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1. Introduction

In this paper we will study three reproducing Kernel Hilbert spaces (RKHS)
in the framework of Clifford algebra. They are the Paley–Wiener space
(PW (π,C�0,m(C))), the Hardy space on a strip Sa (H2(Sa, C�0,m(C))), and
the Bergman space on a strip Sa (A2(Sa, C�0,m(C))), where Sa = {x =
x0 + x ∈ Rm+1 : x ∈ Rm, |x0| < a} ⊂ Rm+1 (see §2 for their detailed
definitions). The three spaces are closely related to the well-known classical
Paley–Wiener theorems referred to the Hardy H2 space in the upper-half
complex plane and entire functions with certain exponential increasing at
the infinity on the whole complex plane [18]. The upper-half complex plane
Hardy space version is stated as follows: f ∈ L2(R) is the nontangential
boundary limit (NTBL) function of some function in the Hardy H2 space
of the upper-half plane (denoted by H2(C+)) if and only if f̂ = χ[0,∞)f̂ ,

where f̂ is the Fourier transform of f, which is phrased as the non-compact
type Paley–Wiener theorem in this paper. The entire function version is that
f ∈ L2(R) is the restriction of an entire function f(z) with the bounds
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C exp(π|z|) if and only if f̂ = χ[−π,π]f̂ . This will be phrased as the compact
type Paley–Wiener theorem in this paper.

There exist analogous results of the Paley–Wiener theorems in higher
dimensions, that are formulated with, respectively, the several complex vari-
ables and the Clifford algebra settings.

In the several complex variables setting the Paley–Wiener theorem is
for the Hardy spaces on tubes over regular cones, H2(TΓ), where Γ ⊂ Rm is
any regular cone and TΓ = {x + iy ∈ Cm;x ∈ Rm, y ∈ Γ} (see [24]), as a
generalization of the non-compact case. The Paley–Wiener Theorem states
that f ∈ H2(TΓ) if and only if f̂ = χΓ∗ f̂ , where Γ∗ is the dual cone of Γ. We
cite also analogous results for Bergman spaces on tubes over regular cones
(see e.g. [1,2,8]). As an analogue of the compact case, the Paley–Wiener
theorem is generalized to entire functions of several complex variables with
the exponential type bounds (see e.g. [24]). This type of holomorphic func-
tions corresponding to those whose Fourier transforms Rm are supported in
compact convex sets.

In the Clifford algebra setting a compact type Paley–Wiener theorem
is obtained in [12]. Recently, the authors in [15,16] established several com-
pact type Paley–Wiener theorems for the Clifford–Fourier transform and the
radially deformed Fourier transform in Clifford analysis (see [15,16] and the
references therein for more information). A standard non-compact version is
as follows. Denote by H2(Rm+1

+ , C�0,m(C)) the C�0,m(C)-valued Hardy space
on the upper-half space, Rm+1

+ = {x = x0 + x ∈ Rm+1
+ : x0 > 0, x ∈ Rm}

. Then f ∈ H2(Rm+1
+ , C�0,m(C)) if and only if the nontangential boundary

limit f satisfies f̂ = χ+f̂ , where χ+(ξ) = 1
2 (1 + i

ξ

|ξ| ). Moreover, the last

relation holds if and only if f = 1
2 (I + H)f, where H = −∑m

j=1 Rjej and
Rj ’s are the Riesz transformations. This result is an alternative version of the
result on the conjugate harmonic systems [23,24]. So far the Paley–Wiener
type theorems have been extensively studied that include generalizations in
the distribution sense to the Lp cases, 1 ≤ p ≤ ∞, as well as analogues in the
Bergman and Dirichlet spaces (see e.g. [3,5–7,9,10,14,20–22]).

The aim of the present paper is two-fold. One is to obtain the Fourier
transform characterizations of the mentioned Clifford monogenic spaces; and
the other is to show that they are reproducing kernel Hilbert spaces (RKHSs).
Their reproducing kernels are computed and estimated.

Denote by P (w, x), S(w, x) and B(w, x) the reproducing kernels of, re-
spectively,
PW (π,C�0,m(C)), H2(Sa, C�0,m(C)) and A2(Sa, C�0,m(C)).

We will show

P (w, x) =
1

(2π)m

∫

Rm

e(w + x, ξ)χB(0;π)(ξ)dξ,

S(w, x) =
1

(2π)m

∫

Rm

e(w + x, ξ)e−2a|ξ|dξ,
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and

B(w, x) =
1

(2π)m

∫

Rm

e(w + x, ξ)
2|ξ|

e2a|ξ| − e−2a|ξ| dξ,

where e(x, ξ) is the monogenic exponential function (see §2 for details). In
the essence of the Paley–Wiener theorem of H2(Sa, C�0,m(C)) we give

H2(Sa, C�0,m(C)) = H2(Rm+1
+,−a, C�0,m(C)) ⊕ H2(Rm+1

−,a , C�0,m(C)),

where H2(Rm+1
±,∓a, C�0,m(C)) are, respectively, the Hardy spaces on Rm+1

±,∓a =
{x = x0 + x ∈ Rm+1 : ±x0 > −a, x ∈ Rm}. Some estimates of P (w, x),
S(w, x) and B(w, x) are deduced.

The writing of the paper is organized as follows. In Sect. 2 notations
and terminologies that will be used, as well as an account of the known
and relevant results are provided. In Sect. 3 the spectrum characterizations,
representation formulas through the reproducing kernels, are deduced.

2. Preliminaries

Denote by C�0,m(R) (C�0,m(C)) the algebra over the real (complex) number
field generated by the basis e1, . . . , em of Rm = {x = x1e1 + · · · + xmem :
xj ∈ R, 1 ≤ j ≤ m}, where the ej ’s satisfy the relations

ejek + ekej = −2δjk, j, k = 1, . . . , m,

where δjk is the Kronecker delta function. We note that C�0,m(R) (C�0,m(C))
is a particular Clifford algebra with the unit element e0 = 1.

The elements of C�0,m(R) (C�0,m(C)) are of the form x =
∑

T xTeT ,
where T = {1 ≤ j1 < j2 < · · · < jl ≤ m} runs over all ordered subsets
of {1, . . . , m}, xT ∈ R (C) with x∅ = x0, and eT = ej1ej2 · · · ejl

with the
unit element e∅ = e0 = 1. Sc{x} := x0 and NSc{x} := x − Sc {x} are
respectively called the scalar part and the non-scalar part of x. In this paper,
we denote the conjugate of x ∈ C�0,m(R)(C�0,m(C)) by x =

∑
T xTeT ,

where eT = ejl
· · · ej2ej1 with e0 = e0 and ej = −ej for j �= 0. The norm

of x ∈ C�0,m(R)(C�0,m(C))) is defined as |x| := (Sc {xx})
1
2 = (

∑
T |xT |2) 1

2 .
x = x0 +x ∈ Rm+1 = {x = x0 +x : x0 ∈ R, x ∈ Rm} is called a para-vector,
and the conjugate of a para-vector x is x = x0 − x. If x is a para-vector then
x−1 = x

|x|2 . For more information about Clifford algebra, we refer to [4].
Let Ω be an open subset of Rm+1. A C�0,m(C)-valued function F on Ω

is left-monogenic (resp. right-monogenic) if

DF =
m∑

k=0

ek∂kF = 0

(

resp. FD =
m∑

k=0

∂kFek = 0

)

, in Ω,

where ∂k = ∂
∂xk

, 0 ≤ k ≤ m, and D is the Dirac operator. Note that D(DF ) =
ΔF = 0 if F is left-monogenic, which means that each component of a left-
monogenic function F is harmonic. A function that is both left- and right-
monogenic is called a monogenic function. Para-vector-valued left-monogenic
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functions are simultaneously right-monogenic functions, and vice-versa, and
thus they are monogenic.

The Fourier transform of a function in L1(Rm) is defined as

f̂(ξ) = F(f)(ξ) =
∫

Rm

e−i〈x,ξ〉f(x)dx,

where ξ = ξ1e1 + · · · + ξnen ∈ Rm, and the inverse Fourier transform is
formally defined as

g∨(x) = F−1(g)(x) =
1

(2π)m

∫

Rm

ei〈x,ξ〉g(ξ)dξ.

The Fourier transformation is linear and thus it, together with some of
its properties, can be extended to C�0,m(C)-valued functions. In particular,
the Plancherel theorem holds for C�0,m(C)-valued functions: For C�0,m(C)-
valued functions f, g ∈ L2(Rm, C�0,m(C)) there holds

∫

Rm

f(x)g(x)dx =
∫

Rm

f̂(ξ)ĝ(ξ)dξ. (2.1)

Define, for x = x0 + x,

e(x, ξ) = e+(x, ξ) + e−(x, ξ)

with

e±(x, ξ) = ei〈x,ξ〉e∓x0|ξ|χ±(ξ),

where χ±(ξ) = 1
2

(
1 ± i

ξ

|ξ|
)

(see e.g. [13]). χ±(ξ) enjoy the projection prop-
erties:

χ−(ξ)χ+(ξ) = χ+(ξ)χ−(ξ) = 0, χ2
±(ξ) = χ±(ξ), χ+(ξ) + χ−(ξ) = 1.

(2.2)

In the following we first state two existing Paley–Wiener theorems in
the Clifford algebra setting. In [12] the following Paley–Wiener theorem is
proved.

Proposition 2.1. [12] Let f ∈ L2(Rm, C�0,m(C)), and R a positive number.
Then the following two conditions are equivalent:

(i) f may be left-monogenically extended to the whole Rm+1, and there
exists a constant C such that |f(x)| ≤ CeR|x| for all x = x0+x ∈ Rm+1;

(ii) suppF(f) ⊂ B(0, R), where B(0, R) is the ball centered at the origin
with radius R. Moreover, if these conditions hold, then

f(x) =
1

(2π)m

∫

B(0,R)

e(x, ξ)F(f)(ξ)dξ, x ∈ Rm+1.

By Proposition 2.1, we can define the Paley–Wiener space PW (π
h , C�0,m(C))

with h > 0 as follows. We say f ∈ PW (π
h , C�0,m(C)) if f satisfies one of the

conditions (i) and (ii) with R = π
h in Proposition 2.1.

PW (π
h , C�0,m(C)) is equipped with the inner product

〈f, g〉PW =
∫

Rm

g(x)f(x)dx, f, g ∈ PW (
π

h
,C�0,m(C)),
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and

||f ||2PW = Sc(〈f, f〉PW ).

Without loss of generality, we let h = 1. Furthermore, the sinc function, which
is closely related to the reproducing kernel of PW (π,C�0,m(C)), is defined
in [11], as

sincC(x) =
1

(2π)m

∫

Rm

e(x, ξ)χ[−π,π]m(ξ)dξ, x ∈ Rm+1, (2.3)

with the estimation given in the following Lemma.

Lemma 2.2. [12] There holds

|sincC(x)| ≤ P (|x0|)e
√

mπ|x0|
∏m

j=1(1 + |xj |) , x ∈ Rm+1,

where P (|x0|) is a polynomial of |x0|.
The other Paley–Wiener theorem concerns the Hardy space. Denote the
Hardy space on Sa by H2(Rm+1

+ , C�0,m(C)), where

H2(Rm+1
+ , C�0,m(C))

=
{

f : Df = 0 in Rm+1
+ , ||f ||H2(Rm+1

+ ) = sup
x0>0

∫

Rm

|f(x0 + x)|2dx < ∞
}

and Rm+1
+ = {x = x0 + x ∈ Rm+1 : x0 > 0}. The statement is as follows.

Proposition 2.3. (see e.g. [9,17]) f ∈ H2(Rm+1
+ , C�0,m(C)) if and only if

there exists a measurable function g in Rm such that

g(ξ) ∈ L2(Rm, C�0,m(C))

and

f(x) =
1

(2π)m

∫

Rm

e+(x, ξ)g(ξ)dξ, x ∈ Rm+1
+ ,

showing that g(ξ) = F(f)(ξ).

Furthermore, the Lp version of Proposition 2.3, 1 ≤ p ≤ ∞, is stated as
follows. Let Ψ(Rm, C�0,m(C)) be the Clifford algebra-valued Schwartz space,
whose elements are given by

ψ(ξ) =
∑

T

ψT (ξ)eT ,

where ψT are in the Schwartz space S(Rm). Denote by Ψ±(Rm, C�0,m(C))
the subclasses of Ψ(Rm, C�0,m(C)) consisting of the Clifford algebra-valued
Schwartz functions of, respectively, the forms

ψ(ξ) = ψ(ξ)χ±(ξ),

where ψ(ξ) takes the zero value in some neighborhood of the origin.
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Proposition 2.4. (see [5]) For f ∈ Hp(Rm+1
+ , C�0,m(C)), 1 ≤ p ≤ ∞, there

holds

(f̂ , ψ) = (f, ψ̂) =
∫

Rm

ψ̂(x)f(x)dx = 0,

where ψ ∈ Ψ−(Rm, C�0,m(C)).
Conversely, if f ∈ Lp(Rm, C�0,m(C)), 1 ≤ p ≤ ∞, satisfies (f̂ , ψ) = 0 for
all ψ ∈ Ψ(Rm, C�0,m(C)), then f(x) is the NTBL function of some f ∈
Hp(Rm+1

+ , C�0,m(C)).

In this paper we will mainly concern the monogenic Hardy and Bergman
spaces on strips. Denote by Hp(Sa, C�0,m(C)), 1 ≤ p < ∞, a > 0, the mono-
genic Hardy space on the strip Sa = {x ∈ Rm+1 : |x0| < a, x ∈ Rm}, where

Hp(Sa, C�0,m(C))

=

{

f : Df = 0 in Sa, ||f ||pHp(Sa) = sup
|x0|<a

∫

Rm

|f(x0 + x)|pdx < ∞
}

.

Similarly, we denote by Hp(Rm+1
+,−a, C�0,m(C)) the Hardy space consisting of

the left-monogenic functions in Rm+1
+,−a = {x ∈ Rm+1 : x0 > −a, x ∈ Rm}

satisfying

||f ||p
Hp(Rm+1

+,−a)
= sup

x0>−a

∫

Rm

|f(x0 + x)|pdx < ∞,

and by Hp(Rm+1
−,a , C�0,m(C)) the Hardy space consisting of left-monogenic

functions in Rm+1
−,a = {x ∈ Rm+1 : x0 < a, x ∈ Rm} satisfying

||f ||p
Hp(Rm+1

−,a )
= sup

x0<a

∫

Rm

|f(x0 + x)|pdx < ∞.

Let σm = π
m+1

2

Γ( m+1
2 )

. For f ∈ Hp(Rm+1
+ , C�0,m(C)), one has the Cauchy

integral formula, i.e.,

Proposition 2.5. (see e.g. [9,17]) For f ∈ Hp(Rm+1
+ , C�0,m(C)), 1 ≤ p < ∞,

we have

f(x) =
∫

Rm

E(x − y)f(y)dy,

where E(x) = 1
2σm

x
|x|m+1 is the Cauchy kernel, and f(y) is the NTBL function

of f .

Denote by Ap(Sa, C�0,m(C)), 1 ≤ p < ∞, the Bergman spaces on Sa, where

Ap(Sa, C�0,m(C))

= {f : Df = 0 in Sa : ||f ||pAp(Sa) =
∫ a

−a

∫

Rm

|f(x0 + x)|pdxdx0 < ∞}.

(2.4)
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Similarly, we denote by Ap(Rm+1
+,−a, C�0,m(C)) the Bergman spaces consisting

of the left-monogenic functions in Rm+1
+,−a satisfying

||f ||p
Ap(Rm+1

+,−a)
=

∫ ∞

−a

∫

Rm

|f(x0 + x)|pdxdx0 < ∞,

and by Ap(Rm+1
−,a , C�0,m(C)) the Bergman spaces consisting of left-monogenic

functions in Rm+1
−,a satisfying

||f ||p
Ap(Rm+1

−,a )
=

∫ a

−∞

∫

Rm

|f(x0 + x)|pdxdx0 < ∞.

3. Monogenic RKHSs and Estimations of their Reproducing
Kernels

3.1. PW (π, C�0,m (C)) as a RKHS

It is noted that PW (π
h , C�0,m(C)) is a RKHS admitting the reproducing

kernel given by

P (w, x) =
1

(2π)m

∫

Rm

e(w + x, ξ)χB(0, π
h )(ξ)dξ.

In fact, by the Plancherel theorem, Proposition 2.1 implies that, for f ∈
PW (π,C�0,m(C)),

〈f, P (·, x)〉PW =
∫

Rm

P (y, x)f(y)dy

=
1

(2π)m

∫

Rm

e(x, ξ)χB(0,π)F(f)(ξ)dξ

= f(x),

(3.1)

which shows that P (w, x) is the reproducing kernel for PW (π,C�0,m(C)).
Next we induce another sinc function in PW (π,C�0,m(C)) by

sincB(x) = P (x, 0) =
1

(2π)m

∫

Rm

e(x, ξ)χB(0,π)(ξ)dξ, x ∈ Rm+1. (3.2)

The following estimation of sincB is analogous to that of sincC given in
Lemma 2.2. Moreover, the sinc function sincB has more significance due to
its relation with the reproducing kernel of PW (π,C�0,m(C)) through (3.1)
and (3.2).

Lemma 3.1.

|sincB(x)| ≤ M
(1 + |x0|)e|x0|π

|x|m+1
2

, x ∈ Rm+1, |x| ≥ 1,

where M is a constant.
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Proof. Observing that

sincB(x) =
1

(2π)m

∫

Rm

e(x, ξ)χB(0,π)(ξ)dξ

=
1

(2π)m

∫

Rm

e+(x, ξ)χB(0,π)(ξ)dξ +
1

(2π)m

∫

Rm

e−(x, ξ)χB(0,π)(ξ)dξ

= sinc+B(x) + sinc−
B(x).

We are thus reduced to estimate sinc+
B(x) and sinc−

B(x) separately.
Let dσ(ξ′) be the area element of the (m − 1)-sphere Sm−1. For x =

x0 + x ∈ Rm+1, we have

sinc±
B(x) =

1
(2π)m

∫

B(0,π)

ei〈x,ξ〉e∓x0|ξ|χ±(ξ)dξ

=
1

2(2π)m

∫ π

0

∫

Sm−1
eir〈x,ξ′〉e∓x0r(1 ± iξ′)rm−1dσ(ξ′)dr

=
1

2(2π)m

(∫ π

0

∫

Sm−1
eir〈x,ξ′〉e∓x0rrm−1dσ(ξ′)dr±

×
∫ π

0

∫

Sm−1
eir〈x,ξ′〉e∓x0r(iξ′)rm−1dσ(ξ′)dr

)

=
1

2(2π)m
(I1 ± I2).

(3.3)

First consider I1. We have

I1 =
∫ π

0

e∓x0rrm−1

∫

Sm−1
eir〈x,ξ′〉dσ(ξ′)dr

=
∫ π

0

e∓x0rrm−1

∫

Sm−1
eir〈Ux,Uξ′〉dσ(ξ′)dr

=
∫ π

0

e∓x0rrm−1

∫ π

0

eir|x| cos θ(sin θ)m−2dθdr

=
∫ π

0

e∓x0rrm−1

∫ 1

−1

eir|x|η(1 − η2)
m−3

2 dηdr,

(3.4)

where U ∈ O(m) = {A ∈ GL(m); 〈Ax,Aξ〉 = 〈x, ξ〉, x, ξ ∈ Rm} is a rotation
fixing the origin and making Ux = |x|e1. In the change of variable we used
dσ(ξ′) = dσ(Uξ′). We recall that

∫ 1

−1

eir|x|η(1 − η2)
m−3

2 dη = ωm−2
2

(r|x|)− m−2
2 Jm−2

2
(r|x|),

where ωm−2
2

= Γ(m−1
2 )Γ( 1

2 ), and Jk(t) is the Bessel function given by

Jk(t) =
( t
2 )k

ωk

∫ 1

−1

eits(1 − s2)
2k−1

2 ds, k > −1
2
.

We also need the following properties of Jk(t) (see [24]):

d

dt
(tkJk(αt)) = αtkJk−1(αt) (3.5)
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and

Jk(t) = O(t−
1
2 ) as t → ∞. (3.6)

Since

I1 = ωm−2
2

∫ π

0

e∓x0rrm−1(r|x|)− m−2
2 Jm−2

2
(r|x|)dr

=
ωm−2

2

|x|m
2

∫ π

0

e∓x0rr
m
2 |x|Jm

2 −1(r|x|)dr

=
ωm−2

2

|x|m
2

(

r
m
2 Jm

2
(r|x|)e∓x0r

∣
∣π
0

− ∓x0

∫ π

0

e∓x0rr
m
2 Jm

2
(r|x|)dr

)

,

by (3.6), there exists a constant C1 > 0 such that

|I1| ≤ C1
(1 + |x0|)e|x0|π

|x|m+1
2

.

Next we consider I2. As in (3.4), we have

I2 = i

∫ π

0

e∓x0rrm−1

∫

Sm−1
eir〈Ux,Uξ′〉ξ′dσ(ξ′)dr

= i

∫ π

0

e∓x0rrm−1

∫

Sm−1
eir〈Ux,ζ′〉Uζ′dσ(ζ′)dr

= i

∫ π

0

e∓x0rrm−1

∫ 2π

0

∫ π

0

· · ·
∫ π

0

eir|x| cos θ1Uζ′(sin θ1)
m−2 · · · sin θm−2dθ1

. . . dθm−2dθm−1dr,

(3.7)

where we write dσ(ζ ′) in spherical coordinates, and U ∈ O(m) fixes the origin
such that Ux = |x|e1. For ζ ′ ∈ Sm−1 and U = (ujk)m×m ∈ O(m), we have

Uζ ′ =(u11 cos θ1 + V1(θ2, . . . , θm−1) sin θ1,

. . . , um1 cos θ1 + Vm(θ2, . . . , θm−1) sin θ1)T ,

where Vj(θ2, . . . , θm−1) depends on (θ2, . . . , θm), and

|Vj(θ2, . . . , θm−1)| ≤
m∑

k=2

|ujk| ≤ m.

Therefore, to estimate I2, it suffices to estimate I21 and I22, where

I21 =
∫ π

0

eir|x| cos θ1 cos θ1(sin θ1)m−2dθ1

and

I22 =
∫ π

0

eir|x| cos θ1 sin θ1(sin θ1)m−2dθ1.
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Similarly, we have that

I21 =
∫ 1

−1

eir|x|ηη(1 − η2)
m−3

2 dη

= − 1
m − 1

(1 − η2)
m−1

2 eir|x|η∣
∣1
−1

+
ir|x|
m − 1

∫ 1

−1

eir|x|η(1 − η2)
m−1

2 dη

=
iωm

2

m − 1
(r|x|)− m

2 +1Jm
2
(r|x|),

and

I22 =
∫ 1

−1

eir|x|η(1 − η2)
m−2

2 dη = ωm−1
2

(r|x|)− m−1
2 Jm−1

2
(r|x|).

For I21, we have that
∫ π

0

e∓x0rrm−1(r|x|)− m
2 +1Jm

2
(r|x|)dr

=
1

|x|m
2

∫ π

0

e∓x0rr
m
2 |x|Jm

2
(r|x|)dr

=
1

|x|m
2

(

r
m
2 +1Jm

2 +1(r|x|)e∓x0r

r

∣
∣π
0

−
∫ π

0

d( e∓x0r

r )
dr

r
m
2 +1Jm

2 +1(r|x|)dr

)

=
π

m
2 Jm

2 +1(π|x|)e∓x0π

|x|m
2

− 1
|x|m

2

∫ π

0

(∓x0e
∓x0rr − e∓x0r)r

m
2 −1Jm

2 +1(r|x|)dr,

and then have
∣
∣
∣
∣

∫ π

0

e∓x0rrm−1(r|x|)− m
2 +1Jm

2
(r|x|)dr

∣
∣
∣
∣

≤ C ′
2

|x|m
2 +1

+
C ′′

2

|x|m
2 +1

∫ π

0

(|x0|e∓x0rr
m−1

2 + e∓x0rr
m−3

2 )dr.

Note that
∫ π

0

e∓x0rr
m−3

2 dr < ∞, m ≥ 3,

and for m = 2, the same conclusion can be given by integration by parts, i.e.,
∫ π

0

e∓x0rr− 1
2 dr = 2r

1
2 e∓x0r

∣
∣π
0

− (∓2x0)
∫ π

0

e∓x0rr
1
2 dr < ∞.

Thus
∣
∣
∣
∣

∫ π

0

e∓x0rrm−1(r|x|)− m
2 +1Jm

2
(r|x|)dr

∣
∣
∣
∣ ≤ C2(1 + |x0|)e|x0|π

|x|m
2 +1

,
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where C2 is a constant. For I22, we first consider the case m = 2, and have
∣
∣
∣
∣

∫ π

0

e∓x0rrI22dr

∣
∣
∣
∣ =

∣
∣
∣
∣
π

2

∫ π

0

e∓x0rr
eir|x| − e−ir|x|

ir|x| dr

∣
∣
∣
∣

≤ C2
e|x0|π

|x|(x2
0 + |x|2) 1

2

≤ C3
e|x0|π

|x|2 .

For m ≥ 3, using integration by parts, we have
∣
∣
∣
∣

∫ π

0

e∓x0rrm−1(r|x|)− m−1
2 Jm−1

2
(rx)dr

∣
∣
∣
∣

=
1

|x|m+1
2

∣
∣
∣
∣

∫ π

0

e∓x0r

r
|x|r m+1

2 Jm−1
2

(rx)dr

∣
∣
∣
∣

≤ 1

|x|m+1
2

∣
∣
∣
∣r

m+1
2 Jm+1

2
(r|x|)e∓x0r

r

∣
∣π
0

∣
∣
∣
∣

+
1

|x|m+1
2

∣
∣
∣
∣

∫ π

0

r
m+1

2 Jm+1
2

(r|x|)∓x0e
∓x0rr − e∓x0r

r2
dr

∣
∣
∣
∣

≤ C4
(1 + |x0|)e|x0|π

|x|m+2
2

.

Therefore, when |x| ≥ 1,

|I2| ≤ C5
(1 + |x0|)e|x0|π

|x|m+1
2

.

We thus obtain the desired result. �

3.2. H2(Sa, C�0,m (C)) as a RKHS

The space H2(Sa, C�0,m(C)) is also a Paley–Wiener type RKHS. In this part
we will first prove the Paley–Wiener theorem for H2(Sa, C�0,m(C)), and then
construct its Szegö kernel.

It is well-known that (see e.g. [5,9])

L2(Rm, C�0,m(C)) = H2(Rm+1
+ , C�0,m(C)) ⊕ H2(Rm+1

− , C�0,m(C)).

There exists a similar decomposition for H2(Sa, C�0,m(C)). In the following
we give

Theorem 3.2. Let f ∈ L2(Rm, C�0,m(C)). Then f is the restriction to Rm

of a function in H2(Sa, C�0,m(C)) if and only if there exists a measurable
function g in Rm such that

ea|ξ|g(ξ) ∈ L2(Rm, C�0,m(C)) (3.8)

and

f(x) =
1

(2π)m

∫

Rm

e(x, ξ)g(ξ)dξ, x ∈ Sa, (3.9)

showing that g(ξ) = Ff(ξ). Moreover, there exist f+ ∈ H2(Rm+1
+,−a, C�0,m(C))
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and f− ∈ H2(Rm+1
−,a , C�0,m(C)) such that

f(x) = f+(x) + f−(x), x ∈ Sa, (3.10)

where the above decomposition is unique, and implies

H2(Sa, C�0,m(C)) = H2(Rm+1
+,−a, C�0,m(C)) ⊕ H2(Rm+1

−,a , C�0,m(C)).

To prove Theorem 3.2, we first recall the Paley–Wiener theorem for
H2(Rm+1

+,−a, C�0,m(C)) and H2(Rm+1
−,a , C�0,m(C)). We can only consider the

case for H2(Rm+1
+,−a, C�0,m(C)), as the case for H2(Rm+1

−,a , C�0,m(C)) is simi-
lar. As a consequence of the Paley–Wiener theorem for H2(Rm+1

+ , C�0,m(C))
(see e.g. [9,17], and see also Proposition 2.3), we have

Lemma 3.3. f ∈ H2(Rm+1
+,−a, C�0,m(C)) if and only if there exists a measur-

able function g in Rm such that

ea|ξ|g(ξ) ∈ L2(Rm, C�0,m(C))

and

f(x) =
1

(2π)m

∫

Rm

e+(x, ξ)g(ξ)dξ, x ∈ Rm+1
+,−a, (3.11)

showing that g(ξ) = F(f)(ξ).

Proof. For f ∈ H2(Rm+1
+,−a, C�0,m(C)), we set F (x) = f(−a + x0 + x) with

x0 > 0, and then F (x) ∈ H2(Rm+1
+ , C�0,m(C)). Applying Proposition 2.3 to

F (x), we can get the desired relation. �

In the following we prove Theorem 3.2.

Proof. We first assume that (3.8) holds. The monogenicity of f(x) defined
through (3.9) follows from (3.11). Then, by Plancherel’s theorem we have,
for x ∈ Sa,

∫

Rm

|f(x0 + x)|2dx =
1

(2π)m

∫

Rm

∣
∣
∣(e−x0|ξ|χ+(ξ) + ex0|ξ|χ−(ξ))g(ξ)

∣
∣
∣
2

dξ

=
1

(2π)m

∫

Rm

∣
∣
∣(e−x0|ξ|χ+(ξ))g(ξ)

∣
∣
∣
2

dξ +
∫

Rm

∣
∣
∣(ex0|ξ|χ−(ξ))g(ξ)

∣
∣
∣
2

dξ

< ∞, (3.12)

where the second equality is a consequence of the orthogonality (2.2), and
the last inequality follows from the assumption (3.8).
Next we assume that f ∈ H2(Sa, C�0,m(C)). Let φ ∈ S(Rm) be a scalar-
valued Schwarz function with

∫
Rm φ(ξ)dξ = 1, where F(φ) has compact sup-

port and is equal to 1 in the unit ball B(0, 1). Set φε(x) = 1
εm φ(x

ε ), ε >
0, and then F(φε)(ξ) = F(φ)(εξ). Since φ ∈ S(Rm), we have ψ(x) =
ess sup|ξ|≥|x||φ(ξ)| ∈ L1(Rm). Thus φε is an approximation to the identity
[24, page 13]. We define

gε(x0 + x) = (f(x0 + ·) ∗ φε) (x).
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Taking Fourier transform to the both sides, we have F(gε(x0 + ·)) = F(f(x0

+ ·))F(φε), showing that for each fixed x0 the set suppF(gε) in Rm is com-
pact. The function gε(x) is left-monogenic and satisfies

sup
|x0|<a

||gε(x0 + ·)||L2(Rm) ≤ C sup
|x0|<a

||f(x0 + ·)||L2(Rm)||φε||L1(Rm) < ∞.

Hence

Gε(x) =
1

(2π)m

∫

Rm

e(x, ξ)F(gε)(ξ)dξ, x ∈ Sa, (3.13)

is well-defined due to compactness of suppF(gε). In particular, F(Gε) =
F(gε), and Gε and gε are both left-monogenic in Sa. Note that the two left-
monogenic functions, Gε and gε, defined in Sa, have common values on Rm,
and thus have to be identical (see e.g. [4,19]). Therefore,

F(f(x0 + ·))(ξ)F(φε)(ξ) = F(gε(x0 + ·))(ξ)
= (e−x0|ξ|χ+(ξ) + ex0|ξ|χ−(ξ))F(gε)(ξ)

= (e−x0|ξ|χ+(ξ) + ex0|ξ|χ−(ξ))F(f)(ξ)F(φε)(ξ).

Thus

F(f(x0 + ·))(ξ) = (e−x0|ξ|χ+(ξ) + ex0|ξ|χ−(ξ))F(f)(ξ) (3.14)

for ξ ∈ B(0, 1
ε ). Since ε > 0 is arbitrary, we see that (3.14) holds for all

ξ ∈ Rm. Replacing x0 by −x0 in (3.14), we have

F(f(−x0 + ·))(ξ) = (ex0|ξ|χ+(ξ) + e−x0|ξ|χ−(ξ))F(f)(ξ). (3.15)

Consequently, we have

F(f(x0 + ·))(ξ) + F(f(−x0 + ·))(ξ) = (e−x0|ξ| + ex0|ξ|)F(f)(ξ). (3.16)

By Plancherel’s theorem and f ∈ H2(Sa, C�0,m(C)), we have

1
(2π)m

∫

Rm

|(e−x0|ξ| + ex0|ξ|)F(f)(ξ)|2dξ

=
1

(2π)m

∫

Rm

|F(f(x0 + ·))(ξ) + F(f(−x0 + ·))(ξ)|2dξ

=
∫

Rm

|f(x0 + x) + f(−x0 + x)|2dx

≤ C||f ||2H2(Sa)

< ∞,

which gives ea|ξ|F(f)(ξ) ∈ L2(Rm, C�0,m(C)). By applying the Lebesgue
dominated convergence theorem to (3.13), we can obtain

f(x) =
1

(2π)m

∫

Rm

e(x, ξ)F(f)(ξ)dξ.
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The conditions for using the Lebesgue dominated convergence theorem are
verified as follows. By the definition of gε, we have

lim
ε→0

e(x, ξ)F(gε)(ξ) = lim
ε→0

e(x, ξ)F(f)(ξ)F(φε)(ξ)

= lim
ε→0

e(x, ξ)F(f)(ξ)F(φ)(εξ)

= e(x, ξ)F(f)(ξ), a.e. ξ ∈ Rm,

|e(x, ξ)F(gε)(ξ)| ≤ |e(x, ξ)F(f)(ξ)F(φ)(εξ)| ≤ |e(x, ξ)F(f)(ξ)|||φ||L1(Rm)

and
∫

Rm

|e(x, ξ)F(f)(ξ)|dξ

≤
(∫

Rm

e−2a|ξ||e(x, ξ)|2dξ

) 1
2

(∫

Rm

e2a|ξ||F(f)(ξ)|2dξ

) 1
2

< ∞.

To complete the proof we need to show uniqueness of the decompo-
sition (3.10). In fact, if there exist h+ ∈ H2(Rm+1

+,−a, C�0,m(C)) and h− ∈
H2(Rm+1

−,a , C�0,m(C)) such that f = h+ + h−, then we have h = f+ −
h+ = h− − f− ∈ H2(Rm+1

+,−a, C�0,m(C)) ∩ H2(Rm+1
−,a , C�0,m(C)). This in-

deed implies h = 0 since H2(Rm+1
+,−a, C�0,m(C)) ∩ H2(Rm+1

−,a , C�0,m(C)) ⊂
H2(Rm+1

+ , C�0,m(C)) ∩ H2(Rm+1
− , C�0,m(C)) = {0}. �

Remark 1. We can identify H2(Sa, C�0,m(C)) with the closed subspace of
L2(Rm, C�0,m(C)) :

H2
a(Rm, C�0,m(C)) = {g ∈ L2(Rm, C�0,m(C)) :

ea|ξ|g(ξ) ∈ L2(Rm, C�0,m(C))}.

Let sx(ξ) = e−a|ξ|e(x, ξ). It is obvious that sx ∈ H2
a(Rm, C�0,m(C)). By

Theorem 3.2, we have

f(x) = 〈fa, sx〉L2(Rm), for f ∈ H2(Sa, C�0,m(C)),

where fa is one associated with f in H2
a(Rm, C�0,m(C)). Then we have an

induced inner product on H2(Sa, C�0,m(C)) defined by

〈f, h〉H2(Sa) = 〈fa, ha〉L2(Rm), for f, g ∈ H2(Sa, C�0,m(C)),

where fa and ha, respectively, correspond to f and h in H2
a(Rm, C�0,m(C)).

Accordingly, the reproducing kernel S(w, x) for H2(Sa, C�0,m(C)) in the
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above induced norm is given by

S(w, x) =〈sx, sw〉L2(Rm,C	0,m(C))

=
1

(2π)m

∫

Rm

e−2a|ξ|e(w + x, ξ)dξ

=
1

(2π)m

∫

Rm

e−2a|ξ|e+(w + x, ξ)dξ+

1
(2π)m

∫

Rm

e−2a|ξ|e−(w + x, ξ)dξ

=
1

2σm

w + x + 2a

|w + x + 2a|m+1
− 1

2σm

w + x − 2a

|w + x − 2a|m+1

=S+,−a(w, x) + S−,a(w, x),

where S+,−a(w, x) and S−,a(w, x) are the Szegö kernels for H2(Rm+1
+,−a,

C�0,m(C)) and H2(Rm+1
−,a , C�0,m(C)), respectively.

Remark 2. We note that Theorem 3.2 can be generalized to Hp(Sa,
C�0,m(C)), 1 ≤ p ≤ 2, stated as

Theorem 3.4. Suppose that 1 ≤ p ≤ 2. If g(ξ) ∈ Lq(Rm, C�0,m(C)), q = p
p−1 ,

and ea|ξ|χ+(ξ)g(ξ) and ea|ξ|χ−(ξ)g(ξ) are the Fourier transforms of some
functions in Lp(Rm), then

f(x) =
1

(2π)m

∫

Rm

e(x, ξ)g(ξ)dξ, x ∈ Sa, (3.17)

is in Hp(Sa, C�0,m(C)). Moreover, there exist f+ ∈ Hp(Rm+1
+,−a, C�0,m(C))

and f− ∈ Hp(Rm+1
−,a , C�0,m(C)) such that

f(x) = f+(x) + f−(x), x ∈ Sa, (3.18)

where the above decomposition is unique.
Conversely, if f ∈ Hp(Sa, C�0,m(C)), 1 ≤ p ≤ 2, then g(ξ) = F(f)(ξ)

such that

ea|ξ|g(ξ) ∈ Lq(Rm, C�0,m(C))

and (3.17) holds.

Proof. For p = 2 the result follows from Theorem 3.2. In the following we
only need to consider 1 ≤ p < 2.
We first assume that g(ξ) ∈ Lq(Rm, C�0,m(C)) such that there exist g+(x), g

−(x) ∈ Lp(Rm, C�0,m(C)) satisfying ea|ξ|χ+(ξ)g(ξ) = F(g+)(ξ) and ea|ξ|χ−
(ξ)g(ξ) = F(g−)(ξ). We define

f(x) =
1

(2π)m

∫

Rm

e(x, ξ)g(ξ)dξ

=
1

(2π)m

∫

Rm

e+(x, ξ)g(ξ)dξ +
1

(2π)m

∫

Rm

e−(x, ξ)g(ξ)dξ

= f+(x) + f−(x).
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For 1 < p < 2, we have

f+(x) =
1

(2π)m

∫

Rm

ei〈x,ξ〉e−x0|ξ|χ+(ξ)g(ξ)dξ

=
1

(2π)m

∫

Rm

ei〈x,ξ〉e−(a+x0)|ξ|χ+(ξ)F(g+)(ξ)dξ

=
∫

Rm

S+,−a(−w, x − a)g+(w)dw,

where the last equality is the Szegö projection of Hp(Rm+1
+,−a, C�0,m(C)). The

fact f+ ∈ Hp(Rm+1
+,−a, C�0,m(C)) then follows from the Lp-boundedness of the

Sezgö projection (see e.g. [9]). Similarly, one can show f−(x) ∈ Hp(Rm+1
−,a ,

C�0,m(C)). Thus f ∈ Hp(Sa, C�0,m(C)), 1 < p < 2.
For p = 1, q = ∞ we define

G+(x0 + x) =
∫

Rm

P+,−a(x − w, x0 − a)g+(w)dw,

where P+,−a(x, x0) = 1
2σm

x0+2a

((x0+2a)2+|x|2) m+1
2

is the Poisson kernel on Rm+1
+,−a.

We then have

f+(x) =
1

(2π)m

∫

Rm

ei〈x,ξ〉e−(a+x0)|ξ|χ+(ξ)F(g+)(ξ)dξ

=
∫

Rm

P+,−a(x − w, x0 − a)g+(w)dw

= G+(x).

We note that G+(x0 + x) ∈ L1(Rm, C�0,m(C)) since

||G+(x0 + x)||L1(Rm) ≤ C||g+||L1(Rm)||P+,−a(·, x0 − a)||L1(Rm)

= C||g+||L1(Rm)

< ∞,

where C is a positive constant.
The order of taking derivative and taking integral may be exchanged,

due to use of the Lebesgue dominated convergence theorem, and thus f+

is left-monogenic on Rm+1
+,−a. Thus f+ ∈ H1(Rm+1

+,−a, C�0,m(C)). Similarly, we
also have f− ∈ H1(Rm+1

−,a , C�0,m(C)). Therefore, f ∈ H1(Sa, C�0,m(C)). The
uniqueness of (3.18), in fact, is given by Lemma 3.5.

Next we will prove the necessity condition of f ∈ Hp(Sa, C�0,m(C)) in
the theorem. Assume that f ∈ Hp(Sa, C�0,m(C)), 1 ≤ p < 2. The proof of
this part is similar to that of the proof of Theorem 3.2. As in Theorem 3.2,
we define

gε(x0 + x) = (f(x0 + ·) ∗ φε)(x),

and have F(gε(x0 + ·)) = F(f(x0 + ·))F(φε), which means that suppF(gε) is
compact. By Young’s inequality, we have

sup
|x0|<a

||gε(x0 + ·)||Lp(Rm) ≤ C sup
|x0|<a

||f(x0 + ·)||Lp(Rm)||φε||L1(Rm) < ∞,
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which amounts that gε ∈ Hp(Sa, C�0,m(C)). Define

Gε(x) =
1

(2π)m

∫

Rm

e(x, ξ)F(gε)(ξ)dξ, x ∈ Sa. (3.19)

By the argument used in Theorem 3.2, we have

F(f(x0 + ·))(ξ) = (e−x0|ξ|χ+(ξ) + ex0|ξ|χ−(ξ))F(f)(ξ). (3.20)

Then, by Hausdorff–Young’s inequality, from (3.20) we can show that
(ea|ξ| − e−a|ξ|)F(f)(ξ) ∈ Lq(Rm, C�0,m(C)) and (ea|ξ| + e−a|ξ|)F(f)(ξ) ∈
Lq(Rm, C�0,m(C)), which give ea|ξ|F(f)(ξ) ∈ Lq(Rm, C�0,m(C)). Finally, as
in the proof of Theorem 3.2, applying the Lebesgue dominated convergence
theorem to (3.19), we have

f(x) =
1

(2π)m

∫

Rm

e(x, ξ)F(f)(ξ)dξ. �

Lemma 3.5. For a, b > 0, 1 ≤ p < ∞,

Hp(Rm+1
+,−a, C�0,m(C)) ∩ Hp(Rm+1

−,b , C�0,m(C)) = {0}.

Proof. For f ∈ Hp(Rm+1
+,−a, C�0,m(C))∩Hp(Rm+1

−,b , C�0,m(C)), using the sub-
harmonicity of |f |p, we can show that |f(x)| is bounded, and lim|x0|→∞ |f(x0+
x)| = 0. Then by Liouville’s theorem for monogenic functions (see [4]), f(x)
has to be a constant, and then f(x) = 0. �
3.3. A2(Sa, C�0,m (C)) as a RKHS

In this section we study the Paley–Wiener theorem of A2(Sa, C�0,m(C)). The
technique used in the following proof is adapted from [1] (see also [5]).

Theorem 3.6. f ∈ A2(Sa, C�0,m(C)) if and only if

f(x) =
1

(2π)m

∫

Rm

e(x, ξ)g(ξ)dξ, x ∈ Sa,

where g(ξ) = F(f)(ξ) ∈ L2(Rm, C�0,m(C)) such that

1
(2π)m

∫

Rm

(e2a|ξ| − e−2a|ξ|)
|g(ξ)|2
2|ξ| dξ < ∞.

Moreover, the Bergman kernel of A2(Sa, C�0,m(C)) is

B(w, x) =
1

(2π)m

∫

Rm

e(w + x, ξ)
2|ξ|

e2a|ξ| − e−2a|ξ| dξ. (3.21)

Proof. For a fixed 0 < δ < a let fδ(x) be the restriction of f to {x ∈ Sa :
|x0| < a − δ}. By the subharmonicity of |f |2, we have

|f(x0 + x)|2 ≤ 1
Vδ

∫

|y−x|< δ
2

|f(y0 + y)|2dydy0

≤ 1
Vδ

∫

|y0|<a− δ
2

∫

|y−x|< δ
2

|f(y0 + y)|2dydy0

≤ 1
Vδ

∫ a

−a

∫

|y−x|< δ
2

|f(y0 + y)|2dydy0,

(3.22)
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where Vδ = Cδm+1 is the volume of the ball {y ∈ Rm; |y − x| < δ
2}. Then,

by Fubini’s theorem, we have
∫

Rm

|f(x0 + x)|2dx ≤ 1
Vδ

∫ a

−a

∫

Rm

χ|y−x|< δ
2
(x)dx|f(y0 + y)|2dy0dy

≤ C ′

δ

∫ a

−a

∫

Rm

|f(y0 + y)|2dydy0.

(3.23)

Thus fδ(x) ∈ H2(S(a−δ), C�0,m(C)). Hence, by Theorem 3.2, there exists gδ

such that

fδ(x) =
1

(2π)m

∫

Rm

e(x, ξ)gδ(ξ)dξ,

where gδ(ξ) = F(f)(ξ) satisfies e(a−δ)|ξ|gδ(ξ) ∈ L2(Rm, C�0,m(C)). For any
|x0| < a, we let δ = a−|x0|

2 . Then, by the above discussion, we have

f(x0 + x) =
1

(2π)m

∫

Rm

e(x, ξ)F(f)(ξ)dξ,

and g(ξ) = F(f)(ξ). Furthermore, by Plancherel’s theorem, we have

1
(2π)m

∫

Rm

|(e−x0|ξ|χ+(ξ)g(ξ) + ex0|ξ|χ−(ξ)g(ξ)|2dξ =
∫

Rm

|f(x0 + x)|2dx.

(3.24)

Then by using Fubini’s Theorem, we have

1
(2π)m

∫

Rm

∫ a

−a

(e−2x0|ξ||χ+(ξ)g(ξ)|2 + e2x0|ξ||χ−(ξ)g(ξ)|2)dx0dξ

=
∫ a

−a

∫

Rm

|f(x0 + x)|2dxdx0,

which gives

1
(2π)m

∫

Rm

(e2a|ξ| − e−2a|ξ|)
|g(ξ)|2
2|ξ| dξ =

∫ a

−a

∫

Rm

|f(x0 + x)|2dxdx0 < ∞.

Conversely, if there holds

f(x) =
1

(2π)m

∫

Rm

e(x, ξ)g(ξ)dξ, x ∈ Sa,

where g(ξ) = F(f)(ξ) ∈ L2(Rm, C�0,m(C)) such that

1
(2π)m

∫

Rm

(e2a|ξ| − e−2a|ξ|)
|g(ξ)|2
2|ξ| dξ < ∞,

then we can conclude that f ∈ A2(Sa, C�0,m(C)) by the above discussion.
In the following we will show (3.21). First, we show that the point-

evaluation functional Tx is a linear bounded functional. In fact, (3.22) implies

|Tx(f)| = |f(x)| ≤ Cx||f ||A2(Sa).
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By the Riesz representation theorem, there exists a reproducing kernel func-
tion B(w, x) ∈ A2(Sa, C�0,m(C)) as a function with respect to w. Then we
have

f(x) =
1

(2π)m

∫

Rm

e(x, ξ)F(f)(ξ)dξ

=
∫ a

−a

∫

Rm

B(w, x)f(w)dwdw0

=
1

(2π)m

∫ a

−a

∫

Rm

F(B)(ξ, x)(e−2w0|ξ|χ+(ξ)

+ e2w0|ξ|χ−(ξ))F(f)(ξ)dξdw0,

(3.25)

where we have used (2.1) and the fact that F(f(w0+ ·))(ξ) = (e−w0|ξ|χ+(ξ)+
ew0|ξ|χ−(ξ))F(f)(ξ), and F(f)(ξ) is the Fourier transform of the restriction
of f to Rm.

Applying (3.25) to B̃(x, y) (see Remark 3 for its definition) and using
the uniqueness of the Fourier transform, we can show that

∫ a

−a

F(B)(ξ, x)(e−2w0|ξ|χ+(ξ) + e2w0|ξ|χ−(ξ))dw0 = e(x, ξ). (3.26)

Thus

F(B)(ξ, x) =
2|ξ|

e2a|ξ| − e−2a|ξ| e(x, ξ),

and then

B(w, x) =
1

(2π)m

∫

Rm

e(w + x, ξ)
2|ξ|

e2a|ξ| − e−2a|ξ| dξ.

�

Remark 3. Combining the arguments used in Theorem 3.6 and in Lemma 3.3,
we can prove

Theorem 3.7. f ∈ A2(Rm+1
±,∓a, C�0,m(C)) if and only if

f(x) =
1

(2π)m

∫

Rm

e±(x, ξ)g(ξ)dξ, x ∈ Rm+1
±,∓a,

where g(ξ) = F(f)(ξ) ∈ L2(Rm, C�0,m(C)) such that

1
(2π)m

∫

Rm

e2a|ξ| |χ±(ξ)g(ξ)|2
2|ξ| dξ < ∞.

By Theorem 3.6 and Theorem 3.7, we have

A2(Rm+1
+,−a, C�0,m(C)) ⊕ A2(Rm+1

−,a , C�0,m(C)) ⊂ A2(Sa, C�0,m(C)).
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Moreover, the Bergman kernels of A2(Rm+1
±,∓a, C�0,m(C)) are, respec-

tively, given by

B±,∓a(w, x) =
1

(2π)m

∫

Rm

2|ξ|e−2a|ξ|e±(w + x, ξ)dξ

= 2
∂

∂x0

1
(2π)m

∫

Rm

e−2a|ξ|e±(w + x, ξ)dξ

= ∓2
∂

∂x0
S±,∓a(w, x),

where S+,−a(w, x) and S−,a(w, x) are the Szegö kernels given in the previous
section. Then we can define A2(Sa, C�0,m(C)) � B̃(w, x) = B+,−a(w, x) +
B−,a(w, x).

Remark 4. Unlike the Hardy space case, we can only give a necessary condi-
tion for functions in Ap(Sa, C�0,m(C)), 1 ≤ p < 2.

Theorem 3.8. If f ∈ Ap(Sa, C�0,m(C)), 1 ≤ p ≤ 2, then there exists a func-
tion g such that

f(x) =
1

(2π)m

∫

Rm

e(x, ξ)g(ξ)dξ,

where g(ξ) = F(f)(ξ) ∈ Lq(Rm, C�0,m(C)), satisfies for 1 < p ≤ 2, q = p
p−1 ,

(
1
2

∫

Rm

(epa|ξ| − e−pa|ξ|)
q
p
|χ+(ξ)g(ξ)|q + |χ−(ξ)g(ξ)|q

(p|ξ|) q
p

dξ

) 1
q

≤ Cp||f ||Ap(Sa);

(3.27)

and for p = 1, q = ∞,

1
2

sup
ξ∈Rm

(ea|ξ| − e−a|ξ|)
|χ+(ξ)g(ξ)| + |χ−(ξ)g(ξ)|

|ξ| ≤ C1||f ||A1(Sa). (3.28)

Proof. The proof is similar to that of Theorem 3.6. For 1 ≤ p < 2, |f |p is
subharmonic, that makes the argument in the proof of Theorem 3.6 appli-
cable to the present case. In fact, we let f ∈ Ap(Sa, C�0,m(C)), and fδ the
restriction of f to {x ∈ Sa : |x0| < a − δ}. By the subharmonicity of |f |p and
the argument used Theorem 3.6, we have fδ ∈ Hp(S(a−δ), C�0,m(C)). Then,
by Theorem 3.4, we have

fδ(x) =
1

(2π)m

∫

Rm

e(x, ξ)F(f)(ξ)dξ =
1

(2π)m

∫

Rm

e(x, ξ)g(ξ)dξ.

and

F(fδ(x0 + ·))(ξ) =(e−x0|ξ|χ+(ξ) + ex0|ξ|χ−(ξ))F(f)(ξ)

=(e−x0|ξ|χ+(ξ) + ex0|ξ|χ−(ξ))g(ξ).

Since the above equalities holds for all 0 < δ < a, we have

f(x) =
1

(2π)m

∫

Rm

e(x, ξ)F(f)(ξ)dξ =
1

(2π)m

∫

Rm

e(x, ξ)g(ξ)dξ.



Vol. 32 (2022) On Monogenic Reproducing Kernel Hilbert... Page 21 of 29 50

and

F(f(x0 + ·))(ξ) =(e−x0|ξ|χ+(ξ) + ex0|ξ|χ−(ξ))F(f)(ξ)

=(e−x0|ξ|χ+(ξ) + ex0|ξ|χ−(ξ))g(ξ).

Next we will prove (3.27) and (3.28). We first consider the case 1 < p <
2, q = p

p−1 . By Hausdorff-Young’s inequality, there holds
(∫

Rm

|e−x0|ξ|χ+(ξ)g(ξ) + ex0|ξ|χ−(ξ)g(ξ)|qdξ

) 1
q

≤ Cp

(∫

Rm

|f(x0 + x)|pdx

) 1
p

.

Consequently, using the fact χ+χ− = χ−χ+ = 0, we have
(∫

Rm

|e−x0|ξ|χ+(ξ)g(ξ)|qdξ

) 1
q

≤ Cp

(∫

Rm

|f(x0 + x)|pdx

) 1
p

and
(∫

Rm

|ex0|ξ|χ−(ξ)g(ξ)|qdξ

) 1
q

≤ Cp

(∫

Rm

|f(x0 + x)|pdx

) 1
p

.

Then by Minkowski’s inequality,
(∫

Rm

(∫ a

−a

|χ+(ξ)g(ξ)|pe−px0|ξ|dx0

) q
p

dξ

) p
q

≤
∫ a

−a

(∫

Rm

|χ+(ξ)g(ξ)|qe−qx0|ξ|dξ

) p
q

dx0

≤ Cp
p

∫ a

−a

∫

Rm

|f(x0 + x)|pdxdx0,

which gives
(∫

Rm

(epa|ξ| − e−pa|ξ|)
q
p
|χ+(ξ)g(ξ)|q

(p|ξ|) q
p

dξ

) 1
q

≤ Cp||f ||Ap(Sa).

Similarly, there holds
(∫

Rm

(epa|ξ| − e−pa|ξ|)
q
p
|χ−(ξ)g(ξ)|q

(p|ξ|) q
p

dξ

) 1
q

≤ Cp||f ||Ap(Sa).

Therefore, for 1 < p < 2, q = p
p−1

(
1
2

∫

Rm

(epa|ξ| − e−pa|ξ|)
q
p
|χ+(ξ)g(ξ)|q + |χ−(ξ)g(ξ)|q

(p|ξ|) q
p

dξ

) 1
q

≤ Cp||f ||Ap(Sa).

For the case p = 1, q = ∞, by the definition of the Fourier transform, there
holds

sup
ξ∈Rm

|e−x0|ξ|χ+(ξ)g(ξ) + ex0|ξ|χ−(ξ)g(ξ)| ≤ C1

∫

Rm

|f(x0 + x)|dx,
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which gives

sup
ξ∈Rm

|e−x0|ξ|χ+(ξ)g(ξ)| ≤ C1

∫

Rm

|f(x0 + x)|dx

and

sup
ξ∈Rm

|ex0|ξ|χ−(ξ)g(ξ)| ≤ C1

∫

Rm

|f(x0 + x)|dx.

Consequently, taking integration to the both sides with respect to x0, we
have

1
2

sup
ξ∈Rm

(ea|ξ| − e−a|ξ|)
|χ+(ξ)g(ξ)| + |χ−(ξ)g(ξ)|

|ξ| ≤
∫ a

−a

∫

Rm

|f(x0 + x)|dxdx0

= C1||f ||A1(Sa).

�

Next we give some pointwise estimates of the Bergman kenel B(w, x).

Lemma 3.9. For the Bergman kernel B(w, x), we have

c

(a − |x0|)m+1
≤ B(x, x) ≤ C

(a − |x0|)m+1
(3.29)

and for |w + x| ≥ 1,

|B(w, x)| ≤ M

|w + x|m−1
2 (2a − |w0 + x0|)m+3

2

(3.30)

for m = 2l + 1, l = 1, 2, . . . , and

|B(w, x)| ≤ M

|w + x|m−1
2 (2a − |w0 + x0|)m+4

2

(3.31)

for m = 2l, l = 1, 2, . . . , where M is a constant that is independent of w and
x.

Proof. We first consider (3.29). Note that

||B(·, x)||2A2(Sa) =B(x, x)

=
1

(2π)m

∫

Rm

e−2x0|ξ|χ+(ξ)
2|ξ|

e2a|ξ| − e−2a|ξ| dξ+

1
(2π)m

∫

Rm

e2x0|ξ|χ−(ξ)
2|ξ|

e2a|ξ| − e−2a|ξ| dξ.
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Thus we must have

B(x, x) =
2

(2π)m

(∫

Rm

e−2x0|ξ|χ+(ξ)
|ξ|

e2a|ξ| − e−2a|ξ| dξ

+
∫

Rm

e2x0|ξ|χ−(ξ)
|ξ|

e2a|ξ| − e−2a|ξ| dξ

)

=
2

(2π)m

∫

Sm−1

(∫ ∞

0

e−2(x0+a)r
(1 + ξ′)rm

1 − e−4ar
drdσ(ξ′)+

×
∫ ∞

0

e2(x0−a)r
(1 − ξ′)rm

1 − e−4ar
dr

)

dσ(ξ′)

=
2

(2π)m

∫

Sm−1
dσ(ξ′)

∫ ∞

0

(
e−2(x0+a)r + e2(x0−a)r

) rm

1 − e−4ar
dr

≥ 4σm−1

(2π)m

∫ ∞

0

e−2(a−|x0|)rrmdr

=
4m!σm−1

(2π)m

1
(2(a − |x0|))m+1

≥ c

(a − |x0|)m+1
,

(3.32)

where we have used the fact
∫

Sm−1 ξ′dσ(ξ′) = 0.

For the left-hand side of (3.29), by the third equality of (3.32), we have

B(x, x) ≤ 8σm−1

(2π)m

(∫ ∞

0

e−2(a−|x0|)rrm
∞∑

k=0

e−4akr

)

=
8σm−1

(2π)m

∞∑

k=0

(∫ ∞

0

e−2(a−|x0|)rrme−4akr

)

=
8m!σm−1

(2π)m2m+1

∞∑

k=0

1
((2k + 1)a − |x0|)m+1

≤ 8m!σm−1

(2π)m2m+1

∞∑

k=0

1
(2ka + a − |x0|)m+1

≤ 1
(a − |x0|)m+1

4m!Cm

(2π)m2m+1

∞∑

k=0

1
( 2ka

a−|x0| + 1)m+1

≤ 1
(a − |x0|)m+1

4m!Cm

(2π)m2m+1

∞∑

k=0

1
(2k + 1)m+1

=
C

(a − |x0|)m+1
.

In the following we will prove (3.30) and (3.31) by using the argument
similar to Lemma 3.1. First we recall that ωm−2

2
= Γ(m−1

2 )Γ( 1
2 ), and Jk(t) is
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the Bessel function given by

Jk(t) =
( t
2 )k

ωk

∫ 1

−1

eits(1 − s2)
2k−1

2 ds, k > −1
2
.

Note that

B(w, x) =
1

(2π)m

∫

Rm

|ξ|
e2a|ξ| − e−2a|ξ|

(

e−(w0+x0)|ξ|(1 + i
ξ

|ξ| )

+e(w0+x0)|ξ|(1 − i
ξ

|ξ| )
)

ei〈w+x,ξ〉dξ

=
1

(2π)m

∫

Rm

|ξ|
e2a|ξ| − e−2a|ξ|

(
e−(w0+x0)|ξ| + e(w0+x0)|ξ|

)
ei〈w+x,ξ〉dξ+

1
(2π)m

∫

Rm

|ξ|
e2a|ξ| − e−2a|ξ|

(
e−(w0+x0)|ξ| − e(w0+x0)|ξ|

)
i

ξ

|ξ|e
i〈w+x,ξ〉dξ

= I1 + I2.

As in Lemma 3.1, we have

|I1| =

∣
∣
∣
∣
∣

1
(2π)m

∫ ∞

0

∫

Sm−1

(
e−(w0+x0)r + e(w0+x0)r

)
rm

e2ar − e−2ar
ei〈w+x,ξ′〉dσ(ξ′)dr

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

ωm−2
2

(2π)m

∫ ∞

0

(
e−(w0+x0)r + e(w0+x0)r

)
rm

e2ar − e−2ar

× · (r|w + x|)− m−2
2 Jm−2

2
(r|w + x|)dr

∣
∣
∣

≤ M1

|w + x|m−1
2

∫ ∞

0

(
e−(2a+w0+x0)r + e−(2a−(w0+x0))r

)
r

m+1
2

1 − e−4ar
dr

≤ 2M1

|w + x|m−1
2

∫ ∞

0

e−(2a−|w0+x0|)rr
m+1

2

1 − e−4ar
dr

=
2M1

|w + x|m−1
2

∞∑

k=0

∫ ∞

0

e−(2a(2k+1)−|w0+x0|)rr
m+1

2 dr.

When m = 2l + 1, l ≥ 1,

|I1| ≤ 2M1

|w + x|m−1
2

∞∑

k=0

1

(2a(2k + 1) − |w0 + x0|)m+3
2

≤ 2M1

|w + x|m−1
2 (2a − |w0 + x0|)m+3

2

∞∑

k=0

1

(2k + 1)
m+3

2

≤ M2

|w + x|m−1
2 (2a − |w0 + x0|)m+3

2

.
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When m = 2l, l ≥ 1,

|I1|

≤ 2M1

|w + x| m−1
2

∞∑

k=0

1

(2a(2k + 1) − |w0 + x0|) m
2

∫ ∞

0

e−(2a(2k+1)−|w0+x0|)rr
1
2 dr

≤ 2M1

|w + x| m−1
2

∞∑

k=0

(
1

(2a(2k + 1) − |w0 + x0|) m+2
2

+

× 1

(2a(2k + 1) − |w0 + x0|) m+4
2

)

≤ 2M1

|w + x| m−1
2 (2a − |w0 + x0|) m+4

2

∞∑

k=0

(
2a − |w0 + x0|
(2k + 1)

m+2
2

+
1

(2k + 1)
m+4

2

)

≤ M ′
2

|w + x| m−1
2 (2a − |w0 + x0|) m+4

2

.

For I2, we note that

I2 =
i

(2π)m

∫ ∞

0

∫

Sm−1

(
e−(w0+x0)r + e(w0+x0)r

)
rm

e2ar − e−2ar
eir〈w+x,ξ′〉ξ′dσ(ξ′)dr.

Using exactly the same argument as in Lemma 3.1, we introduce I21 and I22,
where

I21 =
∫ π

0

eir|w+x| cos θ1 cos θ1(sin θ1)m−2dθ1

=
iωm

2

m − 1
(r|w + x|)− m

2 +1Jm
2
(r|w + x|)

and

I22 =
∫ π

0

eir|w+x| cos θ1 sin θ1(sin θ1)m−2dθ1

=ωm−1
2

(r|x|)− m−1
2 Jm−1

2
(r|w + x|).

As in Lemma 3.1 again, to estimate I2, it suffices to estimate
∣
∣
∣
∣
∣

∫ ∞

0

(
e−(w0+x0)r + e(w0+x0)r

)
rm

e2ar − e−2ar
(r|w + x|)− m

2 +1Jm
2
(r|w + x|)dr

∣
∣
∣
∣
∣

(3.33)

and
∣
∣
∣
∣
∣

∫ ∞

0

(
e−(w0+x0)r + e(w0+x0)r

)
rm

e2ar − e−2ar
(r|w + x|)− m−1

2 Jm−1
2

(r|w + x|)dr

∣
∣
∣
∣
∣
.

(3.34)
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For (3.33), we have

(3.33)

= |
∞∑

k=0

1

|w + x| m
2

∫ ∞

0

(e−(2a(2k+1)+w0+x0)r + e−(2a(2k+1)−(w0+x0)))

· r
m
2 +1|w + x|J m

2
(r|w + x|)dr|

≤ M3

|w + x| m−1
2

∞∑

k=0

∫ ∞

0

∣
∣
∣(e

−(2a(2k+1)+w0+x0)r + e−(2a(2k+1)−(w0+x0)))r
m+1

2

∣
∣
∣ dr

≤ 2M3

|w + x| m−1
2

∞∑

k=0

∫ ∞

0

e−(2a(2k+1)−|w0+x0|)rr
m+1

2 dr.

Similar to the discussion for I1, we have that

(3.33) ≤ M4

|w + x|m−1
2 (2a − |w0 + x0|)m+3

2

for m = 2l + 1, l = 1, 2, . . . , and

(3.33) ≤ M ′
4

|w + x|m−1
2 (2a − |w0 + x0|)m+4

2

for m = 2l, l = 1, 2, ....
For (3.34), we have

(3.34)

=

∣
∣
∣
∣
∣

∞∑

k=0

1

|w + x|m−1
2

∫ ∞

0

(
e−(2a(2k+1)+w0+x0)r + e−(2a(2k+1)−(w0+x0))r

)

·r m+1
2 Jm−1

2
(r|w + x|)dr

∣
∣
∣

≤ M5

|w + x|m
2

∞∑

k=0

∫ ∞

0

e−(2a(2k+1)−|w0+x0|)rr
m
2 dr.

Consequently,

(3.34) ≤ M6

|w + x|m
2 (2a − |w0 + x0|)m+3

2

for m = 2l + 1, l = 1, 2, . . . , and

(3.34) ≤ M ′
6

|w + x|m
2 (2a − |w0 + x0|)m+2

2

for m = 2l, l = 1, 2, ....
Therefore, we have for |w + x| ≥ 1,

|B(w, x)| ≤ M

|w + x|m−1
2 (2a − |w0 + x0|)m+3

2

for m = 2l + 1, l = 1, 2, . . . , and

|B(w, x)| ≤ M

|w + x|m−1
2 (2a − |w0 + x0|)m+4

2
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for m = 2l, l = 1, 2, . . . , where M is a constant that is independent of w and
x. �
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