) = inf{|y − ξ|; y ∈

A0, ξ 6∈ Γ} ≥ ρ, where Γc is the complement of Γ. Let A1 = ∪y∈A0{η; |η − y| < ρ
2
}. Obviously,

d(A1,Γ
c) ≥ ρ

2
and A1 is also compact. Based on the fact that

∫
A1

∫
Rn |F (x+ iy)|pdxdy <∞,

and the definition of functions in Hp(TΓ), we have∫
A1

∫
|x|>N

|F (x+ iy)|pdxdy → 0, N →∞. (B.14)

Recall that |F |p is subharmonic. For z ∈ TΓ, we have

|F (x+ iy)|p ≤ 1

V (Bz(
ρ
4
))

∫
Bz( ρ

4
)

|F (ξ + iη)|pdξdη, (B.15)

where V (Bz(
ρ
4
)) is the volume of the ball Bz(

ρ
4
) centered at z with radius ρ

4
. From (B.15),

for y ∈ A0, we have

|F (x+ iy)|p ≤ 1

V (Bz(
ρ
4
))

∫
Bz( ρ

4
)

|F (ξ + iη)|pdξdη

≤ 1

V (Bz(
ρ
4
))

∫
{η;|η−y|≤ ρ

4
}

∫
{ξ;|ξ−x|≤ ρ

4
}
|F (ξ + iη)|pdξdη

≤ 1

V (Bz(
ρ
4
))

∫
A1

∫
{ξ;|ξ−x|≤ ρ

4
}
|F (ξ + iη)|pdξdη.

(B.16)
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Since |ξ − x| ≤ ρ
4
, we have |x| − ρ

4
≤ |ξ| ≤ |x| + ρ

4
. Therefore, when |x| > N + ρ

4
, by (B.14)

we have (B.16) tends to 0 uniformly for y ∈ A0. The proof is completed. 2

Remark (1) When p = 2, Theorem B.4 implies existence of z(m+1) in the following mini-
mization problem

z(m+1) := arg max
z∈Γ
|〈F,Bzm+1〉|. (B.17)

Hence, we obtain POAFD in H2(TΓ) if Γ is one of the following cases: a regular cone in R2;
a polygonal cone in Rn; a circular cone in Rn.
(2) Since |F |p is still subharmonic for 0 < p ≤ 1, the technique used in proving (B.13) in
Theorem B.4 still works. Thus (B.13) holds for 0 < p <∞. Note that Theorem B.4 plays an
essential role in studying POAFD. Moreover, Theorem B.4 indeed is analogous to the known
result in the Hardy spaces on the unit ball Hp(Bn), 1 < p <∞ (cf. [32, page 123]),

lim
|z|→1−

(1− |z|2)
n
p |F (z)| = 0, F ∈ Hp(Bn),

where KBn(w, z) = 1
(1−

∑n
k=1 wkzk)n

is the Cauchy-Szegö kernel for H2(Bn).

School of Mathematics (Zhuhai), Sun Yat-Sen University (Zhuhai), China
E-mail address: maiweixiong@gmail.com

Macau Institute of Systems Engineering, Macau University of Science and Technology,
Macao, China

E-mail address: tqian@must.edu.mo

30


	1 Introduction
	2 Preliminaries
	3 POAFD in H2(T1)
	4 The Maximal Selection Principle of POAFD
	5 Further Results
	5.1 Rate of convergence
	5.2 Rational approximation of functions in L2(Rn)

	References
	A A Non-Orthogonal Expansion with Simpler Algorithm
	B Results on Regular Domains

