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The present study devotes to introducing and analyzing the use of the adaptive
Fourier decomposition (AFD)-type methods in the area of stochastic processes
and random fields. We involve two types of algorithms, namely, stochastic AFD
(SAFD) and stochastic pre-orthogonal AFD (SPOAFD), for, respectively, the
Hardy space format and non-Hardy space ones, as may be regarded. We provide
both their theoretical results and practical algorithms and compare them with
the well adopted and, in fact, dominating Karhunen–Loève (KL)-type expan-
sions. The AFD methods involve a finite or infinite sequence of optimally chosen
parameters; they, in contrast, do not rely on and hence not have to compute the
eigenpairs of the second type Fredholm integral equation with the covariance
function as the kernel. Apart from such computational conveniences, they with
the same convergence rate have flexibility of choosing best suitable dictionaries
for doing the specific task in the practice. We include a number of experiments
showing that in terms of effectiveness, the AFD methods give better approxi-
mations before all the positive eigenvalues running out in the case the integral
operator being of a finite rank or before the KL iteration step becomes exces-
sively large: The AFD methods normally give better approximations from the
very beginning of the iterations.
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1 INTRODUCTION

For the self-containing purpose, this section will introduce adaptive Fourier decomposition (AFD)-type sparse
representations with emphasis on the stochastic AFDs (SAFDs) [1]. We are based on a dictionary  of a complex Hilbert
space . By definition, a dictionary of  consists of a class of unimodular elements whose linear span is dense in .
The formulation we adopt is that  is the L2-space of complex-valued functions on a manifold, 𝜕D is the boundary of D,
where D itself is an open and connected domain, called a region, in an Euclidean space. A process in a finite time inter-
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val may be well formulated as defined on the unit circle 𝜕B1 = {eit | t ∈ [0, 2𝜋)}, where in the defined notation D = B1,
the unit disc. If a process is defined in the entire time range, we use the format that D = C+, the upper-half plane, and
𝜕D = 𝜕C+ ≜ R

1 the whole real line. For random functions with the space variable on the n-sphere Sn, we may fit the
problem to the format where D being the (n + 1)-dimensional solid ball Bn+1, Sn = 𝜕Bn+1 in R

n+1. For random functions
defined on the Euclidean space R

n, we may take the parameter set D = R
n+1
+ , where 𝜕D = 𝜕Rn+1

+ = R
n. The concerned

contexts may be classified into the following two structures: the coarse and the fine structure, as described below.

(i) The coarse structure:  = L2(𝜕D) and the elements of the dictionary  are indexed by all q in D. Examples of
such model can include  being the collection of the Poisson kernels in the unit disc or the unit ball or those in the
upper-half space. In the upper-half space, case  can be collections of the heat kernels or various kinds of dilated
and translated convolution kernels [2].

(ii) The fine structure: Certain functions defined on a region D may constitute a reproducing kernel Hilbert space
(RKHS), being denoted as HK , or H2(D), and called the Hardy space of the context, where K ∶ D × D → C is
the reproducing kernel, satisfying Kq(p) = K(p, q) for any pair p, q ∈ D. The related theory and examples may be
found in previous studies [2–4], as well as in Yang [5]. The relevant literature address various types of RKHSs in
such setting, including, for instance, the H2(B1) space of complex holomorphic functions in the unit disc B1, and
the h2 (

R
n+1
+

)
space of harmonic functions in the upper-half Euclidean space, where, precisely,

H2(B1) =

{
𝑓 ∶ B1 → C |𝑓 (z) = ∞∑

k=0
ckzk, ||𝑓 ||2 =

∞∑
k=0

|ck|2 < ∞

}

and

h2 (
R

n+1
+

)
=

{
u ∶ R

n+1
+ → C |Δu = 0 on R

n+1
+ , sup

(t,𝑦)∈𝛤𝛼
x

|u(t, 𝑦)| ∈ L2(Rn)

}
,

where 𝛤𝛼
x is the orthogonal 𝛼-cone in R

1+n
+ with its tip at x ∈ R

n. Similarly, there exist the harmonic h2-space of the
unit n-ball in R

1+n and the heat kernel Hardy space H2
heat(R

1+n
+ ). In the present paper, all such RKHSs are denoted

by H2(D).

As a property of reproducing kernel, in each of the fine cases, the parameterized reproducing kernels Kq, q ∈ D, form
a dictionary. To simplify the terminology, we also call a dictionary element as a kernel. We now briefly review a few of
sparse representation models belonging to the AFD type. Unless otherwise specified, the norm || · || and the inner product
notation ⟨·, ·⟩ will always refer to those of the underlying complex Hilbert space  = L2(𝜕).

(a) AFD, or Core AFD: In the  = H2(B1) context, the inner product is defined through the one on the boundary
L2(𝜕B1) owing to existence, as fundamental property, of boundary limits of the Hardy space functions, namely,

⟨𝑓, g⟩H2(B1) =
1

2𝜋 ∫
2𝜋

0
𝑓

(
eit) ḡ

(
eit) dt.

We work with the Szegö kernel (or the reproducing kernel) dictionary

(B1) ≜ {ka(z)}a∈B1 ≜
{

1
1 − āz

}
a∈B1

.

For any given 𝑓 ∈ H2(B1), we have a greedy selections of the parameters

ak = arg max {|⟨𝑓k, ea⟩||a ∈ B1} , (1)
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QIAN ET AL.

where with 𝑓1 = 𝑓 , the 𝑓k are the reduced remainders, obtained through inductively using the generalized
backward shift:

𝑓k(z) =
𝑓k−1(z) − ⟨𝑓k−1, eak−1⟩eak−1 (z)

z−ak−1
1−āk−1z

, (2)

where ea = ka∕||ka||, ||ka|| = 1∕
√

1 − |a|2, is the normalized Szegö kernel, and the validity of the maximal selection
principle (1) (MSP) is a consequence of the boundary vanishing condition (BVC)

lim|a|→1
⟨𝑓k, ea⟩ = 0.

Then, there follows (see Qian and Wang [6])

𝑓 (z) =
∞∑

k=1
⟨𝑓k, eak⟩Bk(z),

where {Bk} is automatically an orthonormal system, called the Takenaka–Malmquist (TM) system, given by

Bk(z) = eak (z)
k−1∏
l=1

z − al

1 − ālz
. (3)

Whether the associated TM system is a basis depends on whether
∑∞

k=1(1 − |ak|) = ∞. In both the basis and the
non-basis cases, the above infinite series converges in the L2(𝜕B1)norm sense on the boundary with the convergence
rate ‖‖‖‖‖𝑓 −

n∑
k=1

⟨𝑓k, eak⟩Bk

‖‖‖‖‖ ≤ M√
n
, (4)

where

M = inf

{ ∞∑
k=1

|ck| |𝑓 (z) = ∞∑
k=1

ckebk , bk ∈ B1

}
(see Qian and Wang [6] or Temlyakov [7]). Being compared with the usual greedy algorithm, Core AFD was origi-
nated by the purpose of finding meaningful positive frequency decomposition of a signal. It was found that analytic
phase derivatives of inner functions provide the source of such meaningful positive frequencies [8, 9]. Apart from
this background, AFD addresses attainability of globally maximal energy matching pursuit. The attainability in var-
ious contexts of kernel approximation further motivated the multiple kernel concept (see below). For Core AFD, the
reader is referred to Qian and Wang [6] and Qian [10]. For general greedy algorithms and convergence rate results,
the reader is referred to DeVore and Temlyakov [11] and Temlyakov [7]. Core AFD has the following variations and
generalizations.

(b) Unwinding AFD: The inductive steps in (a) give rise to the relation

𝑓 (z) =
n−1∑
k=1

⟨𝑓k, eak⟩Bk + gn(z),

where

gn(z) = 𝑓n(z)
n−1∏
l=1

z − al

1 − ālz

is the standard orthogonal remainder of degree n. If, before doing the optimal energy matching pursuit for 𝑓n,
one first factorizes out the inner function factor of gn, and next perform a maximal parameter selection, one obtains
what is called maximal unwinding AFD [12], which converges considerably faster than Core AFD and, again, with
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QIAN ET AL.

positive frequencies. Coifman et al. studied a direct unwinding method named as Blaschke unwinding expansion
in 2000 [13–15].

(c) Based on generalizations of Blaschke products, the AFD theory is extended to several complex variables contexts
and to matrix-valued functions (see Alpay et al. [16, 17]).

(d) The generalized backward shift defined by (2) is crucial in Core AFD. In a general Hilbert space context, there
usually do not exist a Blaschke product theory, and the Gram–Schmidt (GS) orthogonalization of parameterized
kernels do not have explicit formulas as those for the TM system (3). It is the relations

⟨𝑓n, ean⟩ = ⟨gn,Bn⟩ = ⟨𝑓,Bn⟩ (5)

in the Core AFD context that gave inspiration to generalize the latter algorithm to the context of general Hilbert
space with a dictionary, called pre-orthogonal AFD (POAFD) [1, 10, 18]. Precisely, the above relations hint the notion
Ba

n within the n-orthonormal system (B1, · · · ,Bn−1,Ba
n), where the latter being the GS orthonormalization of the

non-orthogonal system (B1, · · · ,Bn−1, ka), where a ∈ D is to be determined.
POAFD is formulated as follows. Changing to the general Hilbert space setting, below, we will use the notations

D, q,Kq,Eq,En in place of, for the Core AFD case, B1, a ∈ B1, ka, the Szegö or reproducing kernel, ea, the normalized
reproducing kernel or dictionary element, and Bn, the member of TM system. A class of dictionaries with good
boundary behavior is first specified: A dictionary  of the Hilbert space  is said to satisfy BVC (or called a BVC
dictionary), if for any 𝑓 ∈ ,

lim
q→𝜕D

|⟨𝑓,Eq⟩| = 0.

The Szegö kernel enjoys the BVC property. Apart from some exceptional cases (see Qu and Dang [19]), most
commonly used dictionaries are of BVC. Under the BVC assumption (or one has to first verify), there exists

qn = arg sup

{|||||
⟨
𝑓,

q
E
n

⟩||||| |q ∈ D

}
, (6)

where {E1, · · · ,En−1,Eq
n} is the GS orthogonalization of {E1, · · · ,En−1, K̃q}, where for each 𝑗 ∶ 1 ≤ 𝑗 ≤ n,

K̃q𝑗
=

[(
𝜕

𝜕q̄

)(l( 𝑗)−1)

Kq

]
q=q𝑗

, 𝑗 = 1, 2, · · · ,n,

where 𝜕

𝜕q̄
is a directional derivative with respect to q̄ and l( 𝑗) is the multiple of q𝑗 in the 𝑗-tuple (q1, · · · , q𝑗), 1 ≤ 𝑗 ≤ n.

K̃q𝑗
, sometimes denoted as K̃𝑗 , is called the multiple kernel with respect to q𝑗 in the 𝑗-tuple (q1, · · · , q𝑗). As a particular

case of the notation, we have Eq = Eq
1, as used in (8). In order to guarantee attainability of the supreme value at

each of the parameter selections, one must allow repeating selections of the parameters that induces the multiple
kernel notion [20, 21]. Recall that the basic functions in a TM system correspond to the GS orthogonalizations of
the involved multiple Szegö kernels [1]. Due to the relations (5), POAFD in the classical Hardy space is identical
with AFD. This shows that POAFD for a Hilbert space with a BVC dictionary has the same power as AFD in the
Hardy space, while the former does not have the fine structure such as TM system in relation to Blaschke product.
We remark that the Hardy space seems to be the only case in which the GS process on reproducing kernels gives
rise to nice and practical formulas as in the TM system ([1, 16, 17]).

To perform GS orthogonalization in POAFD is to compute

En = Eqn
n =

K̃qn −
∑n−1

k=1⟨K̃qn ,Ek⟩Ek√||K̃qn ||2 −
∑n−1

k=1 |⟨K̃qn ,Ek⟩|2
. (7)

With such formulation, Core AFD is extended to contexts of great variety in which a practical Blaschke prod-
uct theory may not be known or may not exist. Significant generalizations include POAFD for product dictionary
[10], POAFD for quaternionic space [22], POAFD for multivariate real variables in the Clifford algebra setting [23],
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QIAN ET AL.

POAFD for weighted Bergman and weighted Hardy spaces [19, 24], and most recently sparse representations for
the Dirac 𝛿 function [2]. We note that the MSP of POAFD is the greediest one-step parameter selection and, in par-
ticular, more greedy than what is called orthogonal greedy algorithm [7] due to the relation: For q ≠ q1, · · · , qn−1,

|||⟨gn,Eq
n
⟩||| = 1√

1 −
∑n−1

k=1 |⟨Eq,Ek⟩|2

|||⟨gn,Eq
1
⟩||| ≥ |||⟨gn,Eq

⟩||| , (8)

the ending term being recognized to be the objective function for the orthogonal greedy algorithm.
(e) n-Best AFD: A manipulation of a single optimal parameter selection with Core AFD or POAFD in (1) or (6),

respectively, is n-best AFD, also called n-best kernel approximation, formulated as finding (q1, · · · , qn) such that

‖‖‖Pspan{K̃q1 ,··· ,K̃qn}( 𝑓 )
‖‖‖ = sup

{‖‖‖Pspan{K̃p1 ,··· ,K̃pn}( 𝑓 )
‖‖‖ |p1, · · · , pn ∈ D

}
, (9)

where we use PX ( 𝑓 ) for the projection of 𝑓 into the linear subspace X . In the classical Hardy space case D = B1,
the problem is equivalent with one of finding best approximation by rational functions of degree not exceeding n.
Existence of a solution of such n-best rational approximation problem has long been solved (see Wang and Qian
[25] and the references therein), a practical and mathematical rigorous algorithm, in contrast, has been left open
until now [26]. To the authors' knowledge, none of the published algorithms can prevent from falling into local
minimal distance. In general, for a Hilbert space with a BVC dictionary asserting existence of a solution for the
n-best problem is by no means easy. The existence result for the classical complex Hardy space case has a number
of proofs and recently been re-proved by using the maximal module principle of complex analytic functions as a
new approach [25]. This progress allows to generalize existence of an n-best solution to weighted Bergman spaces
and further to a wide class of RKHSs [27] for analytic functions in the unit disc. In the upper-half of the complex
plane, there is a parallel theory. Reproofs of existence of the n-best approximation are also for the algorithm purpose
whose progress will be reported in a separate paper.

(f) The most up-to-date developments of AFD is SAFD and stochastic pre-orthogonal AFD (SPOAFD) [1]. The former
is precisely in the classical complex Hardy space context which, as mentioned, with the convenience of the TM
system, and the latter is for general Hilbert spaces with a BVC dictionary. The purpose of the present paper is to
introduce SAFD and SPOAFD to the study and practice with stochastic processes and random fields.

Definition 1. ([1, 28]). Suppose D ⊂ R
n and (Ω, dP) is a probability space. The Bochner space L2(Ω,L2(D)) is the

Hilbert space consisting of all the L2(D)-valued random functions 𝑓 satisfying

||𝑓 ||2
L2(Ω,L2(D)) ≜ ∫Ω∫D

|𝑓 (x, 𝜔)|2dxdP

= E𝜔||𝑓𝜔||2
L2(D) < ∞,

(10)

where 𝑓𝜔(x) = 𝑓 (x, 𝜔).

For brevity, we also write  = L2(Ω,L2(D)). The theory developed in Qian [1] is for the same space in the unit
disc B1 but in terms of the Fourier expansion with random coefficients, being equivalent with the above defined
due to the Plancherel Theorem. Besides SAFD, Qian [1] also develops SPOAFD for general stochastic Hilbert spaces
with a BVC dictionary.

SAFD (identical with SAFD2 in the terminology of Qian [1]), concerning the complex Hardy space H2(B1) with
the Szegö kernel dictionary (B1), precisely corresponds to  = L2(Ω,H2(B1)). For 𝑓 ∈  , there holds, for a.s.
𝜔 ∈ Ω, 𝑓𝜔 ∈ H2(B1), and the stochastic MSP (SMSP) reads as

ak = arg max
{
E𝜔

|||⟨𝑓𝜔,Ba
k

⟩|||2 |a ∈ B1

}
, (11)
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QIAN ET AL.

where for the previously known a1, · · · , ak−1,

Ba
k(z) = ea(z)

k−1∏
l=1

z − al

1 − ālz
(12)

is the kth term of the TM system with the undetermined parameter a ∈ B1, to be optimally determined according
to (11). Existence of an optimal ak is proved in Qian [1]. Then, with such optimally chosen ak and Bk = Bak

k , the
consecutively determined TM system gives rise to an expansion of 𝑓 in the  norm sense [1]:

𝑓 (eit, 𝜔)

=

∞∑
k=1

⟨𝑓𝜔,Bk⟩Bk
(

eit) .
SPOAFD (identical with SPOAFD2 in the terminology of Qian [1]) is for a general Bochner space = L2(Ω,L2(D)),
where the space L2(D) has a BVC dictionary. We have the same result except that the TM system {Bk} is replaced
by the orthonormal system {Ek}, as composed in (7), using the multiple kernels K̃qk , where qk is selected according
to the stochastic pre-orthogonal MSP (SPOMSP):

qk = arg max
{
E𝜔

|||⟨𝑓𝜔,Eq
k

⟩|||2 |q ∈ D
}
. (13)

In the case, there holds in the  norm sense [1]:

𝑓 (x, 𝜔)

=

∞∑
k=1

⟨𝑓𝜔,Ek⟩Ek(x). (14)

The strength of SPOAFD is that the optimally selected parameters qks generate an orthonormal system that gives
rise to sparse representation of 𝑓 (𝜔, ·) in the L2(D) norm sense for a.s. 𝜔. The expansion, as the Karhunen–Loève
(KL) decomposition does, enjoys the optimal convergence rate O

(
1√
n

)
. SPOAFD, as an extension of SAFD, can

be associated with any BVC dictionary. As with the deterministic case [2], such flexibility makes SPOAFD a con-
venient tool to solve boundary value and initial boundary value problems. Dirichlet boundary value and Cauchy
initial value problems with random data are studied in Yang [5]: We use the dictionaries of the shifted and dilated
Poisson and heat kernels, respectively. After obtaining sparse representations of the random boundary or initial
values, we perform the lifting up technology based on the semigroup properties of the kernels to get the random
function solutions. The same method can be used to solve a wide type random boundary and initial value problems
([29]). SAFD and SPOAFD are remarkably convenient in the computation respect: The computation only uses the
covariance function but not the eigenvalues and eigenfunctions of the related integral operator. In contrast, the KL
expansion crucially relies on the eigenpairs that have to be firstly computed out in applications.

(g) Stochastic n-best (SnB) POAFD: The related SnB approximation problems are first formulated and studied in Qu
et al. [30] (specially for the stochastic complex Hardy spaces) and further in Qian [27] (for a wide class of stochastic
RKHSs). The general formulation in Qian [27] is as follows. For any n-tuple p = (p1, · · · , pn) ∈ Dn, where multi-
plicity is allowed, there exists an n-orthonormal system {Ep

k}
n
k=1, generated by the corresponding, possibly multiple,

kernels {K̃pk}
n
k=1 through the GS process. The associated objective function to be maximized is

A( 𝑓,p) = E𝜔

( n∑
k=1

|||⟨𝑓𝜔,Ep
k

⟩|||2
)
. (15)

In other words, the SnB problem amounts to finding q ∈ Dn such that

A( 𝑓,q) = sup{A( 𝑓,p) |p ∈ Dn}.

14012
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QIAN ET AL.

The just formulated SnB is so far the state of the art among the existing variations of the POAFD-type models. The
main goal of the present paper is to compare SPOAFD and SnB with the KL decomposition method for decomposing
stochastic processes, the latter, methodology-wise, being of the same kind as POAFD in contrast with the Wiener
chaos type.

In Section 2, we give an account of KL expansion with regards to the points concerned in this study. We cite brief proofs
of the known results for the self-containing purpose. Some of the results and the proofs in Theorem 2 may be new. In
Section 3, we prove some convergence rate results, analyze and compare the AFD type and the KL expansions, and specify,
in both the theory and computational aspects, particular properties of the two types, respectively. Illustrative experiments
are contained in Section 4. Conclusions are drawn in Section 5.

2 AN ACCOUNT TO KL EXPANSION

Either of an orthonormal basis of L2(Ω) or one in L2(𝜕D) can be used to induce a decomposition of 𝑓 ∈ L2(Ω,L2(𝜕D)). The
Fourier–Hermite (Wiener–Chaos) expansion and KL expansion, respectively, correspond to a basis in L2(Ω) and L2(𝜕D).
Since KL is of the same type as the AFD ones, and they concern the same type of problems, in this study, we restrict
ourselves to only analyze the KL and the AFD-type decompositions.

The following material of the KL decomposition is standard [28]. We involve a compact set  of the Euclidean space
as time or space domain of the random function in the Bochner space L2(Ω,L2( )), where  is in place of 𝜕D of the
proceeding context. Let 𝑓 (t, 𝜔) be given in L2(Ω,L2( )) and fixed throughout the rest of this section, and 𝜇(t) = E𝜔𝑓 (t, ·).
Denote by C the covariance function:

C(s, t) = E𝜔

[
( 𝑓 (s, ·) − 𝜇(s))(𝑓 (t, ·) − �̄�(t)))

]
,

and T the integral operator using C(s, t) as its kernel, T ∶ L2( ) → L2( ),

TF(s) = ∫
C(s, t)F(t)dt.

We denote by R(T) the range of the operator T, and R(L) the range of the operator L ∶ L2(Ω) → L2( ), defined as, for any
g ∈ L2(Ω),

L(g)(t) = E𝜔(g[𝑓 t − 𝜇(t)]) = ∫Ω
g(𝜔)[𝑓 (t, 𝜔) − 𝜇(t)]dP(𝜔),

where 𝑓 t(𝜔) = 𝑓 (t, 𝜔). It is asserted that T is a Hilbert-Schmidt operator in L2( ), and hence compact. The kernel function
C is conjugate-symmetric and semi-positive. As a consequence, T has a sequence of positive eigenvalues 𝜆1 ≥ 𝜆2 ≥
· · · ≥ 𝜆n ≥ · · · > 0, and correspondingly, the eigenfunctions 𝜙1, · · · , 𝜙n, · · · ,T𝜙k = 𝜆k𝜙k, orthogonal with each other. If
span{𝜙1, · · · , 𝜙n, · · ·} ≠ L2( ), that is, R(T) ≠ L2( ), a supplementary orthonormal system (corresponding to the zero
eigenvalue) may be added to form a complete basis system, called a KL basis, still denoted by {𝜙k} with the property
T𝜙k = 𝜆k𝜙k, where 𝜆k now may be zero. There holds

C(s, t) =
∞∑

k=1
𝜆k𝜙k(s)�̄�k(t). (16)

When C is continuous in  ×  , all the 𝜙k are continuous, and the above convergence is uniform and absolute. The
originally given 𝑓 (·, 𝜔), a.s. belonging to L2( ), has the so-called KL decomposition: for a.e. t ∈  , in the probability
square-mean sense

𝑓 (t, 𝜔) − 𝜇(t)
L2(Ω)
=

∞∑
k=1

√
𝜆k𝜙k(t)𝜉k(𝜔)

L2(Ω)
= lim

n→∞
Sn(t, 𝜔), (17)
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QIAN ET AL.

and, furthermore, in the Bochner norm sense

𝑓 (t, 𝜔) − 𝜇(t)

=

∞∑
k=1

√
𝜆k𝜙k(t)𝜉k(𝜔)


= lim

n→∞
Sn(t, 𝜔), (18)

where Sn(t, 𝜔) ≜ ∑n
k=1

√
𝜆k𝜙k(t)𝜉k(𝜔), S0 = 0, and for the non-zero 𝜆k,

𝜉k(𝜔) =
1√
𝜆k

⟨𝑓𝜔 − 𝜇, 𝜙k⟩L2( ).

The random variables are uncorrelated, zero mean, and of unit variance. If the process is Gaussian, then 𝜉k ∼ N(0, 1) iid.
Since C(s, t) is conjugate-symmetric and semi-positive, by the Moor–Aronszajn Theorem, it uniquely determines a

RKHS. We will show that the RKHS under the Moor–Aronszajn Theorem is identical with the following defined Hilbert
space HC. Let 𝛼k = 1 if 𝜆k > 0; and 𝛼k = 0 if 𝜆k = 0. Define

HC =

{
F ∈ L2( ) | ||F||2

HC
=

∞∑
k=1

𝛼k
|⟨F, 𝜙k⟩|2

𝜆k
< ∞

}
,

whose inner product is defined as

⟨F,G⟩HC =
∞∑

k=1
𝛼k

⟨F, 𝜙k⟩⟨G, 𝜙k⟩
𝜆k

,

where the role of the 𝛼k is that when 𝜆k is zero, the corresponding terms in the above two series vanish.
We collect in the following theorem the fundamentals of the KL expansion.

Theorem 2.

(i) HC ⊂ L2( ).

(ii) var[𝑓 (t, ·) − Sn(t, ·)] = C(t, t) −
n∑

k=1
𝜆k𝜙

2
k(t), ||𝑓 − Sn|| =

∑
k=n+1𝜆k, ||var𝑓 ||L2(𝜕D) =

∑∞
k=1 𝜆k, and ||Sn||2

 =

E
∑n

k=1 |⟨𝑓𝜔 − 𝜇, 𝜙k⟩|2 =
∑n

k=1⟨T𝜙k, 𝜙k⟩ = ∑n
k=1 𝜆k.

(iii) HC is the RKHS with reproducing kernel C(s, t), and, in particular, span{C(s, ·)} = HC, where the bar stands for
the closure under the HC norm.

(iv) The KL basis has the optimality property: For any orthonormal basis {𝜓k} of L2(𝜕D) and any n, there holds∑n
k=1⟨T𝜓k, 𝜓k⟩ ≤ ∑n

k=1⟨T𝜙k, 𝜙k⟩.
(v) If there are only finitely many 𝜆ks being non-zero, then 𝑓𝜔 ∈ HC for a.s. 𝜔 ∈ Ω.

(vi) R(L) = HC in the set-theoretic sense, and moreover, HK = HC, where HK is the RKHS over R(L) defined with the
-HK formulation (as in Qian [3]). In particular, when taking L2(Ω) as L2(𝜕D) and 𝑓 the parameterized Szegö
kernel, we have, as isometric spaces, R(L) = HK = HC = H2(B1), latter being the classical Hardy space in the disc.

(vii) Set C𝜃(s, t) =
∑∞

k=1 𝜆
𝜃

k𝜙k(s)�̄�k(t), 0 < 𝜃 < ∞, and

H𝜃
C =

{
F ∈ L2(𝜕D) ∶ ||F||2

H𝜃
C
=

∞∑
k=1

𝛼k
|⟨F, 𝜙k⟩|2

𝜆𝜃k

< ∞

}
.

In particular, C1 = C and H1
C = HC. Then, H𝜃

C is the RKHS with reproducing kernel C𝜃 , and TH𝜃
C = H𝜃+2

C giving
rise to an isometric isomorphism between H𝜃

C and H𝜃+2
C , 0 < 𝜃 < ∞.

(viii) The identity mappings R(T) = H2
C → HC → L2(𝜕D) are bounded imbeddings. H2

C = HC = L2(𝜕D) in the
set-theoretic sense and in the norm equivalent sense if and only if there exist only a finite number of non-zero 𝜆ks.
The bounded imbedding and the isometric isomorphism conclusions between H2

C = HC = L2(𝜕D) are extendable
to all different H𝜃

C, 0 < 𝜃 < ∞.
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QIAN ET AL.

Lord et al. [28] is referred as basic reference of KL. For more detailed and general formulation of the KL expansion,
we refer to the recent papers Kanagawa et al. [31], Steinwart and Scovel [32], and Steinwart [33]. The nesting RKHSs of
the power RKHSs of HC are summarized in the view point of Sobolev spaces and are presented in terms of the -HK
formulation of Qian [3]. For H𝜃

C in the range 0 < 𝜃 < 1, we refer to Kanagawa et al. [31] and Steinwart [33]. H𝜃
C for the

range 1 < 𝜃 < ∞ corresponds to the Sobolev spaces in the classical setting. For the self-containing and the algorithm
concerns, we outline the proofs. The proof of (iv) by using the simplex algorithm may be new.

Proof. (i) follows from the definition of HC. The first relation of (ii) follows from uncorrelation of the 𝜉ks (see, for
instance, Lord et al. [28]). We now deduce the other relations. Due to the orthonormality of 𝜙k, we have ||Sn||2

 =
E

∑n
k=1 |⟨𝑓𝜔, 𝜙k⟩|2. Then,

E

n∑
k=1

|⟨𝑓𝜔 − 𝜇, 𝜙k⟩|2 = E

n∑
k=1

⟨𝑓𝜔 − 𝜇, 𝜙k⟩⟨𝑓𝜔 − 𝜇, 𝜙k⟩
=

n∑
k=1

∫
𝜕D∫𝜕D

E([𝑓 (s, ·) − 𝜇][𝑓 (t, ·) − 𝜇])𝜙k(t)�̄�k(s)dtds

=
n∑

k=1
⟨T𝜙k, 𝜙k⟩

=
n∑

k=1
𝜆k.

(19)

Now, we show (iii). By definition, HC is a Hilbert space. For any fixed s ∈  , as a consequence of (16),

⟨Cs, 𝜙k⟩ = 𝜆k𝜙k(s).

Hence,
∞∑

k=1
𝛼k

|⟨Cs, 𝜙k⟩|2

𝜆k
=

∞∑
k=1

𝜆k𝜙
2
k(s).

Since the L1(𝜕D)-norm of the last function in s is equal to
∑∞

k=1 𝜆k < ∞, we have ||Cs||HC < ∞, a.e.. This implies that
for a.e. s ∈ 𝜕D, Cs belongs to HC. Let F ∈ HC with F =

∑∞
k=1 𝛼k⟨F, 𝜙k⟩𝜙k. Then,

⟨F,Cs⟩HC =
∞∑

k=1
𝛼k

⟨F, 𝜙k⟩⟨Cs, 𝜙k⟩
𝜆k

=
∞∑

k=1
𝛼k

⟨F, 𝜙k⟩𝜆k𝜙k(s)
𝜆k

= F(s),

verifying the reproducing property of Cs.
Next, we show (iv). Let n be fixed, and m ≥ n, and Tm be the integral operator defined through the kernel Cm(s, t) =∑m
𝑗=1 𝜆𝑗𝜙𝑗(s)�̄�𝑗(t), where 𝜙1, · · · , 𝜙m are the first m functions of the entire KL basis {𝜙𝑗}∞𝑗=1. For any n-orthonormal

system {𝜓1, · · · , 𝜓n}, there holds

n∑
k=1

⟨Tm𝜓k, 𝜓k⟩ = n∑
k=1

∫ ∫
Cm(s, t)𝜓k(t)�̄�k(s)dtds

=
n∑

k=1
∫ ∫

m∑
𝑗=1

𝜆𝑗𝜙𝑗(s)𝜙𝑗(t)𝜓k(t)�̄�k(s)dtds

=
n∑

k=1

m∑
𝑗=1

𝜆𝑗|⟨𝜓k, 𝜙𝑗⟩|2.
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QIAN ET AL.

Denote ck𝑗 = |⟨𝜓k, 𝜙𝑗⟩|2. Now, for the fixed 𝜆𝑗, 𝑗 = 1, · · · ,m, we are to solve the global maximization problem for the
linear objective function:

A =
n∑

k=1

m∑
𝑗=1

𝜆𝑗ck𝑗 ,

under the constraint conditions

⎧⎪⎪⎪⎨⎪⎪⎪⎩

n∑
k=1

ck𝑗 + 𝛼𝑗 = 1,
m∑
𝑗=1

ck𝑗 + 𝛽k = 1,

1 ≥ ck𝑗 ≥ 0, 𝛼𝑗 ≥ 0, 𝛽k ≥ 0,
𝜆1 ≥ · · · ≥ 𝜆n ≥ · · · 𝜆m,
1 ≤ k ≤ n, 1 ≤ 𝑗 ≤ m,

where the first two constraint conditions are due to the Bessel inequality. This is a typical simplex algorithm problem
that attains the greatest possible value at some vertex points of the defined region. Note that the objective function
is invariant under permutations on ck𝑗 . Through testing the function values at the vertex points, we obtain that the
optimal solution is attainable at and only at ckk = 1, 1 ≤ k ≤ n; ck𝑗 = 0, k ≠ 𝑗; 𝛼𝑗 = 1,n < 𝑗 ≤ m; 𝛼𝑗 = 0, 1 ≤ 𝑗 ≤
n; 𝛽k = 0, 1 ≤ k ≤ n. This solution amounts that 𝜓k = 𝜙k, 1 ≤ k ≤ n. As a consequence of the above simplex algorithm
solution, for any general n-orthonormal system {𝜓1, · · · , 𝜓n}, there hold

n∑
k=1

⟨Tm𝜓k, 𝜓k⟩ ≤ n∑
k=1

𝜆k =
n∑

k=1
⟨Tm𝜙k, 𝜙k⟩.

Letting m → ∞, since limm→∞Tm𝜓k = T𝜓k, 1 ≤ k ≤ n, we obtain the inequality claimed in (iv).
Next, we show (v). For a.s. 𝜔 ∈ Ω, we have the series expansion (18). Hence,

||𝑓𝜔 − 𝜇||2
HC

=
∞∑

k=1
𝛼k

|⟨𝑓𝜔, 𝜙k⟩|2

𝜆k

=
∞∑

k=1
𝛼k|𝜉k|2.

If there are finitely many 𝜆ks being non-zero, then

E𝜔

( ∞∑
k=1

𝛼k|𝜉k|2

)
=

∞∑
k=1

𝛼k < ∞.

This implies that for Probability 1, there holds ||𝑓𝜔 − 𝜇||HC < ∞, and thus, a.s. 𝑓𝜔 − 𝜇 ∈ HC.
We now show (vi). Let g(𝜔) ∈ L2(Ω). Denote the image of g under L by G = Lg. By using the KL expansion of 𝑓 ,

G(t) = ∫Ω
g(𝜔)[𝑓 (t, 𝜔) − 𝜇(t)]dP =

∞∑
k=1

√
𝜆k⟨g, 𝜉k⟩L2(Ω)𝜙k(t).

Now, we examine the HC norm of G. Noting that {𝜉k} is an orthonormal system in L2(Ω), by invoking the Bessel
inequality, we have

||G||HC =
∞∑

k=1
𝛼k|⟨g, 𝜉k⟩L2(Ω)|2 ≤ ||g||2

L2(Ω) < ∞.
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QIAN ET AL.

Therefore, L(g) ∈ HC. By the Riesz–Fisher Theorem and the definition of HC, the mapping L ∶  → HC is onto.
Hence, in the set-theoretic sense R(L) = HC. With the -HK formulation of Qian [3] (also see Saitoh and Sawano [4]),
R(L) is equipped with an inner product by which it is a RKHS, HK , for which C is the reproducing kernel. The inner
product used there is induced by that of L2(Ω) on the equivalent classes of the form L−1(G) (as set inverse), G ∈ HC.
Now, HC is also a RKHS with the same reproducing kernel C. The uniqueness part of the Moor–Aronszajn Theorem
asserts that the two RKHSs, namely, HK and HC, have to be the same. The latter stands as a realization of the former
in terms of the eigenvalues and eigenfunctions of the integral operator T.

Next, we prove (vii). Obviously, the norm ||F||2
H𝜃

C
is equipped with the inner product

⟨F,G⟩HC𝑗
=

∞∑
k=1

𝛼k
⟨F, 𝜙k⟩⟨G, 𝜙k⟩

𝜆𝜃k

.

Under this inner product, the reproducing kernel property can be verified: For F =
∑∞

k=1⟨F, 𝜙k⟩𝜙k ∈ H𝜃
C,

⟨F,
(
C𝜃

)
s⟩HC𝜃

=
∞∑

k=1
𝛼k

⟨F, 𝜙k⟩⟨(
C𝜃

)
s, 𝜙k

⟩
𝜆

𝜃

k
=

∞∑
k=1

𝛼k
⟨F, 𝜙k⟩𝜆𝜃k𝜙k(s)

𝜆𝜃k

= F(s).

To verify the last statement of (viii), since TF =
∑∞

k=1 𝜆k⟨F, 𝜙k⟩𝜙k, we have

||TF||2
H𝜃+2

C
=

∞∑
k=1

𝛼k
|𝜆k⟨F, 𝜙k⟩|2

𝜆𝜃+2
k

=
∞∑

k=1
𝛼k

|⟨F, 𝜙k⟩|2

𝜆𝜃k

= ||F||2
H𝜃

C
.

Finally, we show (viii), and first show R(T) ⊂ HC. Letting F =
∑∞

k=1⟨F, 𝜙k⟩𝜙k ∈ L2( ), then

TF(s) = ∫
C(s, t)F(t)dt =

∞∑
k=1

𝛼k𝜆k⟨F, 𝜙k⟩𝜙k(s) =
∞∑

k=1
c̃k𝜙k(s), c̃k = 𝛼k𝜆k⟨F, 𝜙k⟩.

Those coefficients satisfy the condition

∞∑
k=1

|c̃k|2

𝜆2
k

=
∞∑

k=1
𝛼k|⟨F, 𝜙k⟩|2 < ∞.

Since 𝜆k → 0, the above condition implies

∞∑
k=1

|c̃k|2

𝜆k
< ∞,

and hence, TF ∈ HC. By invoking the Riesz–Fisher Theorem, R(T) has its natural inner product in

H2
C ≜

{
F ∈ L2(𝜕D) ∶

∞∑
k=1

𝛼k
|⟨F, 𝜙k⟩|2

𝜆2
k

< ∞

}
.

Equipped with the above induced inner product below, we may identify R(T) with H2
C. Since 𝜆k ↓ 0, being affiliated

with the H2
C-norm, the identical mapping from R(T) to HC is a bounded imbedding: In fact,

||F||HC ≤ 𝜆1||F||H2
C
.
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QIAN ET AL.

In the chain of the imbeddings induced by the monotonous property H𝛿
C ↑ for 𝛿 ↓ 0 in the set-theoretic sense, and

in particular, Hk+𝜃
C ⊂ R(T) = H2

C ⊂ H1
C = R(L) ⊂ H𝜃

C ⊂ L2(𝜕D), 0 < 𝜃 < 1, k = 1, 2, · · · , any of the two spaces,
therefore, all the spaces are identical with L2(𝜕D) in the set-theoretic sense if and only if there exist only finitely
many non-zero 𝜆ks, for otherwise,

∑∞
k=1 𝛼k𝜆k < ∞ and 0 ≠ 𝜆k → 0 would imply

∑∞
k=1

√
𝜆k𝜙k ∈ L2(𝜕D)∖HC, and∑∞

k=1 𝜆k𝜙k ∈ HC∖R(T). Thus, (viii) is proved. The proof of the theorem is complete. □

Remark 3. We note that, in the proof of (iv) of Theorem 2, not only in the particular case 𝜓k = 𝜙k, k = 1, · · · ,n,
but also this special simplex algorithm problem also attains its greatest maximal value when span{𝜓1, · · · , 𝜓n} =
span{𝜙1, · · · , 𝜙n}. In fact, in such cases, ck𝑗 = |⟨𝜓k, 𝜙𝑗⟩|2 = 0, k ≤ n < 𝑗 ≤ m, and the Bessel inequality becomes the
Placherel identity,

∑n
k=1 ck𝑗 =

∑n
𝑗=1 ck𝑗 = 1, that implies, following the deductions in the proof,

n∑
k=1

⟨Tm𝜓k, 𝜓k⟩ = n∑
k=1

m∑
𝑗=1

𝜆𝑗|⟨𝜓k, 𝜙𝑗⟩|2 =
n∑

𝑗=1
𝜆𝑗

n∑
k=1

|⟨𝜓k, 𝜙𝑗⟩|2 =
n∑

𝑗=1
𝜆𝑗.

Remark 4. The spaces defined in (vii) are called power spaces of HC. The range corresponding to 0 < 𝜃 ≤ 1 of the
family H𝜃

C has recently been studied in the random function literature [31, 33]. This range of H𝜃
C can be regarded as

non-smoothness extensions, as opposite to the traditional smooth extensions the usual Sobolev-type spaces. In the
occasion that the basic random function 𝑓 (t, 𝜔) as standard Brownian motion on [0, 1] being a Gaussian process with
the kernel k(x, 𝑦) = min(x, 𝑦) for x, 𝑦 ∈ [0, 1], the space RKHS HC = R(L) coincides with the first-order Sobolev space.
The study of the non-smooth H𝜃

C is intimately related to the zero–one law of Dirscoll [34], being generalized by Lukić
and Beder [35], asserting that by Probability 1 or alternatively 0, 𝑓 (t, 𝜔) belongs to HC. Based on the non-smooth
power RKHS concept and the related studies (see the above cited and references therein), one shows that the initial
random function 𝑓 (t, 𝜔) interested must belong to a power RKHS H𝜃

C, 0 < 𝜃 < 1, so to allow implementation of the
RKHS methods.

3 THE SPOAFD METHODS IN COMPARISON WITH KL

3.1 The algorithms of SAFD, SPOAFD, and SnB
We will give the computational details of SPOAFD in which SAFD corresponds to the cases where SPOAFD is restricted to
the Hardy H2(B1) or the Hardy H2(C+) spaces. We note that only in those two cases rational orthogonal (or TM) systems
are as orthogonalization of the parameterized Szegö kernels. Let {Eq} be a BVC dictionary. We are to find inductively
q1, · · · , qk, · · · , such that with the notation of Section 1,

qk = arg max
{
E𝜔

|||⟨𝑓𝜔 − 𝜇,Eq
k

⟩|||2 |q ∈ D
}
. (20)

As in the proof of (ii) of Theorem 2, the quantity E𝜔
|||⟨𝑓𝜔 − 𝜇,Eq

k

⟩|||2
may be identically reduced, for each k, to

E𝜔|⟨𝑓𝜔 − 𝜇,Eq
k⟩|2 = ∫

𝜕D∫𝜕D
C(s, t)Eq

k(t)Ē
q
k(s)dtds. (21)

For the notation Eq
k , see (7) and (13) and the explanations in the corresponding texts. With the above expression in

terms of the covariance function C, one can actually work out, with personal computer, approximations of the optimal
parameters needed by the SPOAFD expansion. This computation does not require information of the eigenvalues and
eigenfunctions of the integral operator defined by the covariance kernel. In contrast, the eigenpairs information is crucial
in order to carry on the KL expansion. For a general kernel operator finding the information of its eigenpairs is by no
means easy. Practically, one can only get, by using linear algebra based on sampling, numerical approximations of the
eigenvalues and eigenfunctions. With SPOAFD, under a sequence of optimally selected parameters according to (21)
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QIAN ET AL.

and (20), the relation (14) holds. For a given n, with SnB, the objective function (21) is replaced by (22), seeking for an
n-tuple of parameters q = (q1, · · · , qn) that maximizes

n∑
k=1

∫
𝜕D∫𝜕D

C(s, t)Ep
k (t)Ē

p
k (s)dtds, (22)

over all p = (p1, · · · , pn) ∈ Dn. To actually find a practical solution to (22) one can use the cyclic algorithm given by
[26], or its improvement [36]. The main estimation proved in Wang and Qian [25], or Qian et al. [37], or more generally
in Qian [27], reduces the optimization problem to one in a compact disc and enables to use an algorithm for finding
global maxima of a Lipschitz continuous functions on a compact set (a compact Lipschitz optimizer). Such an algorithm
prevents itself from falling into a local minimum that is not global and yet is practical. One such algorithm by using a new
compact Lipschitz optimizer is on its way ([37]).

There is a particular type of random fields whose SPOAFD computation may be simpler. If 𝑓 (t, 𝜔) has the form F(t,X)
where X is a random variable having probability density function p(u),u ∈ U ⊂ (−∞,∞), then (21) may be computed as

E𝜔
|||⟨𝑓𝜔 − 𝜇,Eq

n
⟩|||2

= ∫U∫𝜕D

||F(t,u)Eq
n(t)||2p(u)dtdu.

See Yang [5] for concrete examples. In such situation with respect to the objective function (22) of SnB, there exists a
similar formula.

3.2 Optimality of KL over SPOAFD and SnB
The assertion (iv) of Theorem 2 is valid for any orthonomal basis or system {𝜓k}, and especially, for the complex orthonor-
mal system {Ek} obtained from optimally selected q = (q1, · · · , qn, · · · ) under the SPOAFD or SnB maximal selection
principle. There hold

E

n∑
k=1

|⟨𝑓𝜔 − 𝜇,Ek⟩|2 =
n∑

k=1
⟨TEk,Ek⟩

≤
n∑

k=1
⟨T𝜙k, 𝜙k⟩

=
n∑

k=1
𝜆k.

(23)

We specially note that the functions Eks are in general not eigenfunctions of the operator T. In spite of the optimality
proved in (iv), experiments in Section 4, as well as the analysis in the proof of (iv) of Theorem 2, all exhibit that when n
is large the efficiency of SnB is almost the same as KL. It is noted that the efficiency of SPOAFD and SAFD is very close
to that of SnB with, however, much less computational complexity than the latter.

Remark 5. We also take the opportunity to note that in the POAFD algorithm |⟨𝑓,Ek⟩| are not necessarily in the
descending order. Consider e1, e2 being two dictionary elements and 𝑓 is in the span of e1, e2. Assume that ||𝑓e1 || >|⟨𝑓, e1⟩| > |⟨𝑓, e2⟩|, where 𝑓e1 is denoted as the projection of 𝑓 into the subspace perpendicular to e1. Then, |⟨𝑓,Ee2

2 ⟩| =|⟨𝑓e1 ,Ee2
2 ⟩| = ||𝑓e1 || > |⟨𝑓, e1⟩| = |⟨𝑓,E1⟩|, as claimed.

3.3 Convergence rates
In this section, we adopt a more general formulation whose MSP is called weak stochastic MSP (WSPOMSP) as given
in (24). The corresponding algorithm is accordingly phrased as WSPOAFD.

For 𝜌 ∈ (0, 1] and each k, WSPOMSP involves determination of a qk ∈ D such that

E𝜔
|||⟨𝑓𝜔 − 𝜇,Eqk

k

⟩|||2 ≥ 𝜌 sup
{
E𝜔

|||⟨𝑓𝜔 − 𝜇,Eq
k

⟩|||2 |q ∈ D
}
. (24)
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QIAN ET AL.

If, in particular, 𝜌 = 1, then the WSPOMSP reduces to SPOMSP in (13). In literature (see, for instance, Temlyakov [7]),
there exist more general setting allowing different 𝜌k ∈ (0, 1] for different k. We, however, keep it simple and adopt a
uniform 𝜌 ∈ (0, 1] for all k. Denote

M(𝜔) = inf

{ ∞∑
l=1

|cl(𝜔)| |𝑓𝜔 − 𝜇 =
∞∑

l=1
cl(𝜔)Eql ,∀l, ql ∈ D

}
(25)

and

M0 =
(
∫Ω

|M(𝜔)|2dP
) 1

2

.

The following is an immediate consequence of the convergence rate of the AFD-type algorithms. See, for instance,
Qian [10].

Theorem 6. Denote gn the n-standard remainder of the WSPOAFD algorithm,

gn(x, 𝜔) = 𝑓 (x, 𝜔) − 𝜇(x) −
n−1∑
k=1

⟨(𝑓𝜔 − 𝜇(x))k,Eqk⟩Ek(x).

There holds the estimation

||gn|| ≤ M0

𝜌
√

n
.

Proof. By invoking the deterministic case result, Theorem 3.3 of Qian [10], there holds, for a.s. 𝜔 ∈ Ω,

||(g𝜔)n||L2(D) ≤ M(𝜔)
𝜌
√

n
.

By taking the square-norm of the probability space to both sides, we obtain the claimed estimation.
For the deterministic case, there holds M(𝜔) ≡ M0, and the estimation reduces to the one for WPOAFD. For

𝜌 = 1, the estimation gives rise to that of SPOAFD. □

Since the one by one parameters selection model in SPOAFD is surely less optimal than SnB, we obtain that the
convergence rate for SnB is at least the same as that for SPOAFD given by Theorem 6. Note that if the used dictionary
is itself an orthonormal system, then the above used convergence rate in the deterministic case quoted from Qian [10]
coincides with that for p = 1 in DeVore and Temlyakov [11].

Theorem 7. Let n be a fixed positive integer. For a given 𝑓 ∈ L2(Ω,L2(𝜕D)), there holds

‖‖‖‖‖𝑓 − 𝜇 −
n∑

l=1

√
𝜆k𝜙l𝜉l

‖‖‖‖‖ ≤ ||∑∞
l=n+1 |⟨𝑓𝜔 − 𝜇, 𝜙l⟩|||L2(Ω)√

n
. (26)

Proof. Due to uniqueness of expansion of 𝑓𝜔 in the basis {𝜙k}, the infimum in (25) reduces to

M(𝜔) =
∞∑

l=n+1
|⟨𝑓𝜔 − 𝜇, 𝜙l⟩|. (27)

As a consequence of the optimality property of the KL basis, the n-partial sum expanded by the first n eigenfunctions
of 𝑓 ∈ L2(Ω,L2(𝜕D)) is identical with its SnB with respect to the dictionary {𝜙l}∞l=1. There holds, owing to (27) and
Theorem 6,
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QIAN ET AL.

‖‖‖‖‖𝑓 − 𝜇 −
n∑

k=1

√
𝜆k𝜙k𝜉k

‖‖‖‖‖ ≤

‖‖‖‖‖
∞∑

k=n+1
|⟨𝑓𝜔 − 𝜇, 𝜙k⟩|‖‖‖‖‖L2(Ω)√

n
.

The proof is complete. □

We note that the greedy-type method given in Theorem 6 seems to be rather rough. For general KL expansions, we have
the energy of the tail ( ∞∑

k=n+1
𝜆k

) 1
2

< ∞.

In contrast, the right-hand side of (26) is ‖‖‖∑∞
k=n+1

√
𝜆k|𝜉k|‖‖‖L2(Ω)√
n

,

provided that the last quantity is a finite number.
On the other hand, for the particular Brownian bridge case, for instance, the convergence rate can be precisely

estimated as

E

[||B − Sn||2
L2[0,1]

]
=

∞∑
𝑗=n+1

1
𝜋2𝑗2 ∼ 1

𝜋2n

(page 206 of Lord et al. [28]), showing that the convergence rate can indeed be as bad as O
(

1√
n

)
. As a common sense

in Fourier analysis, convergence rate of an expansion is determined by smoothness of the function to be expanded.
Almost surely a sample path of Brownian motion is continuous but no where differentiable. There is no wonder that such
non-smoothness does not correspond to fast convergence.

The nesting structure of the RKHSs studied in (vii) and (viii) of Theorem 2 offers a sequence of finer and finer RKHSs
to fill in the gap between HC and L2(𝜕D). Referring to the zero–one law of Driscoll, for a given 𝑓 (·, 𝜔) ∈ L2(𝜕D)∖HC with
a fixed sample path 𝜔, one may find 𝜃 ∈ (0, 1) such that 𝑓 (·, 𝜔) ∈ H𝜃

C. In accordance with the convergence rate results
obtained in Theorems 6 and 7, one has discretion to perform an AFD-type approximation in a selected space H𝜃

C.

3.4 Flexibility of dictionary selection for implementing SPOAFD
For a given random signal 𝑓 ∈ L2(Ω,L2(𝜕D)), both its KL and its SPOAFD decompositions are adaptive. SPOAFD, how-
ever, possesses extra adaptivity because the dictionary in use can again be selected according to the concrete task. As an
example, in Yang [5], we numerically solve the Dirichelet problem of random data:{

Δu(x, 𝜔) = 0, ∀x ∈ D ⊆ R
n+1, a.s.𝜔 ∈ Ω,

u(x, 𝜔) = 𝑓 (x, 𝜔), fora.e. x ∈ 𝜕D, a.s.𝜔 ∈ Ω, (28)

where 𝑓 ∈ L2(Ω,L2(𝜕D)), D = B1. According to the related Hardy space theory the solution u will belong to L2(Ω, h2(D)).
The most convenient dictionary that we use in this case is the parameterized Poisson kernels (for the unit ball) Px(𝑦′)
defined as

Px(𝑦′) ≜ P(x, 𝑦′) ≜ cn
1 − r2|x − 𝑦′|n , x = rx′ ∈ B1, x′, 𝑦′ ∈ 𝜕B1, (29)

In the algorithm, the random data 𝑓 (x, 𝜔) is first sufficiently approximated in the  norm  = L2(Ω,L2(𝜕D)) by
SPOAFD series on the boundary using the parameterized Poisson kernels:

𝑓𝜔(x′) − 𝜇(x′)

=

∞∑
k=1

⟨𝑓𝜔 − 𝜇,Ek⟩Ek(x′) =
∞∑

k=1
ck(𝜔)P̃xk (x

′), x′ ∈ B1, (30)
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QIAN ET AL.

where (E1, · · · ,Ek, · · · ) are, consecutively, the GS orthogonalization of the multiple kernels (P̃x1 , · · · , P̃xk , · · · ), xk =
rkx′k, k = 1, · · · ,n, · · · , and ck(𝜔)s are the coefficients in the span of {P̃xk}. Then, based on the semigroup property of the
Poisson kernel, we can “lift up” each term of the spherical expansion and then add up to get the solution to the Dirichlet
problem with the random data, that is, in the self-explanatory notation,

u𝑓𝜔−𝜇(x) =
∞∑

k=1
ck(𝜔)P̃xk (x), x ∈ B1. (31)

The convergence speed of the n-partial sums of (31) is the same as that for (30), being of the rate O
(

1√
n

)
as proved in

Section 3. By using other dictionaries such as the heat kernel or any suitable convolution type kernel, or the eigensystem
of the Mocer's kernel, although efficient approximation may be obtained at the boundary, there will be no convenience as
lifting up the Poisson kernels to directly obtain the solution of the problem. Some other similar examples are also given
in Yang [5] and Qu [29]. We finally note that, not like the KL expansion, SAFD, SPOAFD, and the related SnB are also
available in unbounded domains, as long as the random function interested is in the corresponding Bochner-type space.

4 EXPERIMENTS

In this section, we approximate the Brownian bridge in [0, 2𝜋]. In the following experiments, the graphs of the targeted
Brownian bridge are made by using the algorithm on page 195 of Lord et al. [28]. The KL expansions are according to
the formula (5.44) on page 206 of Lord et al. [28]. The AFD-type methods are based on the covariance of the Brownian
bridge, that is,

C(s, t) = min(s, t) − st
2𝜋

.

Example 1. (SPOAFD based on the Poisson kernel dictionary) The experiment is based on 126 sampling points in
[0, 2𝜋] with the uniform spacing Δt≈0.05. As shown in Figure 1, SPOAFD by using the Poisson kernel dictionary
has almost the same effect as that of the KL expansion. At the 125th partial sums, both SPOAFD and KL expansions
approximately recover the target function. In the local details, SPOAFD seems to have visually better results. The
relative errors of the two methods are given in Table 1.

Example 2. (SAFD on the Szegö kernel dictionary for the complex Hardy space on the disc space) We approximate
the Brownian bridge by using the KL and the SAFD expansions based on 4096 and 1024 sampling points in [0, 2𝜋]

FIGURE 1 Sample path I (126 points) of Brownian bridge. [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Relative error.

n partial sum n = 25 n = 50 n = 100 n = 125
KL 0.0331 0.0140 0.0021 6.1397 × 10−31

SPOAFD 0.0298 0.0113 0.0026 1.0984 × 10−7
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QIAN ET AL.

FIGURE 2 Sample path IIa (212 points) of Brownian bridge. [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 2a Relative error.

n partial sum n = 50 n = 100 n = 200 n = 400
KL 0.0237 0.0118 0.0055 0.0026
SAFD 0.0119 0.0055 0.0026 0.0012

TABLE 2b Relative error.

n partial sum n = 10 n = 20 n = 30 n = 40
KL 0.0245 0.0103 0.0074 0.0059
SAFD 0.0120 0.0061 0.0046 0.0035

with the uniform spacing Δt≈0.002 and Δt≈0.006, respectively. The results are shown in Figure 2A,B. SAFD has
the convenience of using the TM system, that is, in the continuous formulation, orthonormal. Discretely, however,
the orthonormal properties are with errors. Hence, SAFD requires more sampling points than SPOAFD. The relative
errors are given in Tables 2 and 2b.

Example 3. (SnB on the Szegö kernels dictionary) The Brownian bridge is generated by using 2048 sampling points
in [0, 2𝜋]with the uniform spacingΔt≈0.003. In this example, we approximate the sample path with the KL expansion
and the SnB method. As shown in Figure 3 and Table 1, with all the 15, 30, 60, 100 partial sum approximations, the
SnB method outperforms the KL method in the details. The relative errors are given in Table 3.
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FIGURE 3 Sample path III (211 points) of Brownian bridge. [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Relative error.

n partial sum n = 15 n = 30 n = 60 n = 100
KL 0.0068 0.0031 0.0015 8.2008 × 10−4

SnB 0.0031 0.0015 6.9197 × 10−4 3.8540 × 10−4

5 CONCLUSIONS

In the article, we propose several AFD-type methods, including SAFD, SPOAFD, and SnB, to expand random functions
(time series, random processes, and random fields). They enjoy the same optimal convergence rate as that for KL expan-
sion. Compared with KL, the proposed AFD methods require much less computation for they only use the covariance
but not eigenpair information. There usually exists a large pool of dictionaries available for implementing an AFD-type
method in the question. A suitably chosen dictionary may remarkably reduce the computation and lift up efficiency of
the approximation. The proposed AFD-type expansions are well applicable also to infinite time and unbounded space
domains, as long as the second moment is integrable there.
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