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Integral Representations in Weighted Bergman Spaces

on the Tube Domains

Yun Huang * Guan-Tie Deng | Tao Qian *

Herein, the Laplace transform representations for functions of
weighted holomorphic Bergman spaces on the tube domains are
developed. Then a weighted version of the edge-of-the-wedge

theorem is derived as a byproduct of the main results.
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1 Introduction

The classical Paley—Wiener theorem asserts that functions of the classical Hardy space
H?(CT) can be written as the Laplace transforms of L? functions supported in the right
half of the real axis, see [I]. This theorem has been extended to more general Hardy spaces,
including the HP spaces cases (0 < p < 00), higher dimensional cases and weighted spaces,
see [11) 13, [15], 14} 12, [9]. Integral representation theorems have also been investigated for

Bergman spaces.
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We first introduce some notations and definitions. Let B be a domain (open and
connected set) in R” and T = R" 4+ iB C C" be the tube over B. For any element
2= (21,22,--+,2n), 2k = Tk + 1Yk, by definition, z € Ty is and only if x = (xq,...,x,) € R"
and y = (y1,...,Yn) € B. The inner product of z,w € C" is defined as z - w = zyw; + zows +
-+ + z,w,. The associated Euclidean norm of z is |z| = /2 - 2z, where z = (2, %o, . .., Zy,).

A nonempty subset I' C R" is called an open cone if it satisfies (i) 0 ¢ T', and (ii)
azr + Py € I' for any z,y € [ and a, 8 > 0. The dual cone of I is defined as I'* = {y € R":
y-x >0, for any € I'}, which is clearly a closed convex cone with vertex at 0. We say
that the cone I' is regular if the interior of its dual cone I'* is nonempty.

11 _
For;+5—1, define

qg—1
BP(Tg) = {F : I is holomorphic in T and satisfies / (/ |F(z + z'y)|pda:) dy < oo} .
B n

Among the previous studies, Genchev showed that the function spaces BP(1 < p < 2), in
the one- and multi-dimensions in [3] and [4], respectively, admit integral representations in

the Laplace transform form. These results can be applied to the Bergman spaces

AP(Ty) = {F : F is holomorphic on Tt and satisfies |F(z +iy)|Pdzdy < oo}

Tr

to obtain the corresponding integral representation results for AP(1t) in the range 1 < p <

2(131).

In this paper we initiate a study on a class of function spaces, denoted by AP*(B, ), of
which each is associated with a weight function of the form e~2™¥®) where 1 (y) € C(B) is
continuous on B. The space AP*(B,1)(0 < p < 00,0 < s < 00) is the collection of functions
F(z) that are holomorphic in T and satisfy

C NG
| F || ap.s(B,w) = </ </ |F(z + iy)e‘2“¢(y)|pdx> dy) < 00,0 <p, s <00,
B n

1
P
| F|| apoe (B,yp) = sUp {6_2”’(3’) (/ \F(x+z'y)|pdx) Y € B} <o0,0<p<oo,s=00
and
| F|| 4000 (B,p) = Sup {e‘zw(y)|F(1’ +iy)|,z € R",y € B} < 00, p= 00,8 = 00.

This paper is structured as follows. In §2, we introduce our main work on the integral

representation for AP*(B, ), which is separated into three cases, namely, AP*(B, 1) for
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1<p<2 APS(B,y) for 0 < p < 1 and AP*(T",4) for p > 2, corresponding to Theorem 1, 2
and 3 respectively. The proofs are given in §3. Finally, some results, referring to Corollary
2, Theorem 4 and Theorem 5, are derived as applications of the integral representation

theorems claimed in §2.

2 Main results

In order to introduce our main results, we define the set

Un(B, ) = {t cR": / e~ 2malty o) gy < oo} (1)
B

for a € (0, 00) and
Usc(B,90) = {t + inf(y - £ +(y)) > —oo} (2)

for o = 0.
The representation theorem for AP*(B, 1)), where 1 <p <2 and 0 < s < 00, is stated as
follows.

THEOREM 1. Assume that 1 < p < 2,0 < s < oo, then each F(z) € AP*(B,v) admits an

integral representation in the form
F(z)= [ f(t)e*™=dt, z € Tp, (3)
RTL

in which, for p =1, f(t) € C(R™) satisfies

) ( / e—%ﬂywy”dy) < 1 laneiy (4)

and, for 1 <p <2 and % + % =1, f(t) is a measurable function that satisfies
sp

1
( / ( / |f(t)e‘2”(y't+"’(y”|"dt) dy> < L. (5)

Moreover, f is supported in Us(B,1) for p =1 and supported in Us,(B, ) for 1 < p <2,
0<s(p—1)<1.

As given in the next theorem, integral representations in the form of Laplace transform

are also available for 0 < p <1 and 0 < s < .



THEOREM 2. Assume that F(z) € AP*(B,v), where 0 <p <1 and 0 < s < co. Then there
exists a continuous function f(t) such that f(t)e >t € L'(R™) and (3) hold for y € B.

Considering the property of f(t) for the case of 0 < p < 1, we let B be a regular open
convex cone I' and let ¢ € C(I") satisfy

AL (6)
yel',y—o0 ‘y‘

R, =
Then we obtain the following corollary.

COROLLARY 1. Assume that I' is a regular open convex cone and F(z) € AP*(I',1)) for
0<p<1,0<s<oo, where p € C(I') satisfies (@). Then there exists f(t) supported in

1
I'* + D(0, Ry) such that (@) holds and | f(t)| ([ e > @R dy) s is slowly increasing.
Similarly, we establish an analogy for p > 2 and 0 < s < cc.

THEOREM 3. Assume that p > 2, 0 < s < 0o, I' is a reqular open convex cone in R" and
e C(T) satisfies (@). If F(z) € AP*(T',4)) satisfying

lim |F(x + iy)|*dz < oo, (7)
yel,y—0 JR"»

then there exists f(t) € L*(R™) supported in Us,(T',v) such that (3) holds for all z € Tr.

The definition of AP*(B, 1)) shows that AP*(B,) is a weighted Hardy space when s = oo
and a weighted Bergman space when s = 1. Taking ¢(y) = 0, it becomes, for s = oo
and s = 1, respectively, the classical Hardy space HP and the classical Bergman space AP.
Therefore, our results herein can be regarded as generalizations of certain previously obtained
results.

For example, taking s = oo and B a regular open convex cone I'; AP*°(B, ) = HP(T', 1)
is the weighted Hardy spaces investigated in our previous paper [15]. Then Theorem 1, 2
and 3 in [15] can be derived from our main work, including Theorem 1, 2, 3 and Corollary 1
herein. For s = oo and ¢(y) = 0, letting B be some specific domains, some previous studies
for the Hardy spaces, see [Il, [13] 14, 12, 9], can be also derived from Theorem 1, 2, 3 and
Corollary 1.

On the other hand, letting s = 1, by using Theorem 1, 2, 3 and Corollary 1, we can obtain
the representation theorems for the standard Bergman spaces. Note that for s =1, B =T
and (y) = 0, we have AP*(B,v) = AP(1r). We therefore conclude from Theorem 1 that

the counterpart results of Theorem 1, 2 and 3 in [5] hold for the classical Bergman spaces



AP(Tr)(1 < p < 2). If we set ¢¥(y) = 0 and s = g — 1, where % + % = 1, then AP*(B,)
BP(Tg). The integral representation theorems for those function spaces BP(T)(1 < p < 2)
can be derived from Theorem 1 herein, see [4]. Especially, letting s = 1, p = 2, ¥(y) =
—i=log|y| and B a regular open convex cone I', Theorem 1 implies a higher dimensional
generalization of Theorem 1 of [10] in tube domains, which is established as Corollary 2 in

the sequel.

3 Proofs

This section is devoted to proving the results stated in §2.

Proof of Theorem 1. We first prove the case of p = 1. If F(z) € A"*(B,%), then F,(z) €
L'(R") as a function of x, and F,(x) as well, are both well defined. Next we prove that
Fy(t)e_%y't is independent of y € B. Without loss of generality, assume that a = (d', a,),
b= (d,b,) € B,and a+ 7(b—a) € B for 0 <7 <1, where a’ = (ay,...,a,-1). The fact
F,(z) € L*(R™) implies that

/OOO/O /R (IF((2, ) +i(a+7(b— )|+ |F((z', —2,) +i(a + (b — a)))]) da’drda, < oo,

which implies

Jim / /R (F(R) + i+ 7o — a))| + [F (@, —R) +ila + (b — ) de'dr = 0.

R—o00 JO

Hence, we have

| t)6—27rbt V ( )6—27ra~t|

£,
— / (F T+ Zb 2mi(x+ib)-t F(ZII’ + Z»a)e%ri(m—l-ia)-t) dr

= / / F(z+i(a+7(b— a)))e* @ HilatrC=ad)t) 47y

= = ) ! 2mi(z4i(y' yn))-t B
= /n /0 ayn F(ZI}‘ -+ Z((y 7yn>>€ ‘ynzan—i-ﬂ-(bn—an)(b” an)) drdzx

1
[ [ i (PGt o 700 = a0 dra
n Jo n

= |bp — ay

< Bo=al i [ PR (0 0= )]+ 1P —R) b= )

R—o00 JO
e—27r‘t|(‘a|+‘b—a‘)dx/d7_

= 0.



Remark that B is connected and open, by an iteration argument, we can show that Fy(t)e_zwy't
is independent of y € B and we write it as g(t). Then g(t) = F,(t)e~2™" holds for
y € B. Next, we show that g(t)e*™' € L'(R"). Let us decompose R™ into a finite
union of non-overlapping polygonal cones, I'y,I'y,..., 'y with their very vertexes at the
origin, i.e., R” = [J\_ T'x. Then xr, (£)g(t)e>™* = xp, (t)F,, (t)e 2" @91 For any y, € B,
there exists § such that D(yy,8) C B. Then for any y € D(yo,2) and yx € (yo + I's)

satisfying 2 < |yp — yo| < 0, we get (ye —y) -t = (yx — vo) - t + (yo — y) - t. Since
Yr — Yo, t € I'y, the angle between the segments O(yx, — o) and Ot is less than, say 7. Then
(ye — ) - t > 220ljt] — o — y[lt] > (25 — 13|t} > $9]t|. Thus, it follows from Hélder’s
inequality that

O i < [ 0 1 < 1E e [ Mt < o0
Tk Ik Ty

which shows that g(t)e*™t € L*(T'y). Hence g(t)e*™* € L'(R™). Together with the relation
g(t) = F,(t)e=* for y € B, there holds F(z) = [,. g(t)e=>™** for all y € B. By letting
f(t) = g(—t), we then obtain the desired formula @] for p =1 and z € T.

Thus, f(t)e 2™t € L'(T';) implies that

sup [FOle? < [ |Fle+iy)|da
teR™ Rn
|f(t)|e_27ry'te_2w(y) < |F(93—|—z'y)|e_2w(y)d:£
Rn
O / 2R gy < / ( |F<x+z'y>|e-m<y>dx) dy
B B Rn
. ®)

which implies ({#l). Next we prove suppf C Uy(B, ). Suppose that ty ¢ Us(B, ), then ()
implies [, e~ 2w totvW) dy = 400 for y € B. It then follows from (8) that f(¢) = 0, which
means the support of f, i.e., suppf C Us(B, ).

Next we prove the case 1 < p < 2. Let By C B be a bounded connected open set,
so there exists a positive constant Ry such that By C D(0,Rp). Assume that [.(z) =
(1+e(22+---+22))N, where N is an integer satisfying N > n. Then for & < ﬁ, 2 =x+1y
with |y| < Ry,

L(z)] = [(Q+e(z?+--+22))%)7

= (U eleP — y)* + 4 (- )°)

> (Lte(lef ~1u)” > (é *5'"”“‘2)

N
2
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for ly| < Ry, ie., [I71(2)] < m For F,(z) = F(z + iy), set F.,(z) = F,(x)I7'(2),
3 E|T

then based on Holder’s inequality,

|, (z)| do < (/ |Fy(:):)|pdx)p (/ }z;l(x+z'y)\"dx>q < 0,
R™ Rn Rn

where = + % = 1, which implies that F.,(z) € L*(R"). Then as in the proof for p = 1,
gey(t) = FL,(t)e?™" can be also proved to be independent of y € By when 1 < p < 2. Put
gey(t) = g-(t), then g.(t)e*™t = F_,(t) € L*(R™).

On the other hand, it is obvious that F; ,(x) — F,(x) pointwise as ¢ — 0. Now we prove

1
p

that Fy(t)e_zwy't is also independent of y € By. Indeed, for a,b € By and any compact subset
K C R, let Ry = max{|z|: z € K},

(

1
Fa(t)e—%m-t . Fb(t>e—2wb-t‘q dt) ¢

- (/K F“(t)e_m't—9a(t)}th)%+</ \ga(t)—Fb(t)e‘z“”'t\th)%

= ([ R dt) + ([ st Fb@)e—%b-t\thf
= ez’rR‘)Rl((/K Fa(t) = \dt) (/ | F(t) F,,(:s)\th)%)

= (( o 1 Foll) = Fe,a<t>|”dt) + ( [ 1Ealn) - Fb(t)|pdt);>

— 0,

as ¢ — 0. Hence we obtain that F,(t)e 27" = [(t)e~2™* almost everywhere on R™ and
write it as g(t). Then we have g(t) = E,(t)e ™"
Next, we show that g(t)e*™* € L'(R"). As in the proof for p =1, let R" = U]kvzl Iy and

D(yo,d) C By. Then for any y € D(yo, %) and yi € (yo + I'x) satisfying i—‘s < |yr — yo| < 6,

|yk_y0|
|t — —yl|t —— — ot > 6t
20— o = it > (7 = Pole] > 301

we have
(Yo —y) -t >

for yx — yo,t € I'x. Thus, from Hélder’s inequality

s < [ B0t ([ R, wra) ([ ertie) <o
Fk Fk: Fk?

I

which shows that g(t)e*™* € L'(T';) and the function G(z) defined by
G(Z) — / g(t)6—27rz'(x+iy)~tdt
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is holomorphic in the tube domain Ty, s)-
Now we can prove that, for y € By,

lim ge(t)e Zmilatm)t gy :/ g(t)e Zmitatin)t gy

e=0 Jpn n

In fact, if y € By,

/ =) — g(t))e met iy)'tdt‘

< / ‘(Fa,y(t)e_zwy.t — Fy(t)6_27ry‘t) e?ﬂiz«t‘ dt
- Z/ ‘(F’avyk (x) — Fyk (aj)) e_QWi(yk—y)-t‘ dt
k=1 Ty
< Z ( |EL (1) — Fyk(:c)|th) e (/ e_pﬂafltdt) v
k=1 Ty r
S 050 Z ( ‘Fe,yk(flf) — Fyk (x)‘Pdt)
k=1 T
— 0

when € — 0, where C = [o., e P R ldt. Tt follows that ll_r}(l) F.(z) = G(z). Combining with
li_)r% F.(z) = F(z), we can state G(z) = F(z) for y € By. Then there exists a measurable
function g(t) such that F(z) = [, g(t)e *™*'d¢t holds for y € By. Since B is connected, we
can choose a sequence of bounded connected open set {By} such that By C By C --- and
B = J;2, Bx. Together with the fact that g(t) = F,(t)e=?™¥ is independent of y € By, then
E,(t)e~2mut = F, (t)e 2™t = F,(t)e=2" for | # j, yy € By,y; € B; and y € By. Hence
g(t)e*vt = F,(t) holds for y € By, k = 0,1,2,.... In other words, f(2) = [, g(t)e™2"=*dt
holds for all y € B. By letting f(t) = g(—t), we obtain the desired representation F'(z) =
Jgn f(t)e*™* dt for y € B when 1 < p < 2.
For % + % = 1, based on the Hausdorff-Young Inequality,

( If(t)e‘Z”y'thdt) "< ( |F<x+iy>|pdx)” | (9)
Rn Rn
then

<< |f(t)€—27ry-t|th) q 6_2p7r111(y)dy> < < |F(ZE + iy)e—%w(y) |de) )
Rn R"

Performing integral about y € B on both sides, we get

/ < \f(t)e_%y't\th) ) dy < / < |F(z + z'y)e_z’rw(y”pdx) dy

8



and
p

/ (( [ Ve e-wy)) 4y < P (10)

As a result, formulas (3) and () hold for 1 < p < 2. Now we prove that suppf C Us,(B, )
when 0 < s(p—1) < 1. For 0 < s(p—1) <1, we have L > 1. Then Minkowski’s inequality
and (I0) imply that

[ st ([ o) s 1 < oo (1)

Consequently, It follows from (1) and (1) that f(¢) = 0 for almost every ¢ & Us,(B, ).
Therefore, suppf C Us,(B, ). O

In order to prove Theorem 2, we first introduce a lemma.

LEMMA 1. Suppose that F(z) € AP*(B,1), where 0 < p < 0o and 0 < s < oo, then for
Yo € B and positive constant 0 such that D, (yo,d0) C B , there exist constants N > 1 and
Cyn.Nps depending on n, N,p, s such that

‘F(Z)‘ < Cn,N,p,sé_%(1+%)€2W¢6(y0)7 (12)

where Y5(yo) = max{(n) : [n — yo| < 6}

Proof. For yo € B, there exists § > 0 such that Bs = D(yo,d) C B. Then for F(z) =
F(x +iy) € AP*(B, ), based on the subharmonic properties of |F(z)[*, we have

1 1
thgi/ € +in)|'dédn < —— / (/ F(E+i td)d
FOI < g [, IPEmldein< gren | ([P i ) dn

for y € By, where € is the volume of k-dimensional unit ball Dy (0, 1) centered at the origin
with radius 1, k = n,2n. Let py = N = 2 > max{1,1} and pil + qil = 1. Holder’s Inequality
implies that

1 1
1 . 2 o
POl < oo [ ([ rermrae) an ([ )
2n Dn(yg,é) D7L(Z‘,6) D7L(5576)

e )"
Sl el F(E+in)Pde ) dn.
0*"Qn S D, (yo.0) Dn(x,6>| &+ m) !




For 0 < s < o0, let ps = sN. Then py > 1. Again, by Holder’s Inequality, for piz + qiz =1,

5, Y _ S\ -
rar < S ([ rermrae) )" (i)
2n Dn(y0,6) \J Dn(x,5) Dn (y0,9)

1 1 1
6"Q,)m T o spr 2
< ESE ([ ([ et e mope) i)
2n Dn (yo0,9) D (,6)
(SnQ 2——(14— )e 57”/’6(90) ] B é
< U ([ ([ iresmemopa) )
2n Dy (yo0,9) Dy (z,6)

(67€2, )2——(1+ )2 oo s (Yo) (/ ( i ) )%
< F(€+1 ™ |pq ,
< e [ (] 1t impesreoo pag

where ¢5(yo) = max{4(n) : | — yo| < d}. Hence,

1 1 1
=R =R WU+ 2kmus(wo) | ¢ S\ g
|F(2)] < " i / \F(§+m)e—2w(n)‘pd5 dn ’

$(1+3) 1 sp

QT SP o sp tp
< T 6 tp2 s (yo) </ ( |F(§‘|’”7) —27m)(n |pd§) ) 2 .

-0+
Since & =1, by letting Cy, nps = 2" Qp% |F'(2)|| ap.s(B,), We obtain the desired inequal-
2n

ity
[F(2)] < Cpgpsd 52200l

While s = o0, for py = sN = oo, we have

o, 2— L t
[F(2)]" < (Qn# sup / |F(¢ +z’n)|”d§'p
02" (o €D (y,8) |J Dy (2,6)
Then
50, -3 1
|F(2)] ()—Npe%rw(s(yo) sup (/ |F(€+ in)|pd§) ! e 2m(y)
(52”Q2n)? N€Dn (y,9) Dn(z,6)
2N _1
QF *
= 5 5-;6%%(3/0)||F(Z)||Apyoo(B’¢).
Q2pn
Obviously, the inequality (I2)) is also applicable in the case s = occ. 0

Now we are ready to prove Theorem 2.

Proof of Theorem 2. For yy € B, there exists 0 > 0 such that Bs = D(yo,d) C B. Then for
F(z) € AP#*(B,) and any y € By, it follows from Lemma [T that

|F(2)] < Cponps6 70T 2mea(0),

10



Thus,

F(2)Pdz = [ P22 rde < €20 5 (FD2@omisto) [ p(2)[Pda.
R?’L

n,N,p,s
R R

Therefore,

|F(Z)|2e—47rwa(yo)dx
Rn
< CPps D 2@p)ms ) [ | () e 2R [P g 2T ) o~ o)
Rn

< C’i Al;p sé_M (1+1) e2(2=p)m5 (yo) |F( ) —2w(y)|pd$e2(p—2)wa(yo)
Rn

n(2—p)
= O, 0T 0 [ |R(2)e WPy,
RTL

Taking integral with respect to y to both sides of the inequality, we have

/ ( |F(z)|26_4”¢‘5(y°)dx) dy<CT(L2NI;sé WIZ(HS)/ < |F(z)e” 2 |pdx) dy,
Bs R™ Bjs R™

which concludes that F' € A*%(Bs,1s). Similarly, we can prove that

o s 1 SIS
[ (L peman) ay < el I (13)
6 n

Then F(Z) S AI’S(B(;, ¢5)

Following the proof of the case p = 1 in Theorem 1, there exists a continuous function

f(t) such that F(z) = [5. f(t)e*™*"dt holds for y € Bs and f(t) = E,(t)e*™" is independent
of y € B. Together with the fact that f(t)e 2™t € LY(R") for all y € B, we see that (3
holds for all y € B. This completes the proof of Theorem 2. O

Before the proof of Corollary 1, we introduce the following lemma.

LEMMA 2. Assume that T is a regqular open conver cone of R™. Let ¢ € C(T') satisfy (@),
then U, (¢, ') C I'" 4+ D(0, Ry), where Uy (9, 1) is defined by (1) for 0 < o < oo and by (2)

for a = o0.
Proof. For tg ¢ I'* + D(0, Ry), there exist € > 0 and £ € I'* such that d(to, I*) = |£ — to| >
Ry +3cand £+ (tg — &) = 0. Then for any ¢ € '™,

(€ —t0) o

€ —tol —
Hence (6 —ty) = (t—tg+tog—E+E)-(E—to) > |E—to|*—|E—to|> = 0, which means é—t, € T. For
any ¢ > 0, it follows from ([G)) that there exists po such that ¢ (y) < (Ry+9)|y| for |y| > po. Let

(t—to) > [€ — tol.

11



€ = 1= iOI € T'NdD(0,1), then for any &, > 0, we can find an e; € I" with |e;| = 1 such that
ler — eo| < &1, which means there exists a positive constant d; < €1 such that D(eq,d;) C I
Thus, for any e € D(eq, §1) with |e;| = 1, we have |e —eg| < |e —e1|+|e1 —eg| < 2¢1. Choose
e1 satisfying 2eq|tg] < e and let I'y = {y = pe : p > 0and e € D(e1,6) N9OD(0,1)} C I.

Then for any y € I'1, —pe -ty = p(—e+eg —€g) - to > p(—2¢1to| + |€ — to]) > p(Ry + 2¢) and

/6—27ra(to-y+w(y))dy > / 6—2na(to'y+(R¢+6)\y|)dy
r I'n{lyl>po}

Z / pn—ldp/ e27ro¢p(2a—6)do.(<) — —l—OO,
£0o aD(O,l)ﬂD(61,51)
which implies to & U, (1, T'). Therefore, U, (¥, T') C T* + D(0, Ry,). O

Now we prove Corollary 1.

Proof of Corollary 1. For yo € T, there exists § such that D(y,0) C I'. It follows from
Theorem 2 that there exists f(¢) such that (B]) holds for y € D(yo,0). Since I' is connected,
@) also holds for all y € T'. Applying the methods in the proof of Theorem 1 for p = 1,
we obtain that such an f(t¢) is supported in Us(I',1s5). Combing with Lemma 2] we have
suppf C Uq(T',¢5) C T +m, where

Tm ¢5(y)‘

yel,y—oco |y|

Ry,

6:

Since Ry, = Ry, for any y € T, we see that U, (T, 15) is also a subset of I'* + D(0, R,,). Hence,
suppf C I'" + m

Now we show that |f(t)] ([, e 2@+l dy) is slowly increasing. For yy, y € T,
yo+y el Fy(2) = F(z+i(y+yo)) € AP*(I',4). Asin Theorem 1, we have f(t) = g(—t) =
Eypy(—)e2" @)1 Due to the relation Ry =  Lim - 2% we have ¢5(y) < Ry (1+|yo|+|y)),

yeB,y—00 \y| ’
where R, is a positive constant independent of yy, y € I'. Then

1F()] = |Fyppy(—t)e?™wotv)t| = 275 () +(yo+y)-1)

/ Fyo—l—y (x)e—27rix-t€—27rw5 (y)dl'

< A |Fy0 (Z) |6—27T1115 (y)dIe2W(Rw(1+\y0\+|y\)+(yo+y)'t) )

Combining with (I3)), it follows that

1

</|f(t)|se—2s7r(y-t+Rwly)dy>S < (/ </ |Fy0(z)|6_2w5(y)d1') dy) 2 (Rys (1+|yo] ) +yo-1)
r

1— nlop)(ts) 27 (By (1+]yo])+y0-t)
S Cn ,N,p, 35 v

= Cexp{J(yo, 1)},

1Eyo 41,0 (5,0
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where C' = C,, 7 ||IF, o[l r.y and J(yo) = —Mlog5+2ﬂ(Rw(l+|yo|)+yo t). Let
J(t) = inf{J(yo,t) : yo € '}, then

1

o) ([ erroremimay ) < coptn),

Take yp = pv with p > 0 and a fixed v € I with |v] = 1, then § = d(pv,dI")/2 = pe,
where € = d(v,0I") /2. Therefore,

n(l—p)(1+s)

sp

J(t) = inf {—

p>0

log(ep) + 2w Ry (1 + p) + 27Tp|t\} :

in which the infimum can be attained when p = %W' It follows that

J(t) < 2rRy+n (1 - 1) (% + 1) (1 —loge —logn (1 — 1) (1 + 1) + log 27 (Ry + |t\)) .
p p S

Thus, there exists a positive constant M,, , s, such that

1
S " l_ l
Mol ( /F 6‘23“@'”%@/')@) < O’ < My o1+ [t)" 7T,

The proof is complete. O

Proof of Theorem 3. We first prove the case when 2 < p < oo. Since I' is a regular open

convex cone, intI' # (), where intI" is denoted as the interior of I'. Then for y € I, we

can find a basis {e;} C intI'™ such that y = Z?:l e;y; and e; -y > 0. For ¢ > 0, let
2N

le(z) = (H?Zl(l — ice; - z)) with N > % ( — %) and choose two positive constant A, B

such that Blz|> <e?37"  (e; - )* < Alx|* for all 2 € R". Thus,

n N
‘ZE(’Z)‘ = <H|1—i€6j-z|2> = (
jnl N ! n N
(H (145 2)> = (1 +e2) (e -93)2> > (1+&2Bla?)”
Jj=1 =1
e, I71(2)] < (1+ Blaf) ™. For Fla+iy) € AP(T,9), Fy(x) = Fla+iy) € I'(R") as

a function of z. Let F.(z) = F. ,(z) = F,(z)I-'(2), then F. ,(z) € L*(R") N L*(R"™). Indeed,
Holder’s inequality implies that

—=

(1 +eej-y)*+ (e - x)2)>

1

v

|Fe,y<x>|dxs( |Fy<x>|pdx)( |Z;1<x+iy>|qu) < ColF ey (14)
Rn Rn Rn
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and

2
. |F.,(z)dx < (/R |Fy(:):)|gd:):) ( 3 I (z +ay) |7 ) < Cocl|Fyll Lo mnys

1
where Cre = (fR" W) <00 Gre = (‘[R b zﬁN)
As the proof of p = 1 in Theorem 1, we can show g.(t)e*™t = ) € L'(R"). Thus,

. (t)627ry-t _ / Fa,y (I)e%rimvtdx’ (15)

then |g(t)|e*™" < [ |F.y(z)|dx. Together with (I4)), there hold

/|ga(t)|8p€28p”(y't_w(y))dy < Cl,a/( |F(x + iy)e 20 |pdx) dy,
I T R

‘ge(t)‘sp /F €2sp7r(yvt—¢(y))dy < Cl €||FHAp ()

1
P
|g€(t>|€27r(y't—¢(y)) < Cl,s ( |F(SL’ + iy)e—%rw(y) ‘pdx)
RTL

Now we prove that suppg.(t) C —U,s(I',¢). Note that g.(¢) is continuous in R™. Then for

to ¢ —Ups(T',0), formula () shows that [;,e*s™@to=vW)dy = oo for y € I. It follows from

the above inequality that g.(to) = 0 for tg ¢ —Ups(I',¢). As aresult, suppg.(t) C —U,s(I',¥).
Since g.(t)e*™t € L'(R"™), we can rewrite (I3) as

Fey(x) = / 9:()e ™™ X v (B)dt. (16)
Plancherel’s Theorem implies that [o, |g-(t)e*™"?dt = [, |F.,(z)|?dz. Then based on
Fatou’s lemma,
l9:(t)* < lim |F(x + iy)[*dz < oo.
Rn yel,y—0 JR"

Thus, there exist g( ) € L? (]R") and a sequence {e;} tending to zero as k — oo such that
klim Jan 9o (t = [an g(t)h(t)dt for h(t) € L*. In fact, for t € —U,(T,v), lemma
—00

implies that t € —Fk + D(O, Rw). Then ¢ can always be written as t; 4+t with ¢; € —I'; and
|ta] < Ry. Hence, for y € T,

y-t=y-(ti+t2) < =[]k + b2yl < —([t] = [t2))k + Rylt] < (Ry — K)[t] + Ryk,

implying that [o. |€*™"X_u (B, (t)[*dt < co. Therefore, on the right hand side of (I,

hIIl gak (t)6_2m'z.tX_UpS (') (t)dt = / g(t) —2miz: tX Ups(r ) (t)dt

k—oo Rn
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for e*™x_y (v (t) € L*(R™). Whilst it is obvious that F.(z) — F(z) when ¢ — 0. Sending
k to oo on both sides of (I6) and letting f(t) = g(—t), we obtain that f € L?(R") and the
support suppf is contained in U,(I', 1), as well as the desired representation (B]) holds for
all z € Tr.

We now prove the case when p = oco. For z = (z1,...,2,) € Tt and € > 0, we can also
construct a function F.,(z) = F.(z) = F,(2)I-'(z2), where I.(z) = (H;;l(l —ice; - z))zN
with N > 2. Then

|F. (z)|dx < suﬂg |Fy ()] |l€_1($ +iy)|dx < 5178||Fy||Loo(Rn) < 00 (17)
Rn xeR" Rn

and
|FLy(2)Pda < sup |Fy(2)] [ |12z +iy)[Pde < Coc||Fy 1= (R™) < oo,
R R~

zeR™

~ X % n
where C1. = [p. T 2B| Tona” and ng = (fRn W) < o0o. Hence F., € L'(R") N
L2(]R") In this case, we also have g.(t)e*™' = F.,(t) € L(R"). Then g.(t)e*™! =

Jan Fry(z)e*™ dx. Therefore, together with (IT),

lg-(0)]e*™ @) < Gy sup |Fy()]e W,

-'EGR"
sup [g-(1)] @) < Crl sup |F( oyt
yEF mGR”,yGF

= 51’€||FHA00,00(1"7,¢}) < 0

Then we can similarly show that suppg.(t) C —Us(I',¢) C =T + D(0, Ry). Applying the
same method for 2 < p < 0o, we obtain the desired formula (3)) holds for all z € T and the
support suppf is contained in U (I',¢) C I'* + D(0, Ry,). O

4 Applications

In [I0], denoting by A%(C") a weighted Bergman space of functions holomorphic in C*
satistying || F'[|%z o) = Jor [F(z + iy)[Py*dady < oo, and by LE(R*) the space of complex—
valued measurable functions f on RT satisfying ||f||%%( = F(Bﬁ St < oo,
Duren stated an analogy of the Paley—Wiener theorem for Bergman space.

Theorem A ([10]) For each o > —1, the space A%(C") is isometrically isomorphic under
the Fourier transform to the space L? +1(]R+) More precisely, F' € A%2(C") if and only if it

is the Fourier transform F(z) = [J° f(t)e*™**d¢t of some function f € L2, (R"), in which

case HF||A2(<C+ = ||fHLa+1(R+)-

15



Based on Theorem 1, letting s = 1, p = 2, ¢(y) = — = log |y| and B be a regular open
convex cone ', we establish Corollary 2, which can be regarded as a higher dimensional and

tube domain generalization of Theorem A.

COROLLARY 2. For each a > —1, F' € A2(Tv) if and only if there exists f(t) € L2 ,(I'*)
such that
F(z) = f(t)e%iz'tdt

holds for z € Tr and ||F|| a2 (1) = ||f||L2+1(F*

Proof. By restricting the base B to be a regular open convex cone I' and letting 1(y) =
Yaly) = —Llogly|, I € AZ(Ty) is also an element of A>!(I,1),). Applying Theorem 1 to

such an F', we can show that there exists f(t) satisfying (@) such that F(z) = [, f(t)e*™*"dt
and suppf C Uy(T',1,). Based on (@), we have
Ry = Tm LW _g

yel', y—oo |y|

Thus, together with Lemmal[2, the supporter of f(t) is contained in '™ and F'(2) = [.., f(t)e*™*"dt.
Moreover, [, [i. |f(t)[?e™ "W HVeW)dtdy < ||F|| g2 y,). Thus,

2, —4n(yt+¢a(y)) _ 2,—dmyt, o _ s ()
| [ 1 ady = [ [1r@Fe g = [ \0F S

which shows f € L2, (I"™). And Plancherel’s Theorem assures that || F|| a2z = || f|| 2 L2, ()
Conversely, note that F(z) = [.. f(t)e*™"*dt. For f(t) € L2 ,(I'*), Plancherel’s theorem

implies that

Flati)Pde = [ s

R

/ \F(m+z’y)|26_4w‘*(y)d:cdy = / |f(t)|26_4’T(y't+%(y))dtdy < 00,
rJre rJrs

in which ¥,(y) = —£ log|y|. Hence, F(z) € A>'(T',4p,) = A2(Tr). The proof is complete.
U

By restricting the base B to be a regular open convex cone I', we establish the following

weighted version of the edge-of-the-wedge theorem (see [2]) as an application of Theorem 1.

THEOREM 4. Assume that T is a regular open convex cone in R™ | 4y € C(T') and 1y €

C(-T) satisfy

Ry, = Tm V1(y)

yel',y—oo ‘y‘

< 00 (18)
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and
Ry = Tm 20)
yel',y—oo |y|

< 0 (19)

respectively. If 1 < p <2, 0<s(p—1) <1, F € AP*(I',4¢q) and Fy € AP5(—T, 1),
satisfying

lim [ [Fi(z +iy) — Fa(r — iy)[Pdz = 0, (20)
y_>(] Rn

then Fy and Fy can be analytically extended to each other and further form an entire function
F. Furthermore, there exists a function f € L*(R™) supported in a bounded conver set K
such that F(z) = [ f(t)e*™=dLt.

Proof. Theorem 1 implies that there exists a function f;(j = 1,2) such that

fj (t)627rit~zdt

R

holds, in which the supporter of f; is contained in Uy, ((—1)7T'T, ¢);) for for 1 < p < 2. Based
on lemma 2 suppf; C (—1)7*'T* 4+ D(0, Ry,). By the Hausdorff-Young inequality,

Then it follows from Fatou’s lemma and 20) that [|f; — fol|e@r) = 0. Thus, fi = fs
almost everywhere on R™. Let fi(t) = f2(t) = f(¢), and R = max{Ry,, Ry, }, then suppf C
K c (I'* 4+ D(0,R))N(=T* + D(0, R)). Thus, K is a bounded convex set. Consequently,

= [, ¥ f(t)dt is an entire function, where F(z) = Fi(z) for z € Tt and F(z) = Fy(z)
for z € T r. O

Rn

Similarly, we can prove the weighted version of the edge-of-the-wedge theorem for p > 2.

THEOREM 5. Suppose that I" is a reqular open convex cone in R" 1p; € C(T") and 1py € C(-T)
satisfy (I8) and (I9) respectively. If Fy € AP*(T,v1) and Fy € APS(=T',4,), where p > 2,
satisfying

lim |Fi(x +iy) — Fy(z — iy)|*dz = 0, (21)
yel,y—0 JR"

then Fy and Fy can be analytically extended to each other and further form an entire function

F. Furthermore, there exists a measurable function f(t) supported in a bounded convexr set
K such that F(z) = [, f(t)e*™"*dt.

Proof. For F; € AP*((—1)71T,¢;) and 2 + = =1, exists a measurable function f; such that
F; = [o [i(t)e*™=dt and suppf; C Usp(( )]+1F ¥;), where j = 1,2. It then follows from

17



Lemma 2 that suppf; C (—1)?"'T* + D(0, Ry,). Plancherel’s Theorem implies that

([ 1nemre = pevpar) = [ 15 i) - A - inpa)
R™ Rn

Then based on (2I)) and Fatou’s Lemma, || fi — fo| 2@y = 0, which means f; = f, almost
everywhere on R™. Let fi(t) = fo(t) = f(t) and R = max{Ry,, Ry,}, then suppf(t) C

K = I+ D(0,R))(-I + D(0, R)). Thus, K is a bounded convex set. As a result,
F(z) = [, ¥ f(t)dt is an entire function, where F'(z) = Fy(z) for z € Ty and F(z) = F(2)
for z € T r. O
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